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Abstract. Many years of CMOS technology scaling have resulted in
increased power densities and higher core temperatures. Power and tem-
perature concerns are now considered to be a primary challenge for
continued scaling and long-term processor reliability. While solutions
for low-power and low-temperature circuits and microarchitectures have
been studied for many years, temperature-awareness at the computa-
tional cluster level is a relatively new problem. To address this problem,
we introduce a temperature-aware task scheduler based on task tem-
perature profiling. We study the task characteristics and temperature
profiles for a subset of SPEC’2K benchmarks. We exploit these profiles
and suggest several scheduling algorithms aimed at achieving lower clus-
ter temperature. Our findings show a clear trade-off between the overall
queue servicing time and the cluster peak temperature. Whether the
temperature reductions achieved are worth the extra delay is left to the
designer/user to decide based on the case by case performance restric-
tions and temperature limitations.

1 Introduction

In recent years, the issues of power dissipation and energy consumption have
come to the forefront of the minds of system designers [1] [2]. One specific area
where this issue is relevant is in the realm of computational clusters [3]. These
large systems often feature hundreds of servers and processors. Exploiting highly
integrated high power density servers and processors in such systems has resulted
in new thermal challenges. In fact, under new semiconductor technologies power
density of the microprocessor core has exceeded 200 W/cm2. Such high power
densities can result in high temperatures which in turn can cause transient faults
or permanent failures. Reducing the heat and lowering the cluster temperature is
therefore a vital and important challenge. To address this challenge, two different
approaches may be considered: First, we can develop more effective and often
expensive ventilation and cooling systems to remove more heat at a higher rate.
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Second, we can develop new design techniques at several levels to reduce the
production of the excess heat.

As effective cooling mechanisms become more expensive, it is important that
designers develop temperature reduction techniques at different levels includ-
ing scheduling. This work aims at exploring such solutions. We introduce the
Profile-based Temperature-aware Scheduler, or PTS, to address this problem at
the scheduler level. PTS relies on identifying and using processor-task combina-
tions resulting in better temperature conditions in the computational cluster.

In particular, we make the following contributions:

– First, we study task temperature profiles. A task temperature profile indi-
cates the amount by which a given task will raise the temperature of a host
processor. We use our findings to differentiate between hot and cold tasks.

– Second, we use task temperature profiles of a subset of the SPEC’2K bench-
marks and show that early knowledge of such profiles can be used to produce
a temperature-aware schedule reducing the cluster peak temperature.

The rest of the paper is organized as follows. In section 2 we present task
temperature profiling. In section 3 we present and evaluate our scheduling poli-
cies. In section 4 we discuss some related work. In section 5 we offer concluding
remarks.

2 Task Temperature Profiling

In this study, a task temperature profile is a time series measure of the amount
by which a task will raise the temperature of a host processor. Our observations
have shown that not all tasks generate the same amount of heat on a given
processor. This could be explained by the task’s behaviour including the time
it spends performing integer or floating point calculations, reading and writing
to memory, or waiting for asynchronous events. For example, a processor bound
task can generate more heat compared to an I/O bound task.

Based on how a task impacts processor temperature, we can observe a spec-
trum of tasks ranging from hot, or high-temperature, tasks to cold, or low-
temperature, tasks.

Our goal is to reduce the cluster peak temperature by assigning hot tasks to
cold processors. To achieve this, a temperature-efficient schedule should exploit
the variance in the cooling ability of the processors in a cluster. We have ob-
served this variance is related to the physical proximity of a processor relative
to a cooling vent, and is indicated by the fan-input temperature of the chassis
housing the processor. We therefore classify processors based on their fan-input
temperatures into groups, or processor classes. For example, the 168 processors
in a typical rack may be classified into six processor classes, one for each of the
rack-mounted chassis1.
1 In a typical computational cluster, the chassis closest to the floor vents will have the

