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Compensation Techniques

• Performance specifications for the closed-loop system

• Stability
• Transient response  � Ts, Ms (settling time, overshoot)

or phase and gain margins
• Steady-state response  �  ess (steady state error)

• Trial and error approach to design

Performance specifications

Synthesis

Analysis of closed-loop system

Are specifications
met?

No

Yes

Root-locus or
Frequency
response
techniques
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Basic Controls

1. Proportional Control
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s

K

sE

sM =
)(

)(
 ∫= dtteKtm )()(

Integral control adds a pole at the origin for the open-loop:

• Type of system increased, better steady-state performance.

• Root-locus is “pulled” to the left tending to lower the
system’s relative stability.
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3. Proportional + Integral Control
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A pole at the origin and a zero at    
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4. Proportional + Derivative Control
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• Root-locus is “pulled” to the left, system becomes more
stable and response is sped up.

• Differentiation makes the system sensitive to noise.
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5. Proportional + Derivative + Integral (PID) Control
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• More than 50% of industrial controls are PID.

• More than 80% in process control industry.

• When G(s) of the system is not known, then initial values
for Kp, Kd, Ki can be obtained experimentally and than
fine-tuned to give the desired response (Ziegler-Nichols).

6. Feed-forward compensator
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Design Gc(s) using Root-Locus or Frequency Response
techniques.
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Frequency response approach to
compensator design

Information about the performance of the closed-loop system,
obtained from the open-loop frequency response:

• Low frequency region indicates the steady-state behavior.
• Medium frequency (around -1 in polar plot, around gain

and phase crossover frequencies in Bode plots) indicates
relative stability.

• High frequency region indicates complexity.

Requirements on open-loop frequency response

• The gain at low frequency should be large enough to give
a high value for error constants.

• At medium frequencies the phase and gain margins should
be large enough.

• At high frequencies, the gain should be attenuated as
rapidly as possible to minimize noise effects.

Compensators
• lead:improves the transient response.
• lag: improves the steady-state performance at the expense

of slower settling time.
• lead-lag: combines both
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Lead compensators
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T > 0   and   0 < α < 1

• Poles and zeros of the lead compensator:

• Frequency response of Gc(jω):

The maximum phase-lead angle φm occurs at ωm , where:
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Since
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the magnitude of Gc(jω) at  ωm  is given by:
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Polar plot of a lead network
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         where   0 < a < 1

is given by
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Lead compensation based on the
frequency response

Procedure:

1. Determine the compensator gain  Kcα  satisfying the given
error constant.

2.  Determined the additional phase lead φm required (+
10%~15%) for the gain adjusted (KcαG(s)) open-loop
system.

3. Obtain  α  from 
a
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4. Find the new gain cross over frequency �c  from
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5. Find T from �c and transfer function of Gc(s)
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General effect of lead compensator:

• Addition of phase lead near gain crossover frequency.
• Increase of gain at higher frequencies.
• Increase of system bandwidth.
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Example:

Consider

where ( )2
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Performance requirements for the system:

Steady-state: Kv = 20
Transient response: phase margin  >50°

gain margin  >10 dB

Analysis of the system with Gc(s) = K

For Kv = 20   �   K = 10

This leads to: phase margin � 17°
gain margin � �� ��

Design of a lead compensator:
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2. From the Bode plot of KcαG(jω), we obtain that the
additional phase-lead required is:      50° - 17° = 33°.

We choose 38°  (~33° + 15%)
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4. Since for �m, the frequency with the maximum phase-lead
angle, we have:
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We choose �c , the new gain crossover frequency so that

ωm = ωc    and    ( ) ( ) 1=
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From the Bode plot of KcαG(jω) we obtain that
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5. This implies for T
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The compensated system is given by:

The effect of the lead compensator is:

• Phase margin: from 17° to 50°  � better transient response
with less overshoot.

• �c : from 6.3rad/sec to 9 rad/sec � the system response is
faster.

• Gain margin remains � .
• Kv is 20, as required  � acceptable steady-state response.
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Bode diagram for 
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Bode diagram for the compensated system
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Lag compensators
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Poles and zeros:

Frequency response:

Polar plot of a lag compensator   K
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Bode diagram of a lag compensator with Kc��� � � ��

Magnitude of (j�T+1)/(j��T+1)

-20log�

T

1

Tβ
1



D16

Lag compensation based on the
frequency response

Procedure:

1. Determine the compensator gain  Kcβ  to satisfy the
requirement for the given error constant.

2. Find the frequency point where the phase of the gain
adjusted open-loop system (KcβG(s)) is equal to -180° +
the required phase margin + 5°~ 12°.

This will be the new gain crossover frequency �c.

3. Choose the zero of the ��������	�
 � � ��� �� ��	
� �

octave to 1 decade below �c .

4. Determine the attenuation necessary to bring the
magnitude curve down to  0dB at the new gain crossover
frequency

( ) βωβ log20−=− cc jGK     �  �

5. Find the transfer function Gc(s).

General effect of lag compensation:

• Decrease gain at high frequencies.
• Move the gain crossover frequency lower to obtain

the desired phase margin.



D17

Example:

Consider

where
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Performance requirements for the system:

Steady state: Kv =5
Transient response: Phase margin  > 40°

Gain margin    > 10 dB

Analysis of the system with Gc(s) = K
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for K = 5, the closed-loop system is unstable

Design of a lag compensator:
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2. Phase margin of the system 5G(s) is  -13°
� the closed-loop system is unstable.

From the Bode diagram of 5G(jω) we obtain that the
additional required phase margin of  40° + 12° = 52° is
�������� �� � � ��� rad/sec.

The new gain crossover frequency will be:
�c = 0.5 rad/sec

3. ����� ��� 	�
� �� ��� ��
 ����������
 �� � � ��� � ���

rad/sec( at about 1/5 of �c).

4. The magnitude of 5G(jω) at the new gain crossover
frequency �c =0.5 rad/sec is 20 dB. In order to have �c as
the new gain crossover frequency, the lag compensator
must give an attenuation of -20db at ωc.

Therefore
- 20log � = - 20 dB     �     � = 10
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Bode diagrams for:
• G1(jω) = 5G(jω)  (gain-adjusted  KcβG(jω)  open-loop

transfer function),
• Gc(jω)/K = Gc(jω)/5 (compensator divided by gain Kcβ =

5),
• Gc(jω)G(jω) (compensated open-loop transfer function)

The effect of the lag compensator is:

• The original unstable closed-loop system is now stable.
• The phase margin � ��� � acceptable transient response.
• The gain margin � ���� � acceptable transient response.
• Kv is 5 as required  � acceptable steady-state response.
• The gain at high frequencies has been decreased.
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Lead-lag compensators
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T1, T2  > 0 ,   � > 1   and   γ > 1

Frequency response:

Bode diagram of a lag-lead compensator given by
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Polar plot of a lag-lead compensator given by
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Comparison between lead and lag compensators

    Lead compensator     Lag compensator
o High pass o Low pass
o Approximates

derivative plus
proportional control

o Approximates integral plus
proportional control

o Contributes phase lead o Attenuation at high
frequencies

o Increases the gain
crossover frequency

o Moves the gain-crossover
frequency lower

o Increases bandwidth o Reduces bandwidth


