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Source Coding
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Output Alphabet
Y={y1,…,yJ}

Source Encoder



Source Coding

Two requirements
1. The source sequence can be recovered from 

the encoded sequence with no ambiguity.
2. The average number of output symbols per 

source symbol is as small as possible.  
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Variable Length Codes
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Lengths  

Output Alphabet
Y={y1,…,yJ}



Variable Length Codes
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Variable Length Codes

• Let K = 4, X = {x1, x2, x3, x4}, J = 2
• Prefix code (also prefix-free or instantaneous)

 C1={0,10,110,111}
• Example sequence of codewords: 

001110100110
• Decodes to:
 0  0  111  0  10  0  110
          x1 x1     x4    x1   x2   x1   x3
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Instantaneous Codes

• Definition:
A uniquely decodable code is said to be 

instantaneous if it is possible to decode each 
codeword in a sequence without reference to 
succeeding codewords.

A necessary and sufficient condition for a code to be 
instantaneous is that no codeword is a prefix of 
some other codeword.
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Variable Length Codes

• Uniquely decodable code (which is not prefix)
 C2={0,01,011,0111}

• Example sequence of codewords: 
001110100110

• Decodes to:
 0  0111  01  0  011  0
     x1 x4     x2   x1    x3     x1
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Variable Length Codes

• Non-singular code (which is not uniquely 
     decodable)
 C3={0,1,00,11}

• Example sequence of codewords:
    001110100110
• Decodes to:
 0  0  1  1  1  0  1  0  0  1  1  0
          x1  x1 x2  x2  x2 x1 x2 x1 x1 x2 x2 x1
 00  11  1  0  1  00  11  0

      x3    x4   x2 x1 x2   x3   x4   x1
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Variable Length Codes

• Singular code
 C4={0,10,11,10}

• Example sequence of codewords: 
001110100110

• Decodes to:
 0  0  11  10  10  0  11  0

     x1 x1   x3    x2     x2   x1  x3  x1

     x1 x1   x3    x4     x2   x1  x3  x1
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Variable Length Codes
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Lengths  

Output Alphabet
Y={y1,…,yJ}
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Variable Length Codes



Average Codeword Length
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Kraft Inequality for Prefix Codes
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Code Tree

15

root

0

0

ci = 00…

cj = 0

leaf

Codewords are 
paths through the 
tree starting at 
the root 

Violates the 
prefix condition



Code Tree
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Two Binary Prefix Codes

• Five source symbols: x1, x2, x3, x4, x5

• K = 5, J = 2

• c1 = 0, c2 = 10, c3 = 110, c4 = 1110, c5 = 1111
– codeword lengths 1,2,3,4,4

• c1 = 00, c2 = 01, c3 = 10, c4 = 110, c5 = 111
– codeword lengths 2,2,2,3,3
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Five Binary Codes
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x1
x2
x3
x4

Code A Code B Code C Code D Code E
Source
symbols



Ternary Code Example

• Ten source symbols: x1, x2, …, x9, x10

• K = 10, J = 3

• lk = 1,2,2,2,2,2,3,3,3,3
• lk = 1,2,2,2,2,2,3,3,3
• lk = 1,2,2,2,2,2,3,3,4,4
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Average Codeword Length Bound
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Four Symbol Source

• p(x1) = 1/2  p(x2) = 1/4  p(x3) = p(x4) = 1/8
• H(X) = 1.75 bits

x1  0   
x2  10       
x3  110       
x4  111

L(C) = 1.75 bits
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x1  00   
x2  01       
x3  10       
x4  11

L(C) = 2 bits    

Information
Source

X



Code Efficiency

• First code ζ = 1.75/1.75 = 100%
• Second code ζ = 1.75/2.0 = 87.5%
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Compact Codes

A code C is called compact for a source X if its 
average codeword length L(C) is less than or 
equal to the average length of all other uniquely 
decodable codes for the same source and 
alphabet Y size J.
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Codeword Lengths
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Upper and Lower Bounds for a 
Compact Code
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The Shannon Algorithm

• Order the symbols from largest to smallest 
probability

• Choose the codeword lengths according to

• Construct the codewords according to the 
cumulative probability Pk 

   
    expressed as a base J number with P1 = 0
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Example