lowest fan-input temperature, and thus the best cooling ability.
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In order to measure the task temperature profiles and classify the proces-
sors, we developed a tool which monitors several temperature metrics for a task
executing on a blade in an IBM BladeCenter. Each blade contains two Intel
Xeon processors and with 2 gigabytes of memory and runs Red Hat Enterprise
Linux AS 3. The measurements are performed using the on-chassis and on-board
thermal sensors present on the IBM BladeCenter chasses and blades. A monitor-
ing daemon periodically polls the BladeCenter management interface using the
Simple Network Management Protocol (SNMP). The measured metrics include
the processor core temperatures of the both processors in a blade, the chassis
fan-input temperature, the temperature of the management console located at
the rear of the chassis, and the chassis blower speeds measured as of percentage
relative to maximum blower RPM. To avoid interference from background ap-
plications, both processors in a blade are exclusively reserved for the duration
of the tests.

We generated task temperature profiles (shown in Figure 1) for a subset of
the SPEC’2K benchmarks. Note that a single script executing each benchmark
in succession is used to ensure the execution environment is identical for each
benchmark. Prior to the execution of each benchmark, the processor is idled
for 300 s to allow the system to return to its idle temperature. While these plots
represent the profiles attained with a single execution of the benchmarks, further
experiments on other processors demonstrated similar profiles.

In Figure 1 we see that longer benchmarks (e.g., mcf and swim) show
higher peak temperatures. Accordingly, tasks with shorter runtimes (e.g., crafty
and gzip) cause less heat and therefore lower peak temperatures. Wupwise has
plateaued at between 20 ◦C and 25 ◦C, which is a lower peak compared to mcf
and swim. It is notable that some of the tasks (e.g., crafty, gzip, and vortex ) ap-
pear not to have reached a steady-state temperature – it is reasonable to expect
that had those benchmarks continued executing for longer, their temperatures
would have continued to rise. While noting this situation, we have chosen not to
increase their execution times in this study because we are interested in varied
profiles, including those that have and do not have a steady state. However, it is
clear that further tests of processor, I/O, and memory bound tasks are needed
to explore the full spectrum of temperature profiles.

If we assume that our selection of SPEC’2K benchmarks represents a set of
tasks queued at a computational cluster, then their temperature profiles demon-
strate that a computational cluster will have a spectrum of tasks ranging from
hot to cold. The hot tasks are those having the highest peak temperature, while
the cold tasks are those having the lowest peak temperature. We exploit this
spectrum of task profiles to come up with a schedule which minimizes cluster
peak temperature.

3 Temperature-Aware Scheduling

Our goal is to decrease the cluster peak temperature by distributing tasks
amongst the processors so that hot tasks are assigned to processors with the
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Fig. 1. Task temperature profiles for the SPEC’2K benchmarks (a) crafty, (b) gzip, (c)
mcf, (d) swim, (e) vortex, and (f) wupwise.
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best cooling ability. Our scheduling techniques rely on the assumption that the
task temperature profiles are relatively invariant between subsequent executions
of similar tasks. We assume that there exists a mechanism that can recognize the
similarity of tasks by comparing task metadata including the submitting user,
the task name, and invocation arguments. When a submitted task is recognized
by this mechanism, a previously measured profile is used to schedule the task.
When a new or unrecognized task is submitted to the scheduler, its metadata
and temperature profile are recorded for subsequent executions of the task. Ad-
ditionally, we simplify the environment by assuming that task preemption (and
subsequent migration) at the batch scheduler level is disallowed2. All processors
are assumed to be equal in performance.

3.1 A Profile-Based Temperature-Aware Scheduler

Global Task Queue

Processors

Fig. 2. Schematic of a simple scheduler having a single queue which assigns tasks to
any processor in the cluster.

