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Abstract. Modern embedded processors use small and simple branch predictors 
to improve performance. Using complex and accurate branch predictors, while 
desirable, is not possible as such predictors impose high power and area 
overhead which is not affordable in an embedded processor. As a result, for 
some applications, misprediction rate can be high. Such mispredictions result in 
energy wasted down the mispredicted path. We introduce area-aware and low-
complexity pipeline gating mechanisms to reduce energy lost to possible branch 
mispredictions in embedded processors. We show that by using a simple gating 
mechanism which comes with 33-bit area overhead, on average, we can reduce 
the number of executed instructions by 17% (max: 30%) while paying a 
negligible performance cost (average 1.1%). 

1. Introduction 
Modern embedded processors aim at achieving high-performance while 

maintaining die area and power consumption at a low level.   While technology 
advances continue to provide embedded processors with more resources, we are still 
far away from affording advanced complex techniques. It is due to such restrictions 
that embedded processors do not exploit many techniques frequently used by high-
performance desktop machines or servers. One way to narrow this gap is to revisit 
solutions introduced for high performance processors to develop affordable 
implementations. 

Branch prediction is essential as it provides steady instruction flow at the fetch 
stage which in turn results in shorter program runtime. However, unfortunately, 
predictors are not perfect and make mispredictions. Such branch mispredictions result 
in longer program runtimes and energy wasted down the mispredicted instruction path. 
Compared to a high-performance processor, the energy lost to mispredictions appears 
to be more costly in embedded processors. This is due to the fact that in an embedded 
processor power resources are limited to batteries, making efficient power 
management even a more critical task. 

In addition, embedded processors are bound to exploit simple and possibly less 
accurate branch predictors compared to high performance processors. Using more 
simple and less accurate branch predictors by embedded processors compared to high 
performance processors is exemplified by the XScale processor: Intel’s XScale which 
was introduced in 2001 [2] uses a 256-bit bimodal predictor while the Alpha EV6 [3] 
that was released in 1997 used 36Kbits.  



More importantly, it is expected that as future embedded processors start 
exploiting deeper pipelines, branch misprediction cost will increase even further.  

To address these concerns finding techniques to reduce energy lost to speculation 
while maintaining performance is essential.  

A previous study has suggested using pipeline gating to reduce energy lost to 
branch misspeculation [1]. Unfortunately, previously suggested pipeline gating 
mechanisms are either too complex to be used in an embedded processor or depend on 
complex branch predictors which are not affordable in an embedded processor. 

 The goal of this work is to introduce a set of power-efficient and area-aware 
pipeline gating methods to reduce misprediction cost while maintaining performance. 
In particular, we introduce three very low-overhead pipeline gating mechanisms to 
reduce energy lost to branch misprediction while maintaining performance. 

Pipeline gating relies on accurate branch confidence estimation [6]. We also 
introduce low-overhead branch confidence estimation techniques to be used in 
embedded processors. 

Our most aggressive technique reduces the number of mistakenly fetched 
instructions by 17% (max: 30%) with an average performance loss of 1.1%.  

The rest of the paper is organized as follows. In section 2 we discuss our 
motivation. In section 3 we explain our techniques in more details. In section 4 we 
present methodology and results. In section 5 we review related work. Finally, in 
section 6 we offer concluding remarks.  

2. Motivation 
As explained earlier, modern processors lose energy due to possible branch 

mispredictions. We refer to the mistakenly fetched instructions as wasted activity 
(WA). Note that mispredicted instructions do not commit and are flushed as soon as 
the mispredicted branch is resolved. As such, we define WA as: 
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commitedfetched
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Where fetched and committed are the numbers of instructions fetched and 

committed during execution of a program, respectively. 

In figure 1 we report the percentage of instructions fetched down the mispredicted 
path. We report for a subset of MiBench benchmarks [5] and for a processor similar to 
Intel’s XScale. We include benchmarks with both high and low WA in figure 1 and 
through this study. As presented, WA is more than 20% for three of the applications 
studied here. To understand why different applications come with different WAs it is 
important to take into account other parameters including branch misprediction rate. 

To explain this further, in figure 2 we report misprediction rate of the bimodal 
predictor used in XScale for the selected benchmarks. As reported in figures 1 and 2, 
the four applications with higher WAs also show higher misprediction rates. 