• K = 10, J = 2
• p(x1) = p(x2) = 1/4
• p(x3) = p(x4) = 1/8
• p(x5) = p(x6) = 1/16
• p(x7) = p(x8) = p(x9) = p(x10) = 1/32
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Converting Decimal Fractions to Binary

• To convert a fraction to binary, multiply it by 2
• If the integer part is 1, the binary digit is 1, 

otherwise it is 0
• Delete the integer part
• Continue multiplying by 2 and obtaining 

binary digits until the resulting fractional part 
is 0 or the required number of binary digits 
have been obtained
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Example

• Convert 5/8 = 0.62510 to binary
– 2 × 0.625 = 1.25 = 1 + 0.25 MSB
– 2 × 0.250 = 0.50 = 0 + 0.50
– 2 × 0.500 = 1.00 = 1 + 0.00 LSB
– 0.62510 = 0.1012

• Convert 13/16 = 0.812510 to binary
– 2 × 0.8125 = 1 + 0.625  MSB
– 2 × 0.625 =   1 + 0.25
– 2 × 0.250 =   0 + 0.50
– 2 × 0.500 =   1 + 0.00    LSB
– 0.812510 = 0.11012
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Example
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Shannon Algorithm

• p(x1) = .4  p(x2) = .3  p(x3) = .2  p(x4) = .1
• H(X) = 1.85 bits

Shannon Code
x1  00   
x2  01       
x3  101       
x4  1110

L(C) = 2.4 bits

ζ = 77.1% 
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Alternate Code
x1  0   
x2  10       
x3  110       
x4  111

L(C) = 1.9 bits

 ζ = 97.4% 

   



Shannon’s Noiseless Coding Theorem
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Shannon’s Noiseless Coding Theorem

If b = J
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Robert M. Fano (1917-2016)
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The Fano Algorithm

• Arrange the symbols in order of decreasing 
probability

• Divide the symbols into J approximately 
equally probable groups

• Each group receives one of the J code symbols 
as the first codeword symbol

• This division process is repeated within the 
groups as many times as possible
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Example
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Shannon Algorithm vs Fano Algorithm

• p(x1) = .4  p(x2) = .3  p(x3) = .2  p(x4) = .1
• H(X) = 1.85 bits

Shannon Code
x1  00   
x2  01       
x3  101       
x4  1110

L(C) = 2.4 bits

ζ = 77.1% 
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Fano Code
x1  0   
x2  10       
x3  110       
x4  111

L(C) = 1.9 bits

 ζ = 97.4% 

   



Upper Bound for the Fano Code J∈{2,3}
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David A. Huffman (1925-1999)
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• ``It was the most singular moment in my life.    
There was the absolute lightning of sudden 
realization.’’
– David Huffman

• ``Is that all there is to it!’’
– Robert Fano
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Midterm Test

• Wednesday, October 23, 2024
• During class time (10:30 – 11:20)
• Counts for 20% of the final mark
• Aids allowed

– One page of notes on 8.5” × 11.5” paper (both
sides) 

– Calculator
• Cellphones, tablets, laptops, or any other

electronic devices are NOT ALLOWED
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The Binary Huffman Algorithm
1. Arrange the K symbols of the source X in order of 

decreasing probability.
2. Assign a 1 to the last digit of the Kth codeword cK and a 0 

to the last digit of the (K-1)th codeword cK-1. Note that 
this assignment is arbitrary.

3. Form a new source X´ with x´k = xk, k = 1, …, K-2, and       
 x´K-1 = xK-1 U xK       p(x´K-1) = p(xK-1) + p(xK)

4. Set K = K-1.
5. Repeat Steps 1 to 4 until all symbols have been 

combined.
 
 To obtain the codewords, trace back to the original 

symbols.
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Five Symbol Source

• p(x1)=.35  p(x2)=.22  p(x3)=.18  p(x4)=.15  p(x5)=.10

• H(X) = 2.2 bits
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L(C) = 2.25 bits  ζ = 97.8% 



Shannon  and Fano Codes
• p(x1)=.35  p(x2)=.22  p(x3)=.18  p(x4)=.15  p(x5)=.10
• H(X) = 2.2 bits

Shannon Code
x1  00   
x2  010       
x3  100       
x4  110
x5  1110

L(C) = 2.75 bits

ζ = 80.4% 
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Fano Code
x1  00   
x2  01       
x3  10       
x4  110
x5  111

L(C) = 2.25 bits

ζ = 97.8% 



Huffman Code for the English Alphabet
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Six Symbol Source

