ECE 515
 Information Theory

Typical Sequences

Typical Sequences

- Consider a binary discrete memoryless source (DMS) $X=\{0,1\}$ with symbol probabilities

$$
p(1)=1 / 4 \quad p(0)=3 / 4
$$

- Sequences of $N=20$ symbols

1. $1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1$
2. $1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1$
3. $0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$

Tchebycheff Inequality

$$
\begin{gathered}
\eta_{X} \equiv E[X]=\sum_{k=1}^{K} p\left(x_{k}\right) \times x_{k} \\
\sigma_{X}^{2} \equiv E\left[\left(X-\eta_{X}\right)^{2}\right]=\sum_{k=1}^{K} p\left(x_{k}\right) \times\left(x_{k}-\eta_{X}\right)^{2}
\end{gathered}
$$

$$
\operatorname{Pr}\left\{\left|X-\eta_{X}\right| \geq \delta\right\} \leq \frac{\sigma_{X}^{2}}{\delta^{2}}
$$

Weak Law of Large Numbers

- Sequence of N i.i.d. RVs

$$
\bar{X}=X_{1}, \ldots, X_{n}, \ldots, X_{N}
$$

- Define a new RV

$$
Y_{N} \equiv \frac{1}{N} \sum_{n=1}^{N} X_{n}
$$

$$
\eta_{Y_{N}}=\eta_{X} \quad \sigma_{Y_{N}}^{2}=\frac{\sigma_{X}^{2}}{N}
$$

Weak Law of Large Numbers

$$
\lim _{N \rightarrow \infty} \operatorname{Pr}\left\{\left|\left[\frac{1}{N} \sum_{n=1}^{N} X_{n}\right]-\eta_{X}\right| \geq \delta\right\}=0
$$

$$
\lim _{N \rightarrow \infty} \operatorname{Pr}\left\{\left|\left[\frac{1}{N} \sum_{n=1}^{N} X_{n}\right]-\eta_{X}\right|<\delta\right\}=1
$$

The sample average approaches the statistical mean

Asymptotic Equipartition Property

- N i.i.d. random variables X_{1}, \ldots, X_{N}

$$
\begin{gathered}
\mathrm{p}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{N}\right)=\mathrm{p}\left(\mathrm{X}_{1}\right) \mathrm{p}\left(\mathrm{X}_{2}\right) \ldots \mathrm{p}\left(\mathrm{X}_{N}\right) \\
-\frac{1}{N} \log \mathrm{p}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{N}\right)=-\frac{1}{N} \sum_{n=1}^{N} \log \mathrm{p}\left(\mathrm{X}_{n}\right) \rightarrow-\mathrm{E}[\operatorname{logp}(\mathrm{X})]=\mathrm{H}(\mathrm{X}) \\
\text { as } N \rightarrow \infty
\end{gathered}
$$

Typical Sequences

- RV X where $\mathrm{p}\left(x_{k}\right)=p_{k}$
- Consider a sequence \mathbf{x} of length N where x_{k} appears approximately $N p_{k}$ times

$$
\begin{aligned}
p(\mathbf{x}) & \approx p_{1}^{N p_{1}} p_{2}^{N p_{2}} \cdots p_{k}^{N p_{K}} \\
& =\prod_{k=1}^{K} p_{k}^{N p_{k}}=\prod_{k=1}^{K}\left(\left(2^{\log _{2} p_{k}}\right)^{N p_{k}}\right. \\
& =\prod_{k=1}^{K} 2^{N p_{k} \log _{2} p_{k}}=2^{N \sum_{k=1}^{K} p_{k} \log _{2} p_{k}} \\
& =2^{-N H(x)}
\end{aligned}
$$

