
Branchless Cycle Prediction for Embedded Processors

 Kaveh Jokar Deris Amirali Baniasadi
Electrical and Computer Engineering Department

University of Victoria, Victoria, Canada
{kaveh, amirali}@ece.uvic.ca

ABSTRACT
Modern embedded processors access the Branch Target Buffer
(BTB) every cycle to speculate branch target addresses. Such
accesses, quite often, are unnecessary as there is no branch
instruction among those fetched.

In this work we introduce Branchless Cycle Prediction (BLCP)
to exploit this design inefficiency. BLCP uses a simple power
efficient structure to predict cycles where there is no branch
instruction among those fetched, at least one cycle in advance. We
avoid accessing BTB during such cycles.

We show that, by using BLCP, it is possible to reduce BTB power
dissipation by 32% while paying a negligible performance cost
(average: 0.2%).

Categories and Subject Descriptors
C.1.1 [Processor Architectures]: Single Data Stream
Architectures

General Terms
Design, Measurement, Performance.

Keywords
Branch Target Buffer, Embedded Processors, Power-Aware
Architectures, Low-Power Design.

1. INTRODUCTION
The goal of this work is to reduce branch target buffer (BTB)
energy consumption without harming accuracy and hence overall
performance. BTB is a major energy consuming structure in the
processor and is often used by branch predictors for target address
prediction.

To find the branch target address as soon as possible, at fetch,
modern embedded processors (e.g., Intel�s XScale) [4]) access
BTB every cycle and for all fetched instructions. While this
results in early identification of the target address (for possibly
branch instructions), it is inefficient as only a small percentage of
these accesses result in predicting the target address. This is due
to the fact that only a fraction of instructions are branch
instructions. Nonetheless, in order to avoid extra delay, modern

processors access BTB for all instructions. This aggressive
approach, quite often, results in power dissipation without
contributing to performance.

One possible approach to avoid extra BTB accesses for non-
branch instructions is to use a pre-decoder to separate branch and
non-branch instructions. The problem with this approach is that it
can result in extra delay. As clock rates increase, wire delay will
impact large structures such as the branch predictor [7].
 Moreover, previous study shows that delay in the predictor
significantly erodes performance. Therefore, any design choice
resulting in increasing predictor delay, is not a good choice [8].

We introduce Branchless Cycle Prediction or BLCP, a power
efficient technique that exploits instruction history to reduce
predictor energy. We find occasions where no branch is among
the instructions fetched. We avoid accessing the BTB during such
occasions. To eliminate any timing overhead, we use fetch
history to identify branchless cycles, at least one cycle in advance.

We use a subset of the MiBench benchmarks [3] and WATTCH
[6] and show that with an average performance penalty of 0.2%,
BLCP can reduce BTB energy consumption by 32%.

It is important to note that since BLCP provides information
regarding instructions fetched in future cycles, it does not increase
overall prediction latency.

The rest of this paper is organized as follows. In Section 2 we
discuss our motivation. In Section 3 we introduce BLCP and
present the details. In Section 4 we discuss methodology and
results. We study how BLCP impacts performance and energy
consumption. In Section 5 we review related work. Finally, in
Section 6 we offer our concluding remarks.

2. MOTIVATION
Embedded processors often perform under resource constrains. It
is due to such restrictions that designers use simple in-order
architectures in embedded processors. As such, fetching a small
number of instructions every cycle provides enough work to keep
the pipeline busy [4].

Consistent with previous study [3], our study shows that
embedded applications may have branch frequency anywhere
from 5% to 30%. Considering the fact that modern embedded
processors fetch very few instructions each cycle, chances are,
quite often, there is no branch instruction among those fetched.
We refer to such cycles as branchless cycles (or BLC). A branch
cycle (or BC) is a fetch cycle where there is at least one branch
instruction among those fetched.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC�06, April, 23-27, 2006, Dijon, France.
Copyright 2006 ACM 1-59593-108-2/06/0004�$5.00.

Figure 1. BTB�s energy consumption share in the branch
predictor unit. Bars from left to right report for the following
configurations (BTB size/bimodal predictor size): 128 entry
BTB and bimodal predictor, a 256 entry BTB, 128-entry
bimodal, 256-entry BTB and bimodal predictor, 512-entry
BTB, 128-entry bimodal predictor and a 512-entry BTB and
bimodal predictor.

While currently exploited branch predictors are already
consuming considerable energy [11], their consumption is
expected to grow as embedded processors seek higher
performance and exploit more resources. A considerable share of
predictor energy is consumed by the BTB. In Figure 1 we report
the percentage of predictor energy consumed by the BTB in a
processor similar to Intel XScale as measured by Wattch. We
report for different predictor configurations/sizes to cover both
currently used predictors and those likely to be used in future. As
presented the BTB is a major contributor to the overall predictor
energy consumption.

