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TRANSIENT RESPONSE ANALYSIS

Test signals:

e Impulse

° Step

e Ramp

e Sin and/or cos
Transient Response; for t betweenOand T
Steady-state Response: for t— o

System Characteristics:

o Stability - transient
o Relative stability - transient
o Steady-state error - Steady-state
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First order systems

C(s) 1 RS =S C(s)
R(s) Ts+1 \ P Ts

Unit step response;

C(s) = 1 1 _ }_ T
s sl+1

Ts+1 s

- UT
C(t)=1—e/ t >0

f)=r-ct)=e’ om0

c(T)=1-€'=0.632

dc (t)l _
dt =0
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Unit ramp response

qo Lt 1 1T T
Ts+1 & & s Ts+1

ct)=t-T+Te T 120

e(t):r(t)—c(t):T(l—e‘%) (>0
&) =T
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Unit-ramp response of the system



| mpul se response;

R(s) = 1 r(t) = 5(t)
1

C(s)= sT +1

e (1) = =5 t=0

0 T 2T 3T AT

Unit-impul se response of the system

B4

| nput Output
_yT
Ramp rt)=t t>0 c)=t-T+Te’ >0
_t
Step r(t) =1 t>0 c(t)=1-e ST t>0

-t/T

Impulse  r(t) = &(t) c(t) = eT >0
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Observation:

Response to the derivative of an input equals to derivative of
the response to the original signal.

Y (s) = G(s) U(s) U(s): input
Ui(s) =sU(s) Yi(s)=sY(s) Y (s): output
G(s) U1(s) = G(s) sU(s) =sY(s) = Y4(9)

How can we recognize if asystemis 1% order ?

r(t) System c(t)

r(t) = step

Plot log |c(t) — c()|

If the plotislinear, thenthe systemis1¥ order

Explanation;

ct)=1-¢ )= 1

log |c(t) —c(0)| = log\e't/T = Tt—



Second Order Systems

Block Diagram
F
: n
: L]
R(S) + K Position signal C ()

4_’@” s(Js + F)

Transfer function:;

cs K
RS JS+Fs+K

[SZJ—E]]K[ 2F ‘ﬂ
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Substitute in the transfer function:
K

ER
F
I =2(w, =20
¢ = F
2 JIK

{:  damping ratio
wpn.  undamped natural frequency
o: Stability ratio

to obtain

Cy__ o
R(S) s*+2w. s+,

e Underdamped case: 0<{<1

F2-4JK<0 two complex conjugate poles
e Critically damped case: {=1

F2-4JK=0 two equal real poles
e Overdamped case: {>1

F2-4JK>0 two real poles
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Under damped case (0<(<1):

C(s) _

2
n

@

RS (s+lo,+ jo,Ns+lo, - jo,)

Re

4 Im

‘{ ””” Ne jwqg

| W
o 1-¢? i B

v
b Cwn
P o
i o { =—=cosp
P o,

W, = 1-C?

®,. undamped natural frequency

0y -
C: dampingratio

damped natural frequency
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Unit step response:

R(s) = 1/s

C(S) — 1— _ S+ Cwn _ Ca)n

s (s+lw.f+aw° (s+lm )+,

c(t) =1- €| cosa,t + sinw,t t>0

4

C(t)=1—%e§w”tsin(a)nﬁt+9) t>0

B =+1-C7 6 = tan ‘15—

e(t) =r(t)-c(t) = egw”t[cosa)dt + Lsi no,t ] t=0

20 A n

S

04 s

R R
: h

I~ I

10

8/ 10N !

L AL | '

1 2 3 4 5 6 7 8 9 10 11 12

] e

Unit step response curves of a second order system
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Undamped case ({=0):

Unit step response;

c(t) =1-cosw,t t>0

Critically damped case ({=1):

Unit step Response: R(s) = 1/s

C(s) o ° o

n n

RS) s*+2w, +o.° - (s+m_)°

1
s(s+w, )’

C(s) =

ct)=1-e™(1+wmt) t=0
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Overdamped case ({>1):

Unit step Response: R(s) = 1/s

C(9=

U)|H

(S+§cq1 +o \/71XS+§cq1 -, ﬁ)

st
_E ) >0

e
af_i( S,
with s, = ++C7-1)a,
~[t -2 -1,

c(t) =1+

If || << s, thetransfer function can be approximated by

C(s) _ s,
R(s) s+,

and for R(s) = 1s
c(t)=1-e* t>0

with

=(<.T— Cz—l)a%
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0.8

4

\A imate soluti
pproxima solurtion

Exact solution
c(=1+0077e~373_| 077¢ 027"

0.2 I
/
V_

Unit step response curves of a critically damped system.
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Transient Response Specifications

Unit step response of a 2™ order underdamped system:

cir) |

ty delaytime: timeto reach 50% of c(c) for the first time.
t risetime: timeto risefrom O to 100% of c(x).

t, peaktime: timerequired to reach thefirst peak.
oft,) — (=)
o)
ts settlingtime:  timeto reach and stay within a 2% (or

5%) tolerance of the final value c().