A simple computational cluster scheduler, shown in Figure 2, features a single
queue which allocates jobs to all processors. Since there is no notion of temper-
ature awareness, hot tasks may be assigned to the hottest processor, resulting
in a high peak cluster temperature. The PTS scheduler, shown schematically
in Figure 3, divides the processors into processor classes based on their cool-
ing ability as described by their fan-input temperatures. The processors in each
processor class are managed by a first-come-first-served task queue specific to
the processor class. A task director assigns each task to a processor class queue
by inspecting the temperature profiles and sorting the tasks in the global queue

2 By assuming an absence of task preemption, we not only simplify the problem for
simulation, but also allow the provided solution to be applicable to task sets in
which the majority of tasks do not support checkpointability (which is common
in our experience). A derivative adaptive scheduling strategy that re-evaluates and
reallocates jobs is clearly possible in environments supporting preemption.
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Fig. 3. Schematic of the PTS scheduler, featuring a director which sorts tasks in the
global queue into sub-queues ranging from cold to hot. Each of the sub-queues assigns
tasks to a processor in its associated processor class.

by their peak temperature. The task director allocates the tasks in the sorted
global queue by assigning an equal number of tasks to each processor class queue
starting with the coolest processor class. In general, this results in the hot tasks
being assigned to the coolest processors and the cold tasks being assigned to the
hottest processors.
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Fig. 4. Schematic of queue-processor relationship in the PTS-FM scheduler, which
allows tasks to favourably migrate into colder idle queues.

Because the queues in Figure 3 will not necessarily empty at the same rate,
the division of tasks equally into separate queues may result in an increase in
the global queue-servicing-time. For example, there may be a number of tasks
waiting to be executed on the hottest processors, while some colder processors
are idle because their corresponding queues are empty. Recognizing that cold
tasks may be assigned to any of the processor classes, we can allow these tasks
to favourably migrate into colder queues. Namely, in the case that a queue Q is
empty, we allow a colder task to migrate into Q (where “colder” implies that the
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processor class associated with Q has a lower fan-input temperature than that
of the task’s original queue). This technique, designated PTS with Favourable
Migration (PTS-FM), is shown in Figure 4.
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Fig. 5. Schematic of queue-processor relationship in the PTS-UMn scheduler, which
allows tasks to unfavourably migrate into a tunable number (n) of hotter idle queues,
in addition to the favourable migration into colder idle queues. PTS-UM1 is shown.

To further increase processor utilization, the scheduler can be configured to
allow the thermally unfavourable migration of tasks to a tunable number (n) of
hotter idle queues. Shown in Figure 5, the PTS with Unfavourable Migration
(PTS-UMn) strategy realizes a trade-off between an increase in the peak cluster
temperature and a decrease in the queue servicing time. The dotted lines in
Figure 5 represent the allocation of tasks to thermally unfavourable processor
classes. The shown PTS-UM1 strategy allows tasks to unfavourably migrate
by only one processor class. By increasing the allowed degree of unfavourable
migrations, a further decrease in execution time will be realized along with a
corresponding increase in the peak temperature. In the extreme case, where all
of the queues can allocate tasks to all of the processor classes, the scheduler
becomes a simple first-come-first-served (FCFS) scheduler.

For each scheduling strategy we measure the peak processor temperature as
well as the overall queue servicing time (the time required to execute all tasks in
a given queue). In all cases we compare our results with a baseline policy where
the FCFS algorithm services the global queue in the order that tasks have arrived
(referred to as the FCFS6 policy). Additionally, we compare the PTS strategies
to a simple FCFS-based power saving strategy, where the hottest processors are
simply turned off. In the results below, these are referred to as FCFS5 through
FCFS1, where the subscript represents the number of available processors.

It should be noted that in the following simulations we assume that the di-
rector has proceeded through a training period and all task temperature profiles
are known. However, in practise, when the director receives a new, unrecognized,
task, a conservative strategy could be followed while its temperature profile is
recorded. Specifically, a conservative policy would specify that new tasks should
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be allocated only to the coldest processor class. This ensures that the peak clus-
ter temperature will not be negatively affected by the execution of a hot task on
a hot processor, but possibly increases the time that the task would have to wait
in the queue. By employing the favourable migration strategy, this overhead may
be decreased by executing the new task earlier on one of the marginally hotter
processors.

