
Area-Aware Pipeline Gating for Embedded Processors

Babak Salamat and Amirali Baniasadi
Electrical and Computer Engineering

University of Victoria
{salamat, amirali}@ece.uvic.ca

Abstract. Modern embedded processors use small and simple branch predictors
to improve performance. Using complex and accurate branch predictors, while
desirable, is not possible as such predictors impose high power and area
overhead which is not affordable in an embedded processor. As a result, for
some applications, misprediction rate can be high. Such mispredictions result in
energy wasted down the mispredicted path. We introduce area-aware and low-
complexity pipeline gating mechanisms to reduce energy lost to possible branch
mispredictions in embedded processors. We show that by using a simple gating
mechanism which comes with 33-bit area overhead, on average, we can reduce
the number of executed instructions by 17% (max: 30%) while paying a
negligible performance cost (average 1.1%).

1. Introduction
Modern embedded processors aim at achieving high-performance while

maintaining die area and power consumption at a low level. While technology
advances continue to provide embedded processors with more resources, we are still
far away from affording advanced complex techniques. It is due to such restrictions
that embedded processors do not exploit many techniques frequently used by high-
performance desktop machines or servers. One way to narrow this gap is to revisit
solutions introduced for high performance processors to develop affordable
implementations.

Branch prediction is essential as it provides steady instruction flow at the fetch
stage which in turn results in shorter program runtime. However, unfortunately,
predictors are not perfect and make mispredictions. Such branch mispredictions result
in longer program runtimes and energy wasted down the mispredicted instruction path.
Compared to a high-performance processor, the energy lost to mispredictions appears
to be more costly in embedded processors. This is due to the fact that in an embedded
processor power resources are limited to batteries, making efficient power
management even a more critical task.

In addition, embedded processors are bound to exploit simple and possibly less
accurate branch predictors compared to high performance processors. Using more
simple and less accurate branch predictors by embedded processors compared to high
performance processors is exemplified by the XScale processor: Intel’s XScale which
was introduced in 2001 [2] uses a 256-bit bimodal predictor while the Alpha EV6 [3]
that was released in 1997 used 36Kbits.

More importantly, it is expected that as future embedded processors start
exploiting deeper pipelines, branch misprediction cost will increase even further.

To address these concerns finding techniques to reduce energy lost to speculation
while maintaining performance is essential.

A previous study has suggested using pipeline gating to reduce energy lost to
branch misspeculation [1]. Unfortunately, previously suggested pipeline gating
mechanisms are either too complex to be used in an embedded processor or depend on
complex branch predictors which are not affordable in an embedded processor.

 The goal of this work is to introduce a set of power-efficient and area-aware
pipeline gating methods to reduce misprediction cost while maintaining performance.
In particular, we introduce three very low-overhead pipeline gating mechanisms to
reduce energy lost to branch misprediction while maintaining performance.

Pipeline gating relies on accurate branch confidence estimation [6]. We also
introduce low-overhead branch confidence estimation techniques to be used in
embedded processors.

Our most aggressive technique reduces the number of mistakenly fetched
instructions by 17% (max: 30%) with an average performance loss of 1.1%.

The rest of the paper is organized as follows. In section 2 we discuss our
motivation. In section 3 we explain our techniques in more details. In section 4 we
present methodology and results. In section 5 we review related work. Finally, in
section 6 we offer concluding remarks.

2. Motivation
As explained earlier, modern processors lose energy due to possible branch

mispredictions. We refer to the mistakenly fetched instructions as wasted activity
(WA). Note that mispredicted instructions do not commit and are flushed as soon as
the mispredicted branch is resolved. As such, we define WA as:

fetched

commitedfetched
WA

−=

Where fetched and committed are the numbers of instructions fetched and

committed during execution of a program, respectively.

In figure 1 we report the percentage of instructions fetched down the mispredicted
path. We report for a subset of MiBench benchmarks [5] and for a processor similar to
Intel’s XScale. We include benchmarks with both high and low WA in figure 1 and
through this study. As presented, WA is more than 20% for three of the applications
studied here. To understand why different applications come with different WAs it is
important to take into account other parameters including branch misprediction rate.

To explain this further, in figure 2 we report misprediction rate of the bimodal
predictor used in XScale for the selected benchmarks. As reported in figures 1 and 2,
the four applications with higher WAs also show higher misprediction rates.

While both high-performance processors and embedded processors lose energy to

branch mispredictions, it is important to take a different approach in embedded
processors. Our study shows that front-end gating should be done more carefully in an
embedded processor where front-end buffers are usually small in size. In a high-
performance processor, exploiting large size buffers makes a steady instruction flow
possible in the event of a fetch stall (e.g., stalls caused by a cache miss). However, in
embedded processors, where less resource is available to the processor front-end,
stalling the front-end for correctly predicted instructions can impact performance
dramatically (more on this later).

0%
5%

10%
15%
20%
25%

adpcm
_c

adpcm
_d

basicm
ath

cjpeg

fft lam
e

patricia

qsort

A
verage

Figure 1. Wasted activity in fetch stage.

