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ABSTRACT 
Modern embedded processors access the Branch Target Buffer 
(BTB) every cycle to speculate branch target addresses. Such 
accesses, quite often, are unnecessary as there is no branch 
instruction among those fetched.   

In this work we introduce Branchless Cycle Prediction (BLCP) 
to exploit this design inefficiency. BLCP uses a simple power 
efficient structure to predict cycles where there is no branch 
instruction among those fetched, at least one cycle in advance. We 
avoid accessing BTB during such cycles.  

We show that, by using BLCP, it is possible to reduce BTB power 
dissipation by 32% while paying a negligible performance cost 
(average: 0.2%).  

Categories and Subject Descriptors 
C.1.1 [Processor Architectures]: Single Data Stream 
Architectures  

General Terms 
Design, Measurement, Performance. 

Keywords 
Branch Target Buffer, Embedded Processors, Power-Aware 
Architectures, Low-Power Design. 

1. INTRODUCTION 
The goal of this work is to reduce branch target buffer (BTB) 
energy consumption without harming accuracy and hence overall 
performance. BTB is a major energy consuming structure in the 
processor and is often used by branch predictors for target address 
prediction.  

To find the branch target address as soon as possible, at fetch, 
modern embedded processors (e.g., Intel�s XScale) [4]) access 
BTB every cycle and for all fetched instructions.  While this 
results in early identification of the target address (for possibly 
branch instructions), it is inefficient as only a small percentage of 
these accesses result in predicting the target address.  This is due 
to the fact that only a fraction of instructions are branch 
instructions. Nonetheless, in order to avoid extra delay, modern 

processors access BTB for all instructions. This aggressive 
approach, quite often, results in power dissipation without 
contributing to performance.  

One possible approach to avoid extra BTB accesses for non-
branch instructions is to use a pre-decoder to separate branch and 
non-branch instructions. The problem with this approach is that it 
can result in extra delay. As clock rates increase, wire delay will 
impact large structures such as the branch predictor [7]. 
 Moreover, previous study shows that delay in the predictor 
significantly erodes performance. Therefore, any design choice 
resulting in increasing predictor delay, is not a good choice [8]. 

We introduce Branchless Cycle Prediction or BLCP, a power 
efficient technique that exploits instruction history to reduce 
predictor energy. We find occasions where no branch is among 
the instructions fetched.  We avoid accessing the BTB during such 
occasions.  To eliminate any timing overhead, we use fetch 
history to identify branchless cycles, at least one cycle in advance.  

We use a subset of the MiBench benchmarks [3] and WATTCH 
[6] and show that with an average performance penalty of 0.2%, 
BLCP can reduce BTB energy consumption by 32%. 

It is important to note that since BLCP provides information 
regarding instructions fetched in future cycles, it does not increase 
overall prediction latency.  

The rest of this paper is organized as follows. In Section 2 we 
discuss our motivation. In Section 3 we introduce BLCP and 
present the details. In Section 4 we discuss methodology and 
results. We study how BLCP impacts performance and energy 
consumption. In Section 5 we review related work. Finally, in 
Section 6 we offer our concluding remarks. 

2. MOTIVATION 
Embedded processors often perform under resource constrains. It 
is due to such restrictions that designers use simple in-order 
architectures in embedded processors. As such, fetching a small 
number of instructions every cycle provides enough work to keep 
the pipeline busy [4]. 

Consistent with previous study [3], our study shows that 
embedded applications may have branch frequency anywhere 
from 5% to 30%.  Considering the fact that modern embedded 
processors fetch very few instructions each cycle, chances are, 
quite often, there is no branch instruction among those fetched. 
We refer to such cycles as branchless cycles (or BLC). A branch 
cycle (or BC) is a fetch cycle where there is at least one branch 
instruction among those fetched.  
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Figure 1. BTB�s energy consumption share in the branch 
predictor unit. Bars from left to right report for the following 
configurations (BTB size/bimodal predictor size): 128 entry 
BTB and bimodal predictor, a 256 entry BTB, 128-entry 
bimodal, 256-entry BTB and  bimodal predictor, 512-entry 
BTB, 128-entry bimodal predictor and a 512-entry BTB and 
bimodal predictor. 
 