3.2 Simulation Framework

In order to evaluate the performance of the presented scheduling algorithms, we
have developed a cluster simulator within the SimGrid3 framework [10]. To sim-
plify the simulation, we model a simple six-processor cluster, with each processor
representing a blade chassis in a typical six-chassis IBM BladeCenter. Each pro-
cessor has an associated fan-input temperature; the fan-input temperatures vary
linearly from 18.6 ◦C to 23.8 ◦C (corresponding to the temperatures measured
for a six-chassis BladeCenter). Note that the maximum steady-state operating
temperature of modern microprocessors is typically around 60 ◦C.

3.3 Results and Discussion
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Fig. 6. Results for the FCFS and PTS scheduling strategies: (a) overall queue servicing
time and (b) cluster peak temperature.

Figure 6 presents the total execution time and peak temperature results
of the scheduler simulations having a global queue length of 6000 tasks (1000

3 SimGrid provides a framework for task scheduler simulations. Tasks are characterized
by a cost (the run-time) and processors are weighted with a relative performance.
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instances of each of the six profiled SPEC’2K benchmarks). As expected, the
FCFS6 strategy has the fastest queue execution time of 288852 s, which rep-
resents nearly 100 % processor utilization, yet also results in the highest peak
temperature (48.0 ◦C). The effect of turning off hot processors is shown in FCFS5

through FCFS1. In these results we see that the execution time increases propor-
tionally to the number of processors turned off. Further, the peak temperatures
decrease as the hotter processors are turned off.

By incorporating temperature-awareness into the scheduler, PTS results in
the lowest temperature (42.8 ◦C, which corresponds to the ideal placement of the
workload on the processors) but increases execution time to 712000 s, indicating
that a number of processors were idle for a large portion of time. By allowing
favourable migration, the PTS-FM strategy maintains the optimal temperature,
but compared to PTS improves the execution time to 564616 s.

Finally, the strategies denoted by PTS-UM1 through PTS-UM5 demonstrate
that by taking a more conservative approach, we can allow for faster execution
times at the expense of higher temperatures. When we compare the execution
times of FCFSn and PTS-UMn strategies that have similar peak temperatures,
the PTS-UMn method performs better. For example, both PTS-UM3 and FCFS4

provide a decrease in peak temperature of approximately 2 ◦C. However, PTS-
UM3 achieves this at a slight cost in execution time in comparison to the 100000 s
penalty created by FCFS4.

It is important to note that the numerical results shown here are highly
dependent on the cluster configuration and task profiles used. For example, the
overall peak temperature reduction from 48.0 ◦C to 42.8 ◦C corresponds to the
best possible placement with this set of tasks and processors. When used in
environments with more diverse task temperature profiles, the PTS strategies
are expected to achieve more dramatic temperature reductions.

As presented, the PTS schedulers can be used to decrease the cluster peak
temperature. In cases of uncompromised temperature performance, system de-
signers are encouraged to use the PTS-FM strategy, as it realizes the optimal
temperature while minimizing the possible execution time (i.e. any decrease in
the execution time would have required an increase in the peak temperature).
In cases where the system designer is satisfied with a sub-optimal peak temper-
ature, one of the PTS-UMn strategies can be used to improve execution time.
The PTS-UMn strategy thus provides a mechanism for system designers to tune
the time/temperature performance trade-off according to institutional priorities.

4 Related Work

Temperature-aware task scheduling for the computational cluster is a relatively
new field of study. Bianchini and Rajamony presented a review of the energy and
power management issues in computational clusters [3]. Much of the initial work
in this area has been performed by Hewlett Packard ([4]-[7]). For example, in
[6] Moore et al. present algorithms that leverage a thermodynamic formulation
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of steady-state hot- and cold-spots to achieve up to a factor of two reduction in
cooling costs.

Patel et al. have presented a workload placement strategy for global com-
putational Grids in which computational facilities are assigned energy-efficiency
coefficients and workloads are allocated to the cluster having the best energy
characteristics [8]. Weissel and Bellosa have developed OS-level power and ther-
mal management methods that can be used to improve the thermal characteris-
tics of the data center [9].