Mp maximum overshoot : 100%

04<(<0.8

Gives agood step response for an underdamped system
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Risetime t; time from 0 to 100% of ¢(«)

ot)=1 = 1-€°“ (cosy,t +Lsi na,t)=1

J1-C2

sinw,t, =0

¢
J1-C°

cosm,t. +

Peak time t,: time to reach the first peak of c(t)

dc (t . 0 _tw
d’f ) i, =0 = (Snawyt,) : ”CZeC”tp:O
snwyt, =0
T




M aximum overshoot My:

T
t=t, = —
(OF

Coft ) eria) ¢
M, =dt,) =1-e"*""*'(cosT+

e

sinm)

Settling time tg:

oot

c(t)=1- hsir{wdtﬂanl 1252 ]

ot
. . e n
approximate ts using envelope curves: env(t) =1+ e
clf) |
1+ . o
'."'I—_fl
1+ S
PALE ik ot
Lay
1 K_
1=
J1 -2
s 4 ‘ r £ 2 3|T e
\J"ITE_:2
z:ﬂ _14»2 (%r —cos7!' )

Pair of envelope curves for the unit-step response curve

4 4 3 3

2% band: tS:E:C—(I)n 5% band tszgza

n
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Settling time ts versus C curves{T = 1/(Cm,) }

6T
ST
AT e
4
DR . S R
3T
5
2T | 3
I 5% Tolerance i
T
03 04 O5 06 O7 08 09 10
ci{r)
> \
/
! Ry —_—— . —
/7 N — f—
Y i
Jf i '
/ System I [ |- Discontinuity
,rf : n setthing hime
fa"
o
0 .' _
e — | !




| mpulse response of second-order systems

2
0

C(s) = i
() s*+2lw s+’ R =1

underdamped case (0< { < 1):

e ““'sinm y1- %t t>0

c(t) =
vl C

the first peak occurs at t=1to

and the maximum peak is

- i S
O(to) 6on eXp[ \/ﬁt C ]
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critically damped case ( { = 1):

ct)=w te™™ t>0

overdamped case ( £ >1):

W W
c(t) = D e - e %! t>0

NI N

1.0
08
0.6
[}4 ”/'—\
02 /
ORI ==
o \
-02 /‘
0.4
0.6
08—
-1.0 ' Il
2 4 i1 8 10 12
[

Unit-impulse response for 2" order systems



B19
Remark: Impulse Response = d/dt (Step Response)

eln) | .
Unit-impulse response

Relationship between t,, M, and the unit-impulse response curve of a system

Unit ramp response of a second order system

2
W, 1

2 a2 R(S):1/52

Cls)=—
s“+2lw,+w,” S

for an underdamped system (0< (< 1)

2
ct)y=t- 2§+e‘5‘"t gcoswdt+ﬁsinwdt t>0
Wy, ), 1—§2

n

and the error:

e(t) = r(t) —c(t) = t—c(t)
at steady-state:

()= |im eft)=2

t—oo n
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Examples:

a. Proportional Control

R(s) E(9) 1 e
$? " s(Js+F)
2
C(s) _ @,
R(S) s*+2w,+o]
with
K
ER
F
3= 2{w, =20
f__F
2 JK

Choose K to obtain ‘good’ performance for the closed-loop system
For good transient response:

04<(<0.8 - acceptable overshoot

o, Sufficiently large - good settling time
For small stead- state error in ramp response:

: 2 2F F
=)= lime)= o= =

> n

- largeK

Large K reduces &) but also leadsto small £ and large M,
—>Compromise necessary
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b. Proportional plus derivative control.

C(s)

RO EO) KtK,s 1
C(s) _ K, +Kgs
Rl J&+(F+K,)s+K,
with
F + Ky K,

PN I

The error for aramp responseis.

s?J+sF
E(s)= -R(s
) SPI+s(F+Ky)+K, S
and at steady-state:
! F
e(°°)=||mSE(S)=K—
s—0 p
. K,
using 7=
c(s) o,’ S+ Z

R(s) z s2+2lw s+’
Choose K, K to obtain ‘good’ performance of the closed-loop system

For small steady-state error in ramp response 2> K, large

For good transient response > Ky sothat 0.4<(<0.8
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c. Servo mechanism with velocity feedback

sO(s)

R(s) + + K o)
Js+F S
Kh

Transfer function

O(s) K

R(s) Js*+(F+KK,)s+K
where

o= FHKK,

24/ KJ

w, =\ (not affected by velocity feedback)
F
() = Pa for aramp

Choose K, K}, to obtain ‘good’ performance for the closed-loop system
For small steady-state error inramp response =2 K large

For good transient response 2> K, sothat 0.4<{<0.8

Remark: The damping ratio { can be increased without
affecting the natural frequency o, in this case.
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Effect of a zero in the step response of a 2" order system

C(s)_ o, S+ z
R(s) z s*’+2lw.s+w,’

cl(r)

Unit-step response curves of 2™ order systems
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Unit step Response of 3'% order systems

C(S) . a)nz p
Rs) (+2ws+o,’[s+p) 0<C<1 R(s)=1/s
d)=1-—, " il

T Be(B-211 pr(B-2+1

- deomt- o P 2 )

p
where B = Zo.