While currently exploited branch predictors are already 
consuming considerable energy [11], their consumption is 
expected to grow as embedded processors seek higher 
performance and exploit more resources. A considerable share of 
predictor energy is consumed by the BTB. In Figure 1 we report 
the percentage of predictor energy consumed by the BTB in a 
processor similar to Intel XScale as measured by Wattch. We 
report for different predictor configurations/sizes to cover both 
currently used predictors and those likely to be used in future. As 
presented the BTB is a major contributor to the overall predictor 
energy consumption.  

Modern embedded processors use BTB to maintain steady 
instruction flow in the pipeline front-end [4].  The processor 
accesses the BTB to find the target address of the next instruction, 
possibly a branch. Unfortunately accessing BTB every cycle is not 

power efficient. While only taken branch instructions benefit from 
accessing the BTB, the BTB structure is accessed for every 
instruction. These extra accesses result in power dissipation 
without contributing to performance.  The key motivating 
observation for this work is that by identifying occasions where 
accessing the BTB does not contribute to performance we can 
avoid these extra accesses. This will reduce power dissipation 
without harming performance. 

Table 1. The subset of MiBench benchmarks studied in 
this work and their BLC frequency.  

 
 

Program BLC Program BLC 

Blowfish Encode 87% Blowfish Decode 87% 

CRC 80% Dijkstra 82% 

D Jpeg 94% C Jpeg 85% 

GSM Toast 94% Lame 92% 

Rijndael Encode 94% SHA 93% 

String Search 78% Susan Smoothing 92% 

 
To investigate possible power reduction opportunities we report 
how often BLCs occur in each benchmark. Table 1 reports the 
percentage of BLCs for a representative subset of MiBench 
benchmarks [3] used in our study. On average, 88% of cycles are 
BLCs. In other words, 88% of the time, we could avoid accessing 
the BTB without losing performance.  

Quite often a number of consecutive cycles may be branchless. 
We refer to these periods as branchless intervals. To provide 
better insight in Figure 2 we report how often different branchless 
intervals occur. As reported, about 90% branchless intervals take 
less than 10 cycles. 

 
Figure 2. BLC interval frequency. 
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3. BRANCHLESS CYCLE PREDICTOR 
(BLCP) 

We conclude from the previous section that there is an 
opportunity in the embedded space to reduce BTB energy 
consumption by avoiding unnecessary BTB accesses. In this 
section we propose a simple, highly accurate and power efficient 
predictor to identify such accesses. By identifying a BLC 
accurately and at least one cycle in advance, we avoid 
unnecessary BTB accesses. Depending on the number of 
instructions fetched during the predicted BLC, we avoid a number 
of unnecessary BTB accesses. Figure 3 shows our proposed BLC 
predictor architecture. We refer to our BLC predictor and the 
BLC-filter. 

 
Figure 3. BLC-Filter architecture. 

 
The BLC-filter is a history-based predictor which consists of two 
major parts: a small Global History Shift Register (GHR) and a 
Prediction History Table (PHT). The PHT size is decided by the 
GHR size.  GHR is used to record the history of BCs and BLCs. 
Throughout this paper we refer to the length of this register as 
GHR-size. The bigger the GHR-size is, the more we know about 
past history.  

BLC prediction is done every cycle. GHR records the most recent 
branch or branchless cycles. We represent every BLC in GHR 
with a zero and every BC with a one. The GHR value is used to 
access an entry in the PHT. Every PHT-entry has a saturating 
counter with the saturating value of Sat.  

We probe the predictor every cycle. If the counter associated with 
the most recent GHR value is saturated we assume that the 
following cycle will be a BLC and avoid accessing the BTB (see 
Figure 4(a)). 