Typical Sequences

- Binary RV X where $\mathrm{p}\left(x_{1}\right)=p$ and $\mathrm{p}\left(x_{2}\right)=1-p$
- The number of sequences \mathbf{x} of length N with $N p x_{1}{ }^{\prime}$ s is

$$
\binom{N}{N p}=\frac{N!}{(N p)!(N(1-p))!}
$$

- Stirling's approximation

$$
n!\approx \sqrt{2 \pi n} n^{n} \mathrm{e}^{-n}
$$

Typical Sequences

$$
\begin{aligned}
\binom{N}{N p} & \approx \frac{N^{N} \mathrm{e}^{-N}}{(N p)^{N p} \mathrm{e}^{-N p}(N(1-p))^{N(1-p)} \mathrm{e}^{-N(1-p)}} \\
& =\frac{1}{p^{N p}(1-p)^{N(1-p)}} \\
& =p^{-N p}(1-p)^{-N(1-p)} \\
& =2^{-N p \log p-N(1-p) \log (1-p)} \\
& =2^{N(-p \log p-(1-p) \log (1-p))} \\
& =2^{N H(X)}
\end{aligned}
$$

Typical Sequences

- Consider a binary discrete memoryless source (DMS) $X=\{0,1\}$ with symbol probabilities

$$
p(1)=1 / 4 \quad p(0)=3 / 4
$$

- $H(X)=0.811$ bit
- Sequences of $N=20$ symbols
- $2^{-N H(X)}=1.3050 \times 10^{-5}$
- $2^{N H(X)}=76627$

Summary

- The Tchebycheff inequality was used to prove the weak law of large numbers (WLLN)
- the sample average approaches the statistical mean as $N \rightarrow \infty$
- The WLLN was used to prove the AEP

$$
-\frac{1}{N} \sum_{n=1}^{N} \log p\left(\mathrm{X}_{n}\right) \rightarrow \mathrm{H}(\mathrm{X}) \text { as } N \rightarrow \infty
$$

- A typical sequence has probability $p(x) \approx 2^{-N H(x)}$
- There are about $2^{N H(X)}$ typical sequences of length N

Typical Sequences

$$
\mathcal{T}_{X}(\delta) \equiv\left\{\mathbf{x}:\left|-\frac{1}{N} \log _{b} p(\mathbf{x})-H(X)\right|<\delta\right\}
$$

$$
\mathcal{T}_{X}^{c}(\delta) \equiv\left\{\mathrm{x}:\left|-\frac{1}{N} \log _{b} p(\mathrm{x})-H(X)\right| \geq \delta\right\}
$$

Typical Sequences

Interpretation

- Although there are very many results that may be produced by a random process, the one actually produced is most probably from a set of outcomes that all have approximately the same chance of being the one actually realized.
- Although there are individual outcomes which may have a higher probability than outcomes in this set, the vast number of outcomes in the set almost guarantees that the outcome will come from the set.
- "Almost all events are almost equally surprising" Cover and Thomas

Typical Sequences

- From the definition, the probability of occurrence of a typical sequence $p(x)$ is

$$
b^{-N[H(X)+\delta]}<p(\mathbf{x})<b^{-N[H(X)-\delta]}
$$

Example

- $\mathrm{p}\left(x_{1}\right)=\mathrm{p}(1)=1 / 4 \quad \mathrm{p}\left(x_{2}\right)=\mathrm{p}(0)=3 / 4$
- $H(X)=0.811$ bit
- $N=3$
- $\mathrm{p}\left(x_{1}, x_{1}, x_{1}\right)=1 / 64$
- $\mathrm{p}\left(x_{1}, x_{1}, x_{2}\right)=\mathrm{p}\left(x_{1}, x_{2}, x_{1}\right)=\mathrm{p}\left(x_{2}, x_{1}, x_{1}\right)=3 / 64$
- $\mathrm{p}\left(x_{1}, x_{2}, x_{2}\right)=\mathrm{p}\left(x_{2}, x_{2}, x_{1}\right)=\mathrm{p}\left(x_{2}, x_{1}, x_{2}\right)=9 / 64$
- $\mathrm{p}\left(x_{2}, x_{2}, x_{2}\right)=27 / 64$