I/ AmE
V4

0 1 2 3 4 5 & 7 8

wpyi

Unit-step response curves of the third-order system, {= 0.5

The effect of thepoleat s=-pis.
¢ Reducing the maximum overshoot
¢ |ncreasing settling time
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Trangent response of higher-order systems

C(s) bys"+..+b, ,s+b, K(s+2z).(s+z,)

R(s) s"+..+d _.s+a, (s+p).(s+p,) n>m
Unit step response
KD (s+3) .
C(s) =— _ '
Z(s+ p,) (52+2Cka)ks+a)k)
j=1 kel
0<l<1 k=1,...r and g+2r=n
9. a  Lh(s+&m )+cm1-¢°
C(S):§+2 9, +2h<( £0,)+G.0, . Gy
s Ts+p, & S+Xe+a
q r
ct)=a+Y ae” +Y het™ co{wk\/l— Ckzt)
=1 k=1
Jchke‘Ck“’ktsin(a)k 1—§k2t) t>0
k=1

Dominant poles: the poles closest to the imaginary axis.
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STABILITY ANALYSIS

Conditions for Stability:

A. Necessary condition for stability:

All coefficients of A(s) have the same sign.

B. Necessary and sufficient condition for stability:
A(s) %0 for Rels] >0
or, equivaently
All poles of G(s) in the left-half-plane (LHP)

Relative stability:

The system is stable and further, all the poles of the system
are located in a sub-area of the left-half-plane (LHP).
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Necessary condition for stability:

A(s)=a,s"+as" " +..+a,,s+a,
= ay(s+ p s+ p,).(s+ p,)

= 858"+ 8y(py+ P+ .. P, 8"
+ag(P P, + ot PoyPy)s"

+a,(p,P,.-Py)
-p; to -p,, are the poles of the system.

If the systemisstable —> all poles have negative real parts
—> the coefficients of a stable polynomia have the same sign.

Examples:

A(S):53+52+S+1 can be stable or unstable
A(S)zsg —S+s+l is unstable

Stability testing

Test whether all poles of GG(s) (roots of A(s)) have
negative real parts.

Find all rootsof A(s) = too many computations

Easier Stability test?



Routh-Hurwitz Stability Test

A(S) = (X()Sn + Ollsn-l+... + 0.1 S T0O,

Sn Op 0OH 0Oy
g+t o; O3 O
g+l b, b, bs
Ck G
3 e &
s f,
S O1
o= L[ az‘:aiaz—aoag
—a |8 & &
p = L[ A_an-an
—a | & &
Cl:i‘al 2, _ab —ab, o
b o b| B ¢

Properties of the Ruth-Hurwitz table:

B28

1. Polynomia A(s) is stable (i.e. al roots of A(s) have
negative real parts) if thereis no sign changein the first

column.

2. The number of sign changes in the first column is equal
to the number of roots of A(s) with positive real parts.
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Examples:;

A(S) = aS + 04 S+ ot

For 2™

dy a,

>0, o; >0 o0,>0 or
<0, o;<0, o0,<0

order systems, the condition that all coefficients of

A(s) have the same sign is necessary and sufficient for
stability.

A(S) = Oy 53+ 05132 + 0LS 03

S a, a,
s° 4 a,
~ a8, — dy8;
4
s° a,
>0  0>0, o3>0 00 — 0oz > 0

(or al first column entries are negative)
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Special cases:

1. The properties of the table do not change when al the
coefficients of a row are multiplied by the same positive
number.

2. If the first-column term becomes zero, replace 0 by ¢ and
continue.
e If the signs above and below ¢ are the same, then
thereisapair of (complex) imaginary roots.
e |If there is a sign change, then there are roots with
positive real parts.

Examples;

A(S) =S +25° + s+2

3

S 1 1
2 2 2
1
SO 0—¢ - pair of imaginary roots (s=4j)
S 2

A(S) = s°- 3s+2 = (5-1)*(s+2)

s® 1 -3
s O=e¢ 2
2 : .
s -3-= —> two roots with positive real parts

£
s? 2
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3. If dl coefficients in a line become 0, then A(s) has roots
of equal magnitude radially opposed on the real or
Imaginary axis. Such roots can be obtained from the roots
of the auxiliary polynomial.