We update BLC-filter every cycle and as soon as we know 
whether there has been a branch among the instructions fetched in 

the most recent fetch cycle. A BC results in updating the GHR 
with a one, where a BLC results in shifting in a zero in the GHR. 
We use the GHR to access the PHT entry to update.  We 
increment the associated PHT counter if the latest group of 
fetched instructions does not include any branches. We reset the 
associated counter if there is at least one branch among those 
fetched.  

Table 2. Simulated processor configuration 
Processor Core 

Instruction Window 
Issue Fetch 
Issue Width 
 
Miss Pred. Penalty 
Fetch Buffer 
Functional Units 
 

RUU= 8; LSQ=8 
1 Instruction per Cycle; 
2 Instruction per Cycle; 
1 integer, 1 FP 
6 cycle 
8 entries 
1 Int ALU, 1 Int mult/div 
1 FP ALU, 1 FP mlt/div, 1 mem prt 

Memory Hierarchy 
L1 D-cache Size 
L1 I-cache Size 
L1 latency 
L2 
Memory latency 
D-TLB/I-TLB Size 
 

32 KB, 32-way, 32B blocks, wr bk 
32 KB, 32-way, 32B blocks, wr bk 
1 cycle 
N/A 
32 cycles 
128/128-entry, fully assoc.,  
30-cycle miss  

Branch Prediction 
BTB 
Direction Predictor 
Return-address-stack 

128-entry, 1-way 
bimodal predictor, 128 entries 
N/A 

 
As presented in Figure 4(b), we update the BLC-filter every cycle. 
One way to maintain the filter as accurate as possible is to use 
decode-based information. Accordingly, at decode we check if 
there has been any branch instruction among those decoded. We 
update the predictor�s entry associated with the history at the time 
the branch instruction was fetched. Finding the entry is done by 
shifting left the most recent history by 2 bits (our fetch latency is 
2 cycles).  

4. METHODOLOGY AND RESULTS 
We used programs from the MiBench embedded benchmark suite 
compiled for the Intel Xscale-like architecture simulated by the 
Simplescalar v3.0 tool set [9]. Table 1 reports the subset of 
MiBench benchmarks we used in our study. We used GNU�s gcc 
compiler. We simulated the complete benchmark or half a billion 
instructions, whichever comes earlier. We detail the base 
processor model in table 2.  

 
Figure 4. (a) Branchless cycle predictor lookup.     (b) Branchless cycle predictor update.  



To evaluate our technique, we used a modified version of Wattch 
tool set [6]. We report both accuracy (i.e., how often we 
accurately predict a BLC) and coverage (i.e., what percentage of 
BLCs are accurately identified). 

Provided that a sufficient number of BLCs are accurately 
identified, BLCP can potentially reduce BTB energy 
consumption. However, it introduces extra energy overhead and 
can increase overall energy if the necessary behavior is not there. 

We used CACTI [10] to estimate the energy overhead associated 
with BLCP. In Figure 1 we report the relative energy consumed 
per access by an 8-entry BLCP filter using 6 bit counters and 
other structures used by the branch predictor in Table 3. Numbers 
reflect the energy consumed by each structure compared to the 
energy consumed by a branch predictor equipped with 128-entry 
bimodal predictor and a direct-mapped 128-entry BTB. As 
reported the overhead of the 8-entry BLCP filter is far less than 
the energy consumed by the BTB. Nonetheless, we take into 
account this overhead in our study. 

Table 3: Energy consumed per access by the branch 
predictor units and the BLCP-filter. 

 

Modeled Unit Size Percentage 

BLCP 8 x 6 1.61% 

BTB 128 x 1-way 94.92% 

bimodal dir. 
Predictor 

128 entries 
2- bits 3.47% 

 

4.1 Accuracy and Coverage 
In Figure 5 we report prediction accuracy and coverage for BLCP. 
In 5(a) we report average accuracy for different GHR sizes (i.e., 1 
to 6) and saturating counters (i.e., 2 to 6-bit counters). As reported 
we predict BLC cycles with an accuracy varying from 91% to 
99.6% for different BLCP-filter configurations.  

