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TRANSIENT RESPONSE ANALYSIS

Test  signals:

• Impulse
• Step
• Ramp
• Sin  and/or  cos

Transient Response: for t between 0 and T

Steady-state Response: for t� �

System Characteristics:

• Stability � transient
• Relative stability � transient
• Steady-state error � steady-state
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First order systems
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Unit ramp response
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Impulse response:

R(s) = 1 r(t) = �(t)
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Observation:

Response to the derivative of an input equals to derivative of
the response to the original signal.

Y(s) = G(s) U(s) U(s): input

U1(s) = s U(s)  Y1(s) = s Y(s) Y(s): output

G(s) U1(s) = G(s) s U(s) = s Y(s) = Y1(s)

How can we recognize if a system is 1st  order ?

Plot   log |c(t) – c(���

If the plot is linear,    then the system is 1st  order

Explanation:
Tt
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−
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log |c(t) – c(��� � ��� �	-t/T  |=  
T

t

r(t) = step

r(t) System c(t)
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Second Order Systems

Block Diagram

Transfer function:
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Substitute in the transfer function:
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• Underdamped ����� � � �� 	

F² - 4 J K < 0 two complex conjugate poles

• Critically damped ����� � � �

F² - 4 J K = 0 two equal real poles

• Overdamped ����� � 	�

F² - 4 J K > 0 two real poles
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Under damped case  (0 < � < 1):
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Unit step response:

R(s) = 1/s
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Unit step response:
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Unit step Response: R(s) = 1/s
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Unit step response curves of a critically damped system.



B13

Transient Response Specifications

Unit step response of a 2nd order underdamped system:

td   delay time: time to reach 50% of c(�� �or the first time.

tr   rise time : time to rise from 0 to 100% of c(���

tp   peak time : time required to reach the first peak.

Mp   maximum overshoot :   %100
)(

)()(
⋅

∞
∞−

c

ctc p

ts   settling time : time to reach and stay within a 2% (or
5%) tolerance of the final value c(���

0.4 < ζ < 0.8

Gives  a good step response for an underdamped system

Allowable tolerance

0
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0.05 or
0.02
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Rise time  tr time from 0 to 100%  of  c(��
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Maximum overshoot  Mp:
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Settling time ts versus ζ curves {T = 1/(ζωn) }
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Impulse response of second-order systems
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critically damped case ( ζ = 1):
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Remark: Impulse Response  =  d/dt (Step Response)

Relationship between tp, Mp and the unit-impulse response curve of a system

Unit ramp response of a second order system
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Examples:

a. Proportional Control
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Choose K to obtain ‘good’ performance for the closed-loop system

For good transient response:

0.4 < ζ <0.8 � acceptable overshoot

�n  sufficiently large � good settling time

For small stead- state error in ramp response:
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b. Proportional plus derivative control:
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Choose Kp, Kd to obtain ‘good’ performance of the closed-loop system

For small steady-state error in ramp response  �   Kp large

For good transient response  �  Kd  so that  0.4 < ζ <0.8
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c. Servo mechanism with velocity feedback

Transfer function
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Choose K, Kh to obtain ‘good’ performance for the closed-loop system

For small steady-state error in ramp response  �   K large

For good transient response  �  Kh  so that  0.4 < ζ <0.8

Remark:  The damping ratio ζ can be increased without
affecting the natural frequency ωn in this case.

FJs

K

+ s

1

Kh

Θ(s)
s Θ(s)

+

-

+

-

R(s)



B23

Effect of a zero in the step response of a 2nd order system
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Unit step Response of 3rd order systems
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Transient response of higher-order systems
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STABILITY ANALYSIS
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Conditions for Stability:

A. Necessary condition for stability:

 All coefficients of A(s) have the same sign.

B. Necessary and sufficient condition for stability:

0)( ≠sA for Re[s] � �

or, equivalently

All poles of G(s) in the left-half-plane (LHP)

Relative stability:

The system is stable and further, all the poles of the system
are located in a sub-area of the left-half-plane (LHP).

Im

ReRe

Im

�



B27

Necessary condition for stability:
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-p1 to -pn are the poles of the system.

If the system is stable   �  all poles have negative real parts

�  the coefficients of a stable polynomial have the same sign.

Examples:

( ) 123 +++= ssssA can be stable or unstable

( ) 123 ++−= ssssA is unstable

Stability testing

Test whether all poles of G(s) (roots of A(s)) have
negative real parts.

Find all roots of A(s)  �  too many computations

Easier Stability test?
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Routh-Hurwitz  Stability Test

A(s) = α0s
n + α1s

n-1+… + αn-1
 s +αn

sn α0 α2 α4 …

sn-1 α1 α3 α5 …

sn-1 b1 b2 b3

c1 c2

……
s2 e1 e2

s1 f1

s0 g1

1

3021

31

20

1
1
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a

aaaa

aa

aa

a
b

−
=

−
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5041

51

40

1
2

1

a
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aa
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a
b

−
=

−
=

1

2113

21

31

1
1

1

b

baba

bb

aa

b
c

−
=

−
= etc

.
Properties of the Ruth-Hurwitz table:

1. Polynomial A(s) is stable (i.e. all roots of A(s) have
negative real parts) if there is no sign change in the first
column.

2. The number of sign changes in the first column is equal
to the number of roots of A(s) with positive real parts.
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Examples:

A(s) = a0s
2 + α1 s + α2

2
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1
1

20
2
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as

aas

α0  >0, α1 > 0 , α2 > 0  or
α0  <0, α1 < 0 , α2 < 0  

For 2nd order systems, the condition that all coefficients of
A(s) have the same sign is necessary and sufficient for
stability.