Example

- $\mathrm{H}(\mathrm{X})=0.811$ bit $N=3 \quad b=2$

$$
2^{-3[.811+\delta]}<\mathrm{p}\left(x_{1}, x_{2}, x_{3}\right)<2^{-3[.811-\delta]}
$$

- $x_{1}, x_{1}, x_{1} \quad 1 / 64=2^{-3[.811+1.199]}$
- $x_{1}, x_{1}, x_{2} \quad 3 / 64=2^{-3[.811+0.661]}$
- $x_{1}, x_{2}, x_{2} \quad 9 / 64=2^{-3[.811+0.132]}$
- $x_{2}, x_{2}, x_{2} \quad 27 / 64=2^{-3[.811-0.395]}$

Example

- If $\delta=0.2$ the typical sequences are
$-\left(x_{1}, x_{2}, x_{2}\right),\left(x_{2}, x_{1}, x_{2}\right),\left(x_{2}, x_{2}, x_{1}\right)$
with probability 0.422
(1,0,0), ($0,1,0$), ($0,0,1$)
- If $\delta=0.4$ the typical sequences are
$-\left(x_{1}, x_{2}, x_{2}\right),\left(x_{2}, x_{1}, x_{2}\right),\left(x_{2}, x_{2}, x_{1}\right),\left(x_{2}, x_{2}, x_{2}\right)$ with probability 0.844
(1,0,0), (0,1,0), (0,0,1), (0,0,0)

Occurrences of x_{1} n	Number of sequences $\binom{N}{n}$	Probability of each sequence $p\left(x_{1}\right)^{n} p\left(x_{2}\right)^{N-n}$	Probability of all sequences $\binom{N}{n} p\left(x_{1}\right)^{n} p\left(x_{2}\right)^{N-n}$
0	1	$3,171 \times 10^{-3}=2^{-20 \times 0,415}$	0,003171
1	20	$1,057 \times 10^{-3}=2^{-20 \times 0,494}$	0,021141
2	190	$3,524 \times 10^{-4}=2^{-20 \times 0,574}$	0,066948
3	1140	$1,175 \times 10^{-4}=2^{-20 \times 0,653}$	0,133896
4	4845	$3,915 \times 10^{-5}=2^{-20 \times 0,732}$	0,189685
5	15504	$1,305 \times 10^{-5}=2^{-20 \times 0,811}$	0,202331
6	38760	$4,350 \times 10^{-6}=2^{-20 \times 0,891}$	0,168609
7	77520	$1,450 \times 10^{-6}=2^{-20 \times 0,970}$	0,112406
8	125970	$4,833 \times 10^{-7}=2^{-20 \times 1,049}$	0,060887
9	167960	$1,611 \times 10^{-7}=2^{-20 \times 1,128}$	0,027061
10	184756	$5,370 \times 10^{-8}=2^{-20 \times 1,208}$	0,009922
11	167960	$1,790 \times 10^{-8}=2^{-20 \times 1,287}$	0,003007
12	125970	$5,967 \times 10^{-9}=2^{-20 \times 1,366}$	0,000752
13	77520	$1,989 \times 10^{-9}=2^{-20 \times 1,445}$	0,000154
14	38760	$6,630 \times 10^{-10}=2^{-20 \times 1,525}$	0,000026
15	15504	$2,210 \times 10^{-10}=2^{-20 \times 1,604}$	0,000003
16	4845	$7,367 \times 10^{-11}=2^{-20 \times 1,683}$	0,000000
17	1140	$2,456 \times 10^{-11}=2^{-20 \times 1,762}$	0,000000
18	190	$8,185 \times 10^{-12}=2^{-20 \times 1,842}$	0,000000
19	20	$2,728 \times 10^{-12}=2^{-20 \times 1,921}$	0,000000
20	1	$9,095 \times 10^{-13}=2^{-20 \times 2,000}$	0,000000