Example;

A(9)= S + 25" +24 S + 485 -25s -50
s 1 24 -25
s* 2 48 -50
0 0 > auxiliary polynomia p(s)
p(s) = 2s* + 485 - 50

) _ g 1 65

ds
s 8 96
s 24 -50
st 1127 0
s —-50

e A(s) has two radially opposed root pairs (+1,-1) and
(+5],-5]) which can be obtained from the roots of p(s).

e One sign change indicates A(s) has one root with
positive real part.

Note:
A(s) = (st) (s1)(st3))(s-5))(st2)
p(s) = 2(s*-1) (S* +25)
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Relative stability

Question: Have all the roots of A(s) adistance of at least
o from the imaginary axis?

A Im
Substitute s with G
S=z-cinA(s)
and apply the
Routh-Hurwitz -
test to A(2)

Closed-loop System Stability Analysis

R(s) C(s)

K G(s)
Question: For what value of K is the closed-loop system
stable?

Apply the Routh-Hurwitz test to the denominator polynomial
KG (s)
1+ KG (s) °

of the closed-loop transfer function
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Steady-State Error Analysis

E(s) C(s)
G(s)

R .

H(s)

Evaluate the steady-state performance of the closed-loop
system using the steady-state error e

e, =lime(t) = lim sE(s)

1

= R(s)
1+ G(S)H (s)

E(s)
for thefollowing input signals:  Unit step input
Unit ramp input
Unit parabolic input

Assumption: the closed-loop system is stable

Question: How can we obtain the steady-state error e of the
closed-loop system from the open-loop transfer
function G(s)H(s) ?



Classification of systems:

For an open-loop transfer function

K(T,s+D)(T,s+1---

GloH(s) = sV (T,s+1)(T,s+1)---

Type of system:  Number of polesat the origin, i.e.,, N

Static Error Constants: Kp, Ky, Ka
Open-loop transfer function: G(s)H(s)

) G(s)
Closed-loop transfer function: Gy (8) =

1+ G(s)H (s)

Static Position Error Constant: K

Unit step input to the closed-loop system shown in fig, p.

B33.
. 1
R(s) = s &= MsES) = I 50RO
Define: Kp = ISiLTOIG(S)H(S) = G(0)H (0)
1
TypeO system K € = 1+ K

Kp=
Type 1 and higher Kp= 0 es=0

B34
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Static Velocity Error Constant: K,

Unit ramp input to the closed-loop system shown if fig, p. B33.

_ T S .i i
RE=1Us"  e.=lim 1+G(s)H(s) s° i SG(S)H (s)
Define: Ky =limsG(s)H (s)
Type 0 system Ky=0 B = 0
Type 1 system K, =K e = 1K,
Type 2 and higher Ky =0 es=0
Static Acceleration Error Constant: Ka

Unit parabolic input to the closed-loop system shown in fig, p. B33

s e- S 1 _im 1
R(s) = Us it 1+G(9)H(9) & HosG(S)H(S)

Define: Ky =1im s*H (s)G (s)
Type 0 system Ka=0 €= ®©
Type 1 system Ka=0 B = 0
Type 2 system K,=K es=1/ K,
Type 3 and higher Ka= 0 es=0
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Summary:

Consider a closed-loop system:

R(S) E(s) C(s)
G(s)

H(s)

with an open-loop transfer function:

_ K(T,s+1)-(T,s+1)..
G(s)H (s)= sN(Ts+1) (T,s+1)..

and static error constants defined as:

K, =limG(s)H (s) = G(O)H (0)
szlsjmsG(S)H(S)
Ko =lim s*H (s)G(s)

The steady-state error es isgiven by:

Unit step Unit ramp Unit
rit) =1 r(t) =t parabolic
r(t) = t4/2
1 1 = =
Typeo ess=:L+Kp(=1+K) &= &= ®
Typel =0 e =Kiv(= %) Bss= ©
= = 1,1
Type 2 o) es—0 ess_K_a(_E)
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Corredation between thelntegral of error In
step response and Steady-state error In
ramp r esponse

R(s) é; E(s) G(s) C(s) >

E(9)= Lle(t)] :7e—ste<t)dt

IlmE(s)—I|m/e e(t)dt = /e(t)dt
s—0 0

s—0
substitute E(s) = 1+é()s) in the above eq.
: R(s) r _ 1
= step: R(s) = =
im g9 =)0 ep: R(s) = <

(o]

1: 1 l _1; 1 _ 1
je(t)dt—lllp[1+e(s) s} I!Lps.e(s) KV

0

P Steady-state error in unit-ramp input = esg

ey :7 e(t) ot
0
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c(t)
[ o .

c(t)t

(CIILONGZ

c(t)