• p(x1)=.4  p(x2)=.3  p(x3)=.1  p(x4)=.1  p(x5)=.06 
p(x6)=.04 

• H(X) = 2.144 bits

47

First Code
x1  1
x2  00       
x3  0100       
x4  0101
x5  0110       
x6  0111

Second Code
x1  1
x2  00       
x3  010       
x4  0110
x5  01110       
x6  01111



Second Five Symbol Source

• p(x1)=.4  p(x2)=.2  p(x3)=.2  p(x4)=.1  p(x5)=.1
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C1 C2

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5



Second Five Symbol Source
• p(x1)=.4  p(x2)=.2  p(x3)=.2  p(x4)=.1  p(x5)=.1
• H(X) = 2.233 bits  L(C) = 2.2 bits

  Which code is preferable?
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 C1    C2
x1 0    11
x2 10    01
x3 111    00
x4 1101    101
x5 1100    100



Second Five Symbol Source

• p(x1)=.4  p(x2)=.2  p(x3)=.2  p(x4)=.1  p(x5)=.1 
• H(X) = 2.122 bits  L(C) = 2.2 bits

• variance of code C1
𝜎𝜎12 = 0.4(1-2.2)2+0.2(2-2.2)2+0.2(3-2.2)2+0.2(4-2.2)2 = 1.36

• variance of code C2
𝜎𝜎22 = 0.8(2-2.2)2+0.2(3-2.2)2 = 0.16
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Nonbinary Example

• J=3  K=6

• p(x1)=1/3  p(x2)=1/6  p(x3)=1/6  p(x4)=1/9  p(x5)=1/9 
p(x6)=1/9

• H(X) = 1.544 trits
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Nonbinary Example

• J=3  K=6

•                   =2 so K’=J+c(J-1)=3+2(2)=7  

• Add an extra symbol x7 with p(x7)=0 

• p(x1)=1/3  p(x2)=1/6  p(x3)=1/6  p(x4)=1/9  p(x5)=1/9 
p(x6)=1/9  p(x7)=0 
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1
K Jc
J
− =  − 



Nonbinary Example with an Extra Symbol
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x1 1
x2 00
x3 01
x4 02
x5 20
x6 21
x7 22

L(C) = 1.667 trits

H(X) = 1.544 trits 

ζ = 92.6% 



Nonbinary Example with no Extra Symbol
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x1 1
x2 01
x3 02
x4 000
x5 001
x6 002

L(C) = 2.0 trits

H(X)  = 1.544 trits

ζ = 77.2% 



Codes for Different Output Alphabets

• K=13

• p(x1)=1/4  p(x2)=1/4
    p(x3)=1/16  p(x4)=1/16  p(x5)=1/16  p(x6)=1/16 
    p(x7)=1/16  p(x8)=1/16  p(x9)=1/16
    p(x10)=1/64  p(x11)=1/64  p(x12)=1/64  p(x13)=1/64 

• J=2 to 13
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Codes for Different Output Alphabets
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J

L(C)

p(xi) xi

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13



Codes for Different Output Alphabets

J  L(C)
 2 3.125
 3 2.047
 4 1.563
 5 1.438
 6 1.359
 7 1.250
 8 1.188
 9 1.125
 10 1.063
 11 1.047
 12 1.031
 13 1.000
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Codes for Different Output Alphabets

J  L(C)     ζ
 2 3.125  1.000
 3 2.047  0.963
 4 1.563  1.000
 5 1.438  0.936
 6 1.359  0.889
 7 1.250  0.891
 8 1.188  0.877
 9 1.125  0.876
 10 1.063  0.885
 11 1.047  0.863
 12 1.031  0.845
 13 1.000  0.844
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Code Efficiency
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Binary and Quaternary Codes
x1  00  0

 x2   01  1
 x3        1000  20
 x4        1001  21
 x5        1010  22
 x6        1011  23
 x7        1100  30
 x8        1101  31
 x9        1110  32
 x10        111100  330
 x11        111101  331
 x12        111110  332
 x13        111111  333
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Huffman Codes

• Symbol probabilities must be known a priori
• The redundancy of the code
 L(C)-H(X) (for J=b)
    is typically nonzero
• Error propagation can occur
• Codewords have variable length
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Variable to Fixed Length Codes
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Variable to fixed 
length encoder