While both high-performance processors and embedded processors lose energy to 



branch mispredictions, it is important to take a different approach in embedded 
processors. Our study shows that front-end gating should be done more carefully in an 
embedded processor where front-end buffers are usually small in size. In a high-
performance processor, exploiting large size buffers makes a steady instruction flow 
possible in the event of a fetch stall (e.g., stalls caused by a cache miss). However, in 
embedded processors, where less resource is available to the processor front-end, 
stalling the front-end for correctly predicted instructions can impact performance 
dramatically (more on this later).  
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Figure 1. Wasted activity in fetch stage. 

 

0%
5%

10%
15%
20%
25%
30%

adpcm
_c

adpcm
_d

basicm
ath

cjpeg

fft lam
e

patricia

qsort

A
verage

 
 

Figure 2.  Misprediction rate for XScale’s bimodal predictor. 
 

3. Area-Aware Confidence Estimation 
We present the schematic of a processor using pipeline gating in figure 3. 

Our goal is to stall instruction fetch when there is a high chance that the fetched 



instructions will be flushed. To do this we gate the pipeline front-end when there is 
low-confidence in the executed instructions. In order to gate the pipeline while 
maintaining performance we need a mechanism to identify low confidence branches.  

Several studies have introduced accurate confidence estimators. However, 
previously suggested estimators rely on exploiting complex structures which may not 
be affordable in an embedded processor. To apply pipeline gating to an embedded 
processor, we introduce three accurate confidence estimation techniques which impose 
very little overhead. 
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Figure 3. A schematic of a processor using confidence estimation and pipeline gating. 

 

3.1. History-Based Confidence Estimation 
In this method we assume that recently mispredicted branches are more likely to 

be mispredicted in the future. As such we keep track of recently fetched branch 
instructions’ confidence using a very small 16-bit structure. This structure is a PC-
indexed 8-entry table where there is a 2-bit counter associated with each entry. The 2-
bit counter is incremented for accurately predicted branches. We reset the associated 
counter if the branch is mispredicted. We look up this structure at fetch and in parallel 
to probing the branch predictor. If the 2-bit counter is not saturated we consider the 
branch as low confidence.  

Previously suggested pipeline gating methods gate the front-end if the number of 
low-confidence branches exceeds a pre-decided threshold. Our study shows that a one-
size-fits-all approach does not work well across all applications and may result in 
either low WA reduction or high performance penalty. Therefore, we add a level of 
adaptivity and decide the gating threshold dynamically. To decide the gating threshold 
dynamically, we use the number of in-flight branch instructions and average 
misprediction rate.  

For applications with small number of branches, aliasing is low and our 
confidence estimator is more likely to do a more effective job. This is particularly true 
if average misprediction rate for an application is low. As such, for applications with 
lower number of branches or low misprediction rate, we gate the pipeline if the 



number of low-confidence branches exceeds one. For applications with higher number 
of branches and higher misprediction rates, we gate the pipeline if the number of low 
confidence branches exceeds two. Intuitively, for application with high number of 
branches and high misprediction rates, we need to see at least two low-confidence 
branch instructions before losing confidence in the following instructions. 

Accordingly, history-based confidence estimation requires measuring the number 
of instructions per branch (IPB) and the number of mispredictions occurring during 
regular intervals. We measure IPB every 256 instructions and set the threshold to two 
if IPB drops below 4 (indicating a high number of branch instructions) and if the 
misprediction rate is above 12.5%. Misprediction rate is measured by shifting the 
number of branches 3 bits to right (divide by 8) and comparing the result with the 
number of mispredicted branches.  

3.2. Predictor-Based Confidence Estimation 
In the second method we assume that the saturating counters which are already 

being used by the branch predictor indicate branch instruction confidence. By using 
the already available structures we minimize the hardware overhead associated with 
pipeline gating.  

At fetch, and while probing the branch predictor to speculate the branch outcome, 
we mark a branch as low confidence if its corresponding branch predictor counter is 
not saturated. Similar to the history-based method we gate the pipeline if the number 
of low-confidence branches exceeds a dynamically decided threshold. We increase the 
gating threshold from 1 to 2 if IPB drops below 4. 

3.3. Combined Confidence Estimation 
Our study shows that, often, each of the two methods discussed above captures a 

different group of low-confidence branch instructions. To identify a larger number of 
low-confidence branches, in this method we use a combination of the two techniques. 
A branch is considered low-confidence if either the history-based or predictor-based 
confidence estimator marks it as low-confidence. By using this technique we are able 
to achieve higher WA reduction while maintaining performance. Similar to the 
methods discussed above, we also maintain area overhead at a very low-level. 