Modern embedded processors use BTB to maintain steady
instruction flow in the pipeline front-end [4]. The processor
accesses the BTB to find the target address of the next instruction,
possibly a branch. Unfortunately accessing BTB every cycle is not

power efficient. While only taken branch instructions benefit from
accessing the BTB, the BTB structure is accessed for every
instruction. These extra accesses result in power dissipation
without contributing to performance. The key motivating
observation for this work is that by identifying occasions where
accessing the BTB does not contribute to performance we can
avoid these extra accesses. This will reduce power dissipation
without harming performance.

Table 1. The subset of MiBench benchmarks studied in
this work and their BLC frequency.

Program BLC Program BLC

Blowfish Encode 87% Blowfish Decode 87%

CRC 80% Dijkstra 82%

D Jpeg 94% C Jpeg 85%

GSM Toast 94% Lame 92%

Rijndael Encode 94% SHA 93%

String Search 78% Susan Smoothing 92%

To investigate possible power reduction opportunities we report
how often BLCs occur in each benchmark. Table 1 reports the
percentage of BLCs for a representative subset of MiBench
benchmarks [3] used in our study. On average, 88% of cycles are
BLCs. In other words, 88% of the time, we could avoid accessing
the BTB without losing performance.

Quite often a number of consecutive cycles may be branchless.
We refer to these periods as branchless intervals. To provide
better insight in Figure 2 we report how often different branchless
intervals occur. As reported, about 90% branchless intervals take
less than 10 cycles.

Figure 2. BLC interval frequency.

BLC Interval Distribution

3.77%

0.89% 1.55%2.41%

9.02%

7.10%

9.39%

26.84%

7.77%

19.90%

11.37%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

1 2 3 4 5 6 7 8 9 10 10+

Dist. (cycles)

BTB energy consumption

94.92%

97.43%

96.13% 95.75%

97.75%

92.0%

93.0%

94.0%

95.0%

96.0%

97.0%

98.0%

99.0%

128/128 256/128 256/256 512/128 512/512

3. BRANCHLESS CYCLE PREDICTOR
(BLCP)

We conclude from the previous section that there is an
opportunity in the embedded space to reduce BTB energy
consumption by avoiding unnecessary BTB accesses. In this
section we propose a simple, highly accurate and power efficient
predictor to identify such accesses. By identifying a BLC
accurately and at least one cycle in advance, we avoid
unnecessary BTB accesses. Depending on the number of
instructions fetched during the predicted BLC, we avoid a number
of unnecessary BTB accesses. Figure 3 shows our proposed BLC
predictor architecture. We refer to our BLC predictor and the
BLC-filter.

Figure 3. BLC-Filter architecture.

The BLC-filter is a history-based predictor which consists of two
major parts: a small Global History Shift Register (GHR) and a
Prediction History Table (PHT). The PHT size is decided by the
GHR size. GHR is used to record the history of BCs and BLCs.
Throughout this paper we refer to the length of this register as
GHR-size. The bigger the GHR-size is, the more we know about
past history.

BLC prediction is done every cycle. GHR records the most recent
branch or branchless cycles. We represent every BLC in GHR
with a zero and every BC with a one. The GHR value is used to
access an entry in the PHT. Every PHT-entry has a saturating
counter with the saturating value of Sat.

We probe the predictor every cycle. If the counter associated with
the most recent GHR value is saturated we assume that the
following cycle will be a BLC and avoid accessing the BTB (see
Figure 4(a)).

We update BLC-filter every cycle and as soon as we know
whether there has been a branch among the instructions fetched in

the most recent fetch cycle. A BC results in updating the GHR
with a one, where a BLC results in shifting in a zero in the GHR.
We use the GHR to access the PHT entry to update. We
increment the associated PHT counter if the latest group of
fetched instructions does not include any branches. We reset the
associated counter if there is at least one branch among those
fetched.

Table 2. Simulated processor configuration
Processor Core

Instruction Window
Issue Fetch
Issue Width

Miss Pred. Penalty
Fetch Buffer
Functional Units

RUU= 8; LSQ=8
1 Instruction per Cycle;
2 Instruction per Cycle;
1 integer, 1 FP
6 cycle
8 entries
1 Int ALU, 1 Int mult/div
1 FP ALU, 1 FP mlt/div, 1 mem prt

Memory Hierarchy
L1 D-cache Size
L1 I-cache Size
L1 latency
L2
Memory latency
D-TLB/I-TLB Size

32 KB, 32-way, 32B blocks, wr bk
32 KB, 32-way, 32B blocks, wr bk
1 cycle
N/A
32 cycles
128/128-entry, fully assoc.,
30-cycle miss

Branch Prediction
BTB
Direction Predictor
Return-address-stack

128-entry, 1-way
bimodal predictor, 128 entries
N/A

As presented in Figure 4(b), we update the BLC-filter every cycle.
One way to maintain the filter as accurate as possible is to use
decode-based information. Accordingly, at decode we check if
there has been any branch instruction among those decoded. We
update the predictor�s entry associated with the history at the time
the branch instruction was fetched. Finding the entry is done by
shifting left the most recent history by 2 bits (our fetch latency is
2 cycles).