                                       M sourcewords M ≤ JL

Lengths m1,m2,…,mM   

Fixed length L   



Variable to Fixed Length Codes

• Two questions:
1. What is the best mapping from sourcewords to 

codewords?
2. How to ensure unique encodability?
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Average Bit Rate
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Average Bit Rate

• For fixed to variable length codes

• Design criterion: minimize L(C) or LN(C)
– minimize the ABR 
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Variable to Fixed Length Codes

• Design criterion: minimize the Average Bit Rate 

• ABR ≥ H(X)  (L(C) ≥ H(X) for fixed to variable 
length codes)

• L(S) should be as large as possible so that the 
ABR is close to H(X)
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ABR=
L(S)

L



Code Efficiency

• Fixed to variable length codes

• Variable to fixed length codes

67

H(X)ζ= 1
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Binary Tunstall Code K=3, L=3

68

Source X = {a, b, c}

Unused codeword is 111



Tunstall Codes

Tunstall codes must satisfy the Kraft inequality
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Binary Tunstall Code Construction

• Source X with K symbols
• Choose a codeword length L where 2L > K
1. Form a tree with a root and K branches labelled 

with the symbols
2. If the number of leaves is greater than 2L - (K-1), 

go to Step 4
3. Find the leaf with the highest probability and 

extend it to have K branches, go to Step 2
4. Assign codewords to the leaves
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K=3, L=3
p(a) = .7, p(b) = .2, p(c) = .1



72

ABR = 3/[3(.343+.098+.049)+2(.14+.07)+.2+.1]
         = 1.37 bits
H(X) = 1.16 bits
      ζ = H(X)/ABR = 84.7%



The Codewords

aaa 000
aab 001
aac 010
ab 011
ac 100
b 101
c 110
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• What if a or aa is left at the end of the 
sequence of source symbols?
– there are no corresponding codewords

• Solution: use the unused codeword 111
– a     1110 or 111 000
– aa   1111 or 111 001
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Tunstall Codes for a Binary Source
• L = 3, K = 2, J = 2, p(x1) = 0.7, p(x2) = 0.3
• JL = 8
 Seven sourcewords Eight sourcewords Codewords
 x1x1x1x1x1  x1x1x1x1x1  000
 x1x1x1x1x2  x1x1x1x1x2  001
 x1x1x1x2  x1x1x1x2  010
 x1x1x2   x1x1x2   011
 x1x2   x1x2x1   100
 x2x1   x1x2x2   101
 x2x2   x2x1   110
    x2x2   111
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• The end of the sequence of source symbols can 
be

 x1, x2, x1x1 , x1x1x1, or x1x1x1x1 

• With M=7 sourcewords the codeword 111 is 
unused so they can be assigned as follows
– x1   111 000
– x2  111 001
– x1x1 111 010
– x1x1x1 111 011
– x1x1x1x1 111 100
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Huffman Code for a Binary Source
• N = 3, K = 2, p(x1) = 0.7, p(x2) = 0.3
• Eight sourcewords
• A = x1x1x1     p(A) = .343 00      
• B = x1x1x2    p(B) = .147 11        
• C = x1x2x1  p(C) = .147 010        
• D = x2x1x1    p(D) = .147 011        
• E = x2x2x1   p(E) = .063 1000       
• F = x2x1x2   p(F) = .063 1001        
• G = x1x2x2   p(G) = .063 1010        
• H = x2x2x2   p(H) = .027 1011

77



Code Comparison

• H(X) = .8813
• Tunstall Code L=3 (7 codewords)
 ABR = .9762 ζ = 90.3%
• Tunstall Code L=3 (8 codewords)
 ABR = .9138 ζ = 96.4%
• Huffman Code N=1 (2 codewords)
 L(C) = 1.0  ζ = 88.1%
• Huffman Code N=3 (8 codewords) 
 L3(C)/3 = .9087 ζ = 97.0%
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Error Propagation

• Received Huffman codeword sequence
  00 11 00 11 00 11 …
   A   B   A   B   A   B  …

• Sequence with one bit error
  011 1001 1001 1 …
            D      F        F    …
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Error Propagation

• The corresponding Tunstall codeword 
sequence

  000 110 001 000 110 001 …
  x1x1x1x1x1 x2x1 x1x1x1x1x2 … 

• Sequence with one bit error
  010 110 001 000 110 001 …
  x1x1x1x2 x2x1 x1x1x1x1x2 …
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