3.4. Area Overhead 
In the history-based technique we use an 8-entry confidence estimator which 

contains 8 2-bit counters. Besides, we need an 8-bit counter to count the instruction 
intervals, a 6-bit saturating counter with shift capability to count the number of 
branches in each interval and a 3-bit saturating counter to keep track of mispredictions. 
The total area requirement is equivalent to 33 bits which is very small. 

The area overhead is even lower for the predictor-based method. For this method 
we need only an 8-bit counter and a 6-bit saturating counter to keep track of 
instruction intervals and the number of mispredicted branches respectively. Thus, the 
total required area is only 14 bits. 

For the combined method, we use the same structures as we used in the history-



based technique. We also look up branch predictor counters which already exist in the 
processor. Thus, the area requirement is the same (i.e., 33-bits) as the history-based 
technique. 

4. Methodology and Results 
In this section we present simulation results and analysis for the three proposed 

methods. We report WA reduction is section 4.1. We report the impact of pipeline 
gating on performance in section 4.2.  

To evaluate our techniques, we used a subset of MiBench benchmark suite 
compiled for MIPS instruction set. We picked benchmarks with both high and low 
WA. The results were obtained for the first 100 million instructions of the 
benchmarks. We performed all simulations on a modified version of the SimpleScalar 
v3.0 tool set [4]. We used a configuration similar to that of intel’s XScale processor 
for our processor model. Table 1 shows the configuration. 

 
Table 1. Configuration of the processor model. 

 
Issue Width In-Order:2 

Functional Units 1 I-ALU, 1 F-ALU, 1 I-MUL/DIV, 1 F-MUL/DIV 

BTB 128 entries 

Branch Predictor Bimodal, 128 entries 

Main Memory Infinite, 32 cycles  

Inst/Data TLB 32 entries, fully associative 

L1 - Instruction/Data Caches 32K, 32-way SA, 32-byte blocks, 1 cycle 

L2 Cache None 

Load/Store queue 8 entries 

Register Update Unit 8 entries 

4.1. Wasted Activity Reduction 
As explained earlier a considerable number of instructions fetched in an 

embedded processor are flushed due to branch mispredictions. As expected, WA is 
higher for benchmarks with higher misprediction rates and low IPBs. An immediate 
consequence of WA is higher power dissipation. Thus, reducing extra work will 
ultimately result in lower energy consumption as long as performance is maintained.  

In figure 4 we report WA reduction for the three proposed confidence estimation 
techniques. As it can be seen, the highest WA reduction is achieved using the 
combined confidence estimation technique. Maximum WA reduction is 30% and 
achieved by the combined method for fft. 



4.2. Performance  
In figure 5 we report performance. Bars from left to right report performance for 

history-based, predictor-based and the combined method compared to a processor that 
does not use pipeline gating.   Reportedly, the predictor-based technique has the 
lowest amount of performance loss among the three techniques. Average performance 
loss is only 0.2% for this technique. Our study shows that, for patricia, applying 
pipeline gating results in an increase in L1 cache hit rate which explains why we 
witness about 0.4% performance improvement for this benchmark. Average 
performance loss for history-based and combined techniques is 1.1% and 1.2% 
respectively.  
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Figure 4.  WA reduction. Higher is better.  
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Figure 5. Performance compared to a conventional processor. Higher is better. 

 

The predictor-based method maintains performance cost below 1% for all 
applications. History-based and combined maintain performance cost below 1% for 6 
of the 8 applications. Both techniques result in a performance cost of about 3% for 



basicmath. This is the result of frequent changes of behavior for branch instructions in 
basicmath. This makes capturing branch instruction confidence very challenging by 
using simple confidence estimators designed to perform under resource and area 
constraints. 

5. Related Work 
Several studies proposed power efficient architectures for embedded processors. 

Our work focuses on reducing wasted activity by using pipeline gating.  

S. Manne, A. Klauser and D. Grunwald [1] have investigated effects of pipeline 
gating on reducing wasted activity in high-performance processors. They proposed 
techniques for branch confidence estimation and used them for pipeline gating in high 
performance processors. Our study is different from theirs as we propose low 
overhead techniques for embedded processors. We also propose a dynamic method to 
change the gating threshold. 

6. Conclusion 
We proposed three low-overhead pipeline gating techniques for embedded 

processors. To evaluate our techniques, we used a representative subset of MiBench 
benchmarks and simulated a processor similar to Intel’s XScale processor. 

We showed that by using simple confidence estimation techniques, it is possible 
to reduce the number of mispredicted instructions fetched by up to a maximum of 
30%. All proposed techniques maintain average performance cost below 1.2%. 
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