A recent study by Kurson et al. at IBM T. J. Watson Research Center inves-
tigated the decrease in on-chip temperatures seen while using thermally-aware
thread scheduling [12]. Their MinTemp scheduling policy effectively lowers on-
chip temperature by selecting the thread which has the lowest temperature for
the current cycle’s hottest thermally critical block.

In our work, we study task temperature profiles and exploit them to develop
a temperature-aware data center task scheduler. This approach operates at the
macroscopic system level to discover thermally beneficial workload placements
within the data center.

5 Conclusions

We introduced temperature-aware scheduling policies for computational clus-
ters. We used a task’s temperature profile to quantify a task’s heat producing
capacity and to differentiate between cold and hot tasks. Our policies use dif-
ferent approaches to trade queue servicing time for lower peak temperatures.
With the cluster configuration and temperature profiles we used, we conclude
that a relatively balanced scheduling policy can effectively reduce cluster peak
temperature at the expense of an increase in the queue servicing time.

In the future we plan to improve this work by evaluating the presented strate-
gies using a more diverse set of tasks. Additionally, we will introduce the notion
of task temperature profiling into the knapsack-based scheduler [11] in order to
determine the potential for temperature-awareness in the presence of complex
Quality-of-Service policies.

References

1. J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The Impact of Technology
Scaling on Processor Lifetime Reliability. In Proceedings of the International Con-
ference on Dependable Systems and Networks (DSN-2004), June 2004.

2. S. Borkar. Design challenges of technology scaling. IEEE Micro, pp. 23–29, Jul.–
Aug., 1999.

3. R. Bianchini and R. Rajamony. Power and Energy Management for Server Sys-
tems. IEEE Computer, 37(11), November 2004.

4. C.D. Patel. A vision of energy aware computing - from chips to data centers. The
International Symposium on Micro-Mechanical Engineering. ISMME2003 -K 1 5.
December 2003.



Exploiting Task Temp. Prof. in Temp-Aware Task Sched. for Comp. Clusters 11

5. J. Moore et al. Going Beyond CPUs: The Potential of Temperature-Aware So-
lutions for the Data Center. Proc. 1st Workshop Temperature-Aware Computer
Systems; www.cs.virginia.edu/˜skadron/tacs/rang.pdf.

6. J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making Scheduling
“Cool”:Temperature-Aware Workload Placement in Data Centers. In Proceedings
of the USENIX Annual Technical Conference, Anaheim, CA, April 2005.

7. J. Moore et al. A Sense of Place: Towards a Location-aware Information Plane for
Data Centers. Hewlett Packard Technical Report TR2004-27.

8. Patel, C.D., Sharma, R.K, Bash, C.E. and Graupner, S. Energy Aware Grid: Global
Workload Placement based on Energy Efficiency. IMECE 2003-41443. 2003 Inter-
national Mechanical Engineering Congress and Exposition, Washington, DC.

9. A. Weissel and F. Bellosa. Dynamic thermal management for distributed systems.
In Proceedings of the First Workshop on Temperature-Aware Computer Systems
(TACS’04). June 2004.

10. Casanova, H. Simgrid: A toolkit for the simulation of application scheduling. Pro-
ceedings of the IEEE Symposium on Cluster Computing and the Grid (CCGrid’01).
May, 2001.

11. Parra-Hernandez, R., Vanderster, D., and Dimopoulos, N.J. Resource Manage-
ment and Knapsack Formulations on the Grid. Proceedings of Grid 2004 - 5th
IEEE/ACM International Workshop on Grid Computing. pp. 94-101. Nov. 2004.

12. Kursun, E., Cher, C-Y., Buyuktosunoglu, A., and Bose, P. Investigating the Effects
of Task Scheduling on Thermal Behaviori. Third Workshop on Temperature-Aware
Computer Systems, Held in conjunction with ISCA-33, Boston, MA, USA, June
17-21, 2006.