0%
5%

10%
15%
20%
25%
30%

adpcm
_c

adpcm
_d

basicm
ath

cjpeg

fft lam
e

patricia

qsort

A
verage

Figure 2. Misprediction rate for XScale’s bimodal predictor.

3. Area-Aware Confidence Estimation
We present the schematic of a processor using pipeline gating in figure 3.

Our goal is to stall instruction fetch when there is a high chance that the fetched

instructions will be flushed. To do this we gate the pipeline front-end when there is
low-confidence in the executed instructions. In order to gate the pipeline while
maintaining performance we need a mechanism to identify low confidence branches.

Several studies have introduced accurate confidence estimators. However,
previously suggested estimators rely on exploiting complex structures which may not
be affordable in an embedded processor. To apply pipeline gating to an embedded
processor, we introduce three accurate confidence estimation techniques which impose
very little overhead.

Fetch Decode Issue Write Back Commit

Confidence
Estimator

Threshold Finder

UpdateLook up

Low confidence
branch counter

Increment
if low conf.

Decrement
if low conf.

countr >=
thrshld

Stall fetch

Figure 3. A schematic of a processor using confidence estimation and pipeline gating.

3.1. History-Based Confidence Estimation
In this method we assume that recently mispredicted branches are more likely to

be mispredicted in the future. As such we keep track of recently fetched branch
instructions’ confidence using a very small 16-bit structure. This structure is a PC-
indexed 8-entry table where there is a 2-bit counter associated with each entry. The 2-
bit counter is incremented for accurately predicted branches. We reset the associated
counter if the branch is mispredicted. We look up this structure at fetch and in parallel
to probing the branch predictor. If the 2-bit counter is not saturated we consider the
branch as low confidence.

Previously suggested pipeline gating methods gate the front-end if the number of
low-confidence branches exceeds a pre-decided threshold. Our study shows that a one-
size-fits-all approach does not work well across all applications and may result in
either low WA reduction or high performance penalty. Therefore, we add a level of
adaptivity and decide the gating threshold dynamically. To decide the gating threshold
dynamically, we use the number of in-flight branch instructions and average
misprediction rate.

For applications with small number of branches, aliasing is low and our
confidence estimator is more likely to do a more effective job. This is particularly true
if average misprediction rate for an application is low. As such, for applications with
lower number of branches or low misprediction rate, we gate the pipeline if the

number of low-confidence branches exceeds one. For applications with higher number
of branches and higher misprediction rates, we gate the pipeline if the number of low
confidence branches exceeds two. Intuitively, for application with high number of
branches and high misprediction rates, we need to see at least two low-confidence
branch instructions before losing confidence in the following instructions.

Accordingly, history-based confidence estimation requires measuring the number
of instructions per branch (IPB) and the number of mispredictions occurring during
regular intervals. We measure IPB every 256 instructions and set the threshold to two
if IPB drops below 4 (indicating a high number of branch instructions) and if the
misprediction rate is above 12.5%. Misprediction rate is measured by shifting the
number of branches 3 bits to right (divide by 8) and comparing the result with the
number of mispredicted branches.

3.2. Predictor-Based Confidence Estimation
In the second method we assume that the saturating counters which are already

being used by the branch predictor indicate branch instruction confidence. By using
the already available structures we minimize the hardware overhead associated with
pipeline gating.

At fetch, and while probing the branch predictor to speculate the branch outcome,
we mark a branch as low confidence if its corresponding branch predictor counter is
not saturated. Similar to the history-based method we gate the pipeline if the number
of low-confidence branches exceeds a dynamically decided threshold. We increase the
gating threshold from 1 to 2 if IPB drops below 4.

3.3. Combined Confidence Estimation
Our study shows that, often, each of the two methods discussed above captures a

different group of low-confidence branch instructions. To identify a larger number of
low-confidence branches, in this method we use a combination of the two techniques.
A branch is considered low-confidence if either the history-based or predictor-based
confidence estimator marks it as low-confidence. By using this technique we are able
to achieve higher WA reduction while maintaining performance. Similar to the
methods discussed above, we also maintain area overhead at a very low-level.

3.4. Area Overhead
In the history-based technique we use an 8-entry confidence estimator which

contains 8 2-bit counters. Besides, we need an 8-bit counter to count the instruction
intervals, a 6-bit saturating counter with shift capability to count the number of
branches in each interval and a 3-bit saturating counter to keep track of mispredictions.
The total area requirement is equivalent to 33 bits which is very small.

The area overhead is even lower for the predictor-based method. For this method
we need only an 8-bit counter and a 6-bit saturating counter to keep track of
instruction intervals and the number of mispredicted branches respectively. Thus, the
total required area is only 14 bits.

For the combined method, we use the same structures as we used in the history-

based technique. We also look up branch predictor counters which already exist in the
processor. Thus, the area requirement is the same (i.e., 33-bits) as the history-based
technique.

4. Methodology and Results
In this section we present simulation results and analysis for the three proposed

methods. We report WA reduction is section 4.1. We report the impact of pipeline
gating on performance in section 4.2.