Typical Sequences

- Random variable X
- Alphabet size K
- Entropy H(X)
- Arbitrary number $\delta>0$
- Sequences \mathbf{x} of blocklength $N \geq N_{0}$ and probability $\mathrm{p}(\mathbf{x})$
- $\left\|\mathcal{T}_{X}(\partial)\right\|+\left\|\mathcal{T}_{X}^{c}(\partial)\right\|=K^{N}$

Shannon-McMillan Theorem

a) The probability that a particular sequence \mathbf{x} of blocklength N belongs to the set of atypical sequences $\mathcal{T}_{X}^{c}(\delta)$ is upperbounded as:

$$
\operatorname{Pr}\left[\mathbf{x} \in \mathcal{T}_{X}^{c}(\delta)\right]<\epsilon
$$

b) If a sequence \mathbf{x} is in the set of typical sequences $\mathcal{T}_{X}(\delta)$ then its probability of occurrence $p(\mathbf{x})$ is approximately equal to $b^{-N H(X)}$, that is:

$$
b^{-N[H(X)+\delta]}<p(\mathbf{x})<b^{-N[H(X)-\delta]}
$$

c) The number of typical, or likely, sequences $\left\|\mathcal{T}_{X}(\delta)\right\|$ is bounded by:

$$
(1-\epsilon) b^{N[H(X)-\delta]}<\left\|\mathcal{T}_{X}(\delta)\right\|<b^{N[H(X)+\delta]}
$$

- The essence of source coding or data compression is that as $N \rightarrow \infty$, atypical sequences almost never appear as the output of the source.
- Therefore, one can focus on representing typical sequences with codewords and ignore atypical sequences.
- Since there are only about $2^{N H(X)}$ typical sequences of length N, and they are approximately equiprobable, it takes about $\mathrm{NH}(\mathrm{X})$ bits to represent them.
- On average it takes $H(X)$ bits to represent a source symbol.

Fixed Length Source Compaction Codes

Fixed Length Source Compaction Codes

- If $J<K^{N}$ we cannot uniquely encode all source words with length L codewords
- Two questions

1. How small can J^{\wedge} be such that performance is acceptable?
2. How should sourcewords be encoded to length L codewords for unique decodability?

The number of typical sequences satisfies

$$
\left\|T_{x}(\delta)\right\|<b^{N[H(x)+\delta]}
$$

so encoding all typical sequences with length L codewords requires that

$$
J^{L} \geq b^{N[H(X)+\delta]}
$$

- Although the set of atypical sequences may be large, the Shannon-McMillan Theorem ensures that

$$
\operatorname{Pr}\left[\mathrm{x} \in \mathcal{T}_{X}^{c}(\delta)\right]<\epsilon
$$

- Thus it is possible to encode sourcewords with an arbitrarily small block decoding failure probability P_{e} provided that
- $\operatorname{Llog}_{b} J>N H(X)$
$-N$ is sufficiently large

Example

- $K=J=2$
- $\mathrm{p}\left(x_{1}\right)=0.1 \quad \mathrm{p}\left(x_{2}\right)=0.9 \quad \mathrm{H}(\mathrm{X})=0.469$ bit
- Choose $N=4, L=3$

$$
R=\frac{L}{N}=\frac{3}{4}>H(X)
$$

- Partition the 16 sourcewords into 7 typical sequences and 9 atypical sequences

$$
\begin{aligned}
p\left(x_{1}\right)^{4} & =0.0001 & & \binom{4}{4}=1 \text { sourceword } \\
p\left(x_{1}\right)^{3} p\left(x_{2}\right) & =0.0009 & & \binom{4}{3}=4 \text { sourcewords } \\
p\left(x_{1}\right)^{2} p\left(x_{2}\right)^{2} & =0.0081 & & \binom{4}{2}=6 \text { sourcewords } \\
p\left(x_{1}\right) p\left(x_{2}\right)^{3} & =0.0729 & & \binom{4}{1}=4 \text { sourcewords } \\
p\left(x_{2}\right)^{4} & =0.6561 & & \binom{4}{0}=1 \text { sourceword }
\end{aligned}
$$