A(s) = α0 s
3 + α1s

2 + α2s +α3

3
0

1

30211

31
2

20
3

as
a

aaaa
s

aas

aas

−

α0 >0, α1>0, α3>0, α1α2 − α0α3 > 0

(or all first column entries are negative)
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Special cases:

1. The properties of the table do not change when all the
coefficients of a row are multiplied by the same positive
number.

2. If the first-column term becomes zero, replace 0 by � and
continue.
• If the signs above and below � are the same, then

there is a pair of (complex) imaginary roots.
• If there is a sign change, then there are roots with

positive real parts.

Examples:

A(s) = s3 +2s2 + s +2
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ε→  � pair of imaginary roots   ( s= ±j )

A(s) = s3- 3s +2 = (s-1)2(s+2)

2

2
3

20

31

0

1

2

3

s

s

s

s

ε

ε

−−

≈
−

� two roots with positive real parts
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3. If all coefficients in a line become 0, then A(s) has roots
of equal magnitude radially opposed on the real or
imaginary axis. Such roots can be obtained from the roots
of the auxiliary polynomial.

Example:

A(s)= s5 + 2s4 +24 s3 + 48s2 -25s -50

00

50482

25241

3

4

5

s

s

s

−
−

� auxiliary polynomial p(s)

p(s) = 2s4 + 48s2 - 50

ss
ds

sdp
968

)( 3 +=

50

07.112

5024

968

0

1

2

3

−

−

s

s

s

s

• A(s) has two radially opposed root pairs (+1,-1) and
(+5j,-5j) which can be obtained from the roots of p(s).

• One sign change indicates A(s) has one root with
positive real part.

Note:
A(s) = (s+1) (s-1)(s+5j)(s-5j)(s+2)
p(s) = 2(s2-1) (s2 +25)
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Relative stability

Question: Have all the roots of A(s) a distance of at least
� ���� ��� 	�
�	�
� 
�	��

Substitute s with
s = z - � in A(s)
and apply the
Routh-Hurwitz
test to A(z)

Closed-loop System Stability Analysis

Question: For what value of K is the closed-loop system
stable?

Apply the Routh-Hurwitz test to the denominator polynomial

of the closed-loop transfer function
)(1

)(

sKG

sKG

+  .

�

Im

   K )(sG
R(s)

+
-

C(s)

Re
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Steady-State Error Analysis

Evaluate the steady-state performance of the closed-loop
system using the steady-state error ess

)(lim)(lim
0

ssEtee
st

ss →→∞
==

)(
)()(1

1
)( sR

sHsG
sE ⋅

+
=

for the following input signals: Unit step input
Unit ramp input
Unit parabolic input

Assumption: the closed-loop system is stable

Question: How can we obtain the steady-state error  ess  of the
closed-loop system from the open-loop transfer
function  G(s)H(s) ?

G(s)

H(s)

C(s)E(s)
+

-

R(s)
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Classification of systems:

For an open-loop transfer function

( )( )�
�

11

)1)(1(
)()(

21 ++
++=

sTsTs

sTsTK
sHsG N

ba

Type of system:   Number of poles at the origin, i.e.,  N

Static Error Constants: Kp, Kv, Ka

Open-loop transfer function: G(s)H(s)

Closed-loop transfer function:
)()(1

)(
)(

sHsG

sG
sGtot +

=

Static Position Error Constant: Kp

Unit step input to the closed-loop system shown in fig, p.
B33.

R(s) = 1/s )0()0(1
1

)(lim
0 HG

ssEe
s

ss +
==

→

Define: )0()0()()(lim
0

HGsHsGK
s

p ==
→

Type 0 system  Kp = K
p

ss K
e

+
=

1
1

Type 1 and higher Kp= � ess = 0
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Static Velocity Error Constant: Kv

Unit ramp input to the closed-loop system shown if fig, p. B33.

R(s) = 1/s2

)()(
1

lim
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lim

020 sHssGssHsG

s
e

ss
ss →→

=⋅
+
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Define: )()(lim
0

sHssGK
s

v →
=

Type 0 system Kv = 0 ess = �

Type 1 system Kv = K ess = 1/Kv

Type 2 and higher Kv = � ess = 0

Static Acceleration Error Constant: Ka

Unit parabolic input to the closed-loop system shown in fig, p. B33

R(s) = 1/s3
)()(

1
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1
)()(1

lim 2030 sHsGsssHsG

s
e

ss
ss →→

=⋅
+
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Define: )()(lim 2

0
sGsHsK

s
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=

Type 0 system Ka = 0 ess = �

Type 1 system Ka = 0 ess = �

Type 2 system Ka = K ess = 1/ Ka

Type 3 and higher Ka = � ess = 0
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Summary:

Consider a closed-loop system:

with an open-loop transfer function:

( ) ( ) ( ) ( )
( ) ( )...11
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21 +⋅+
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and static error constants defined as:
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The steady-state error  ess  is given by:

Unit step
r(t) = 1

Unit ramp
r(t) = t

Unit
parabolic
r(t) = t2/2

Type 0 )
1

1
(

1

1
KK

e
p

ss +
=

+
= ess= � ess= �

Type 1 ess= 0 )
1

(
1

KK
e

v
ss == ess= �

Type 2 ess= 0 ess= 0 )
1

(
1

KK
e

a
ss ==

G(s)

H(s)

C(s)E(s)
+

-

R(s)



B37

Correlation between the Integral of error in
step response and Steady-state error in

ramp response

E(s) = L[e(t)] = − ste e(t)dt
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