To evaluate our techniques, we used a subset of MiBench benchmark suite
compiled for MIPS instruction set. We picked benchmarks with both high and low
WA. The results were obtained for the first 100 million instructions of the
benchmarks. We performed all simulations on a modified version of the SimpleScalar
v3.0 tool set [4]. We used a configuration similar to that of intel’s XScale processor
for our processor model. Table 1 shows the configuration.

Table 1. Configuration of the processor model.

Issue Width In-Order:2

Functional Units 1 I-ALU, 1 F-ALU, 1 I-MUL/DIV, 1 F-MUL/DIV

BTB 128 entries

Branch Predictor Bimodal, 128 entries

Main Memory Infinite, 32 cycles

Inst/Data TLB 32 entries, fully associative

L1 - Instruction/Data Caches 32K, 32-way SA, 32-byte blocks, 1 cycle

L2 Cache None

Load/Store queue 8 entries

Register Update Unit 8 entries

4.1. Wasted Activity Reduction
As explained earlier a considerable number of instructions fetched in an

embedded processor are flushed due to branch mispredictions. As expected, WA is
higher for benchmarks with higher misprediction rates and low IPBs. An immediate
consequence of WA is higher power dissipation. Thus, reducing extra work will
ultimately result in lower energy consumption as long as performance is maintained.

In figure 4 we report WA reduction for the three proposed confidence estimation
techniques. As it can be seen, the highest WA reduction is achieved using the
combined confidence estimation technique. Maximum WA reduction is 30% and
achieved by the combined method for fft.

4.2. Performance
In figure 5 we report performance. Bars from left to right report performance for

history-based, predictor-based and the combined method compared to a processor that
does not use pipeline gating. Reportedly, the predictor-based technique has the
lowest amount of performance loss among the three techniques. Average performance
loss is only 0.2% for this technique. Our study shows that, for patricia, applying
pipeline gating results in an increase in L1 cache hit rate which explains why we
witness about 0.4% performance improvement for this benchmark. Average
performance loss for history-based and combined techniques is 1.1% and 1.2%
respectively.

0%

10%

20%

30%

ad
pc

m
_c

ad
pc

m_d

ba
sic

m
ath

cjp
eg fft

lam
e

pa
tri

cia
qs

or
t

Ave
ra

ge

History-based CE Predictor-based CE Combined CE

Figure 4. WA reduction. Higher is better.

95%
96%
97%
98%
99%

100%

ad
pc

m
_c

ad
pc

m_d

ba
sic

mat
h

cjp
eg fft

lam
e

pa
tri

cia
qs

or
t

Ave
ra

ge

History-based CE Predictor-based CE Combined CE

Figure 5. Performance compared to a conventional processor. Higher is better.

The predictor-based method maintains performance cost below 1% for all
applications. History-based and combined maintain performance cost below 1% for 6
of the 8 applications. Both techniques result in a performance cost of about 3% for

basicmath. This is the result of frequent changes of behavior for branch instructions in
basicmath. This makes capturing branch instruction confidence very challenging by
using simple confidence estimators designed to perform under resource and area
constraints.

5. Related Work
Several studies proposed power efficient architectures for embedded processors.

Our work focuses on reducing wasted activity by using pipeline gating.

S. Manne, A. Klauser and D. Grunwald [1] have investigated effects of pipeline
gating on reducing wasted activity in high-performance processors. They proposed
techniques for branch confidence estimation and used them for pipeline gating in high
performance processors. Our study is different from theirs as we propose low
overhead techniques for embedded processors. We also propose a dynamic method to
change the gating threshold.

6. Conclusion
We proposed three low-overhead pipeline gating techniques for embedded

processors. To evaluate our techniques, we used a representative subset of MiBench
benchmarks and simulated a processor similar to Intel’s XScale processor.

We showed that by using simple confidence estimation techniques, it is possible
to reduce the number of mispredicted instructions fetched by up to a maximum of
30%. All proposed techniques maintain average performance cost below 1.2%.

7. Acknowledgements
This work was supported by the Natural Sciences and Engineering Research

Council of Canada, Discovery Grants Program, Canada Foundation of Innovation,
New Opportunities Fund and the University of Victoria Fellowship.

References

1. Manne, S., Klauser, A., Grunwald, D.: Pipeline Gating: Speculation Control for Energy
Reduction. Proc. 25th Ann. Int’l Symp. Computer Architecture, pp. 132-141, June 1998.

2. Intel, Intel XScale Microarchitecture. 2001.
3. Digital Semiconductor: DECchip 21064/21064A Alpha AXP Microprocessors: Hardware

Reference Manual, June 1994.
4. Burger, D.C., Austin, T.M.: The SimpleScalar tool set,version 2.0. Computer Architecture

News, 25(3):13–25, June 1997.
5. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.:

MiBench: A free, commercially representive embedded benchmark suite. IEEE 4th Annual
Workshop on Workload Characterization. 2001.

6. Grunwald, D., Klauser, A., Manne, S., Pleszkun, A.: Confidence estimation for speculation
control. Proceedings 25th Annual International Symposium on Computer Architecture,
SIGARCH Newsletter, Barcelona, Spain, Jun. 1998.