The Code

Typical

Sequence	Codeword
$x_{2} x_{2} x_{2} x_{2}$	000
$x_{1} x_{2} x_{2} x_{2}$	100
$x_{2} x_{1} x_{2} x_{2}$	010
$x_{2} x_{2} x_{1} x_{2}$	001
$x_{2} x_{2} x_{2} x_{1}$	110
$x_{1} x_{1} x_{2} x_{2}$	101
$x_{1} x_{2} x_{1} x_{2}$	011

The Code

Atypical

Sequence
$x_{1} x_{2} x_{2} x_{1}$
$x_{2} x_{1} x_{1} x_{2}$
$x_{2} x_{1} x_{2} x_{1}$
$x_{2} x_{2} x_{1} x_{1}$
$x_{1} x_{1} x_{1} x_{2}$
$x_{1} x_{1} x_{2} x_{1}$
$x_{1} x_{2} x_{1} x_{1}$
$x_{2} x_{1} x_{1} x_{1}$
$x_{1} x_{1} x_{1} x_{1}$

Codeword
1110000
1111000
1110100
1110010
1110001
1111100
1111010
1111001
1110110

Code Rate

- The actual code rate is

$$
R=\frac{.9639 \times 3+.0361 \times 7}{4}=\frac{3}{4}+.0361=.7861
$$

Example

- $K=J=2$
- $\mathrm{p}\left(x_{1}\right)=0.1 \quad \mathrm{p}\left(x_{2}\right)=0.9 \quad \mathrm{H}(\mathrm{X})=0.469$ bit
- Choose $N=8, L=6$

$$
R=\frac{L}{N}=\frac{6}{8}=\frac{3}{4}>\mathrm{H}(\mathrm{X})
$$

- Partition the 256 sourcewords into 63 typical sequences and 193 atypical sequences

$$
\begin{array}{rlrl}
p\left(x_{1}\right)^{8} & =1.0000 \times 10^{-8} & & \binom{8}{8}=1 \text { sourceword } \\
p\left(x_{1}\right)^{7} p\left(x_{2}\right) & =9.0000 \times 10^{-8} & \binom{8}{7}=8 \text { sourcewords } \\
p\left(x_{1}\right)^{6} p\left(x_{2}\right)^{2} & =8.1000 \times 10^{-7} & \binom{8}{6}=28 \text { sourcewords } \\
p\left(x_{1}\right)^{5} p\left(x_{2}\right)^{3} & =7.2900 \times 10^{-6} & \binom{8}{5}=56 \text { sourcewords } \\
p\left(x_{1}\right)^{4} p\left(x_{2}\right)^{4} & =6.5610 \times 10^{-5} & \binom{8}{4}=70 \text { sourcewords } \\
p\left(x_{1}\right)^{3} p\left(x_{2}\right)^{5} & =5.9049 \times 10^{-4} & \binom{8}{3}=56 \text { sourcewords } \\
p\left(x_{1}\right)^{2} p\left(x_{2}\right)^{6} & =5.3144 \times 10^{-3} & \binom{8}{2}=28 \text { sourcewords } \\
p\left(x_{1}\right) p\left(x_{2}\right)^{7} & =4.7830 \times 10^{-2} & \binom{8}{1}=8 \text { sourcewords } \\
p\left(x_{2}\right)^{8} & =4.3047 \times 10^{-1} & \binom{8}{0}=1 \text { sourceword }
\end{array}
$$

Code Rate

- For $N=8, L=6$ the actual code rate is

$$
R=\frac{.9773 \times 6+.0227 \times 14}{8}=\frac{3}{4}+.0227=.7727
$$

Theorem (Converse of the Source Coding Theorem)