Note that mistaking a BLC for a BC does not harm performance 
as it only results in unnecessary BTB access. However, 
mispredicting a BC as a BLC, can result in late target address 
identification and comes with an extra cycle penalty in our study. 

In 5(b) we report what percentage of BLCs is identified. We 
identify between 25% and 81 % of BLCs for different BLCP 
configurations. We conclude from Figure 5 that with a fixed GHR 
size, increasing saturation threshold will generally increase 
accuracy but reduce coverage. With a fixed counter size, 
increasing the GHR size does not always improve accuracy and 
coverage. While a small GHR size results in recording very little 
history, larger GHR sizes may result in mapping small repeating 
patterns to different BLCP-filter entries which may result in a 
longer BLCP learning period. 

4.2 Energy and Performance 
We report BTB energy reduction and processor performance loss 
in Figure 6. We use the same set of parameters used in Figure 5. 
BTB energy reduction varies between 21% and 75% for different 
BLCP-filter configurations. For a fixed GHR-size larger 
saturation threshold comes with lower performance loss but at the 
expense of reduced energy savings. For a fixed counter size, 
increasing the GHR-size almost always improves BTB energy 
reduction. Note that small number of saturating bits (e.g., 2-bit 
counters) results in high performance slowdown. Larger GHR 

sizes also come with high overhead as they require larger PHT 
tables.  We find a BLC-filter with a GHR-size of 3 which uses 6-
bit saturating counters the most efficient one. Using this 
configuration, on average, we reduce BTB energy consumption by 
32% with an average performance cost of 0.2%. 
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Figure 5. Average accuracy and coverage achieved for 
different BLC-filter configurations and for the MiBench 
benchmarks studied here. For each GHR-size (x-axis) bars 
from left to right report for 2 to 6-bit saturating counters.  

 
Note that we observe small performance improvement for GHR-
size of 1 and 6-bit saturating counters. Our study shows that some 
applications achieve better performance as the result of better 
prediction for indirect jump instructions.  

5. RELATED WORK 
Petrov and Orailoglu introduced static techniques to reduce BTB 
energy consumption in embedded processors [2]. BLCP is 
different as it uses run-time information.  

Other techniques suggested to reduce BTB power dissipation 
include banking and prediction probe detector (PPD) [5]. Banking 
reduces the active portion of the predictor. Predictor Probe 
Detection (PPD) [5]  reduces branch predictor energy 
consumption. PPD aims at reducing the power dissipated during 
predictor lookups. PPD identifies when a cache line has no 
conditional branches so that a lookup in the predictor buffer can 
be avoided. Also, it identifies when a cache line has no control-  



 
Figure 6. Average performance slowdown and BTB energy 
reduction for different BLC-filter configurations and for the 
MiBench benchmarks studied here. For each GHR-size (x-
axis) bars from left to right report for 2 to 6-bit saturating 
counters. 
 
flow instructions at all, so that the BTB lookup can be eliminated. 
Our predictor can be used on top of banking to further reduce 
power dissipation. Our predictor is different from PPD as it 
predicts application behavior in future cycles. 

Chung and Park proposed early branch predictor accessing to 
predict BTB access [1]. There method required modifying the 
branch predictor. Our method is independent of the branch 
predictor implementation and uses past behavior to make 
predictions.  

6. CONCLUSION 
In this work we introduced BLCP, a power efficient method to 
identify and avoid unnecessary BTB accesses. BLCP relies on a 
small filter referred to as the BLC-filter to record and use 
instruction fetch history.  BLCP uses the recorded information to 
identify cycles where there is no instruction among those fetched.  

We studied how variations in the BLC-filter configuration impacts 
energy and performance. By using a small low-overhead structure  

we reduced BTB energy consumption considerably with 
negligible performance cost. BLCP does not impact predictor  

delay as it stops unnecessary accesses occurring in future cycles.     
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