Let $\epsilon>0$. Given a memoryless source X of entropy $H(X)$, a codeword alphabet size J and a codeword length L, if:
a) $L \log _{b} J<N H(X)$ and
b) $N \geq N_{0}$
then the probability of decoding failure P_{e} is lower bounded by:

$$
P_{e}>1-\epsilon
$$

Example

- $K=J=2$
- $\mathrm{p}\left(x_{1}\right)=0.3 \quad \mathrm{p}\left(x_{2}\right)=0.7 \quad \mathrm{H}(\mathrm{X})=0.881$ bit
- Choose $N=4, L=3$

$$
R=\frac{L}{N}=\frac{3}{4}<\mathrm{H}(\mathrm{X})
$$

- Partition the 16 sourcewords into 7 typical sequences and 9 atypical sequences

$$
\begin{aligned}
p\left(x_{1}\right)^{4} & =2.4010 \times 10^{-1} & & \binom{4}{4}=1 \text { sourceword } \\
p\left(x_{1}\right)^{3} p\left(x_{2}\right) & =1.0290 \times 10^{-1} & & \binom{4}{3}=4 \text { sourcewords } \\
p\left(x_{1}\right)^{2} p\left(x_{2}\right)^{2} & =4.4100 \times 10^{-2} & & \binom{4}{2}=6 \text { sourcewords } \\
p\left(x_{1}\right) p\left(x_{2}\right)^{3} & =1.8900 \times 10^{-2} & & \binom{4}{1}=4 \text { sourcewords } \\
p\left(x_{2}\right)^{4} & =8.1000 \times 10^{-3} & & \binom{4}{0}=1 \text { sourceword }
\end{aligned}
$$

Example

- $K=J=2$
- $\mathrm{p}\left(x_{1}\right)=0.3 \quad \mathrm{p}\left(x_{2}\right)=0.7 \quad \mathrm{H}(\mathrm{X})=0.881$ bit
- Choose $N=8, L=6$

$$
R=\frac{L}{N}=\frac{6}{8}=\frac{3}{4}<\mathrm{H}(\mathrm{X})
$$

- Partition the 256 sourcewords into 63 typical sequences and 193 atypical sequences

$$
\begin{array}{rlr}
p\left(x_{1}\right)^{8} & =6.5610 \times 10^{-5} & \binom{8}{8}=1 \text { sourceword } \\
p\left(x_{1}\right)^{7} p\left(x_{2}\right) & =1.5309 \times 10^{-4} & \binom{8}{7}=8 \text { sourcewords } \\
p\left(x_{1}\right)^{6} p\left(x_{2}\right)^{2} & =3.5721 \times 10^{-4} & \binom{8}{6}=28 \text { sourcewords } \\
p\left(x_{1}\right)^{5} p\left(x_{2}\right)^{3} & =8.3349 \times 10^{-4} & \binom{8}{5}=56 \text { sourcewords } \\
p\left(x_{1}\right)^{4} p\left(x_{2}\right)^{4} & =1.9448 \times 10^{-3} & \binom{8}{4}=70 \text { sourcewords } \\
p\left(x_{1}\right)^{3} p\left(x_{2}\right)^{5} & =4.5379 \times 10^{-3} & \binom{8}{3}=56 \text { sourcewords } \\
p\left(x_{1}\right)^{2} p\left(x_{2}\right)^{6} & =1.0588 \times 10^{-2} & \binom{8}{2}=28 \text { sourcewords } \\
p\left(x_{1}\right) p\left(x_{2}\right)^{7} & =2.4706 \times 10^{-2} & \binom{8}{1}=8 \text { sourcewords } \\
p\left(x_{2}\right)^{8} & =5.7648 \times 10^{-2} & \binom{8}{0}=1 \text { sourceword }
\end{array}
$$

Fixed Length Source Compaction Codes

- If $R>H(X)$, as $N \rightarrow \infty P_{\mathrm{e}} \rightarrow 0$
- If $R<\mathrm{H}(\mathrm{X})$, as $N \rightarrow \infty P_{\mathrm{e}} \rightarrow 1$