4. METHODOLOGY AND RESULTS
We used programs from the MiBench embedded benchmark suite
compiled for the Intel Xscale-like architecture simulated by the
Simplescalar v3.0 tool set [9]. Table 1 reports the subset of
MiBench benchmarks we used in our study. We used GNU�s gcc
compiler. We simulated the complete benchmark or half a billion
instructions, whichever comes earlier. We detail the base
processor model in table 2.

Figure 4. (a) Branchless cycle predictor lookup. (b) Branchless cycle predictor update.

To evaluate our technique, we used a modified version of Wattch
tool set [6]. We report both accuracy (i.e., how often we
accurately predict a BLC) and coverage (i.e., what percentage of
BLCs are accurately identified).

Provided that a sufficient number of BLCs are accurately
identified, BLCP can potentially reduce BTB energy
consumption. However, it introduces extra energy overhead and
can increase overall energy if the necessary behavior is not there.

We used CACTI [10] to estimate the energy overhead associated
with BLCP. In Figure 1 we report the relative energy consumed
per access by an 8-entry BLCP filter using 6 bit counters and
other structures used by the branch predictor in Table 3. Numbers
reflect the energy consumed by each structure compared to the
energy consumed by a branch predictor equipped with 128-entry
bimodal predictor and a direct-mapped 128-entry BTB. As
reported the overhead of the 8-entry BLCP filter is far less than
the energy consumed by the BTB. Nonetheless, we take into
account this overhead in our study.

Table 3: Energy consumed per access by the branch
predictor units and the BLCP-filter.

Modeled Unit Size Percentage

BLCP 8 x 6 1.61%

BTB 128 x 1-way 94.92%

bimodal dir.
Predictor

128 entries
2- bits 3.47%

4.1 Accuracy and Coverage
In Figure 5 we report prediction accuracy and coverage for BLCP.
In 5(a) we report average accuracy for different GHR sizes (i.e., 1
to 6) and saturating counters (i.e., 2 to 6-bit counters). As reported
we predict BLC cycles with an accuracy varying from 91% to
99.6% for different BLCP-filter configurations.

Note that mistaking a BLC for a BC does not harm performance
as it only results in unnecessary BTB access. However,
mispredicting a BC as a BLC, can result in late target address
identification and comes with an extra cycle penalty in our study.

In 5(b) we report what percentage of BLCs is identified. We
identify between 25% and 81 % of BLCs for different BLCP
configurations. We conclude from Figure 5 that with a fixed GHR
size, increasing saturation threshold will generally increase
accuracy but reduce coverage. With a fixed counter size,
increasing the GHR size does not always improve accuracy and
coverage. While a small GHR size results in recording very little
history, larger GHR sizes may result in mapping small repeating
patterns to different BLCP-filter entries which may result in a
longer BLCP learning period.

4.2 Energy and Performance
We report BTB energy reduction and processor performance loss
in Figure 6. We use the same set of parameters used in Figure 5.
BTB energy reduction varies between 21% and 75% for different
BLCP-filter configurations. For a fixed GHR-size larger
saturation threshold comes with lower performance loss but at the
expense of reduced energy savings. For a fixed counter size,
increasing the GHR-size almost always improves BTB energy
reduction. Note that small number of saturating bits (e.g., 2-bit
counters) results in high performance slowdown. Larger GHR

sizes also come with high overhead as they require larger PHT
tables. We find a BLC-filter with a GHR-size of 3 which uses 6-
bit saturating counters the most efficient one. Using this
configuration, on average, we reduce BTB energy consumption by
32% with an average performance cost of 0.2%.

(a)
AVG Accuracy

84%

86%

88%

90%

92%

94%

96%

98%

100%

1 2 3 4 5 6GHR-size

2 bits
3 bits
4 bits
5 bits
6 bits

(b)
AVG Coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 3 4 5 6GHR-size

2 bits
3 bits
4 bits
5 bits
6 bits

Figure 5. Average accuracy and coverage achieved for
different BLC-filter configurations and for the MiBench
benchmarks studied here. For each GHR-size (x-axis) bars
from left to right report for 2 to 6-bit saturating counters.

Note that we observe small performance improvement for GHR-
size of 1 and 6-bit saturating counters. Our study shows that some
applications achieve better performance as the result of better
prediction for indirect jump instructions.

5. RELATED WORK
Petrov and Orailoglu introduced static techniques to reduce BTB
energy consumption in embedded processors [2]. BLCP is
different as it uses run-time information.

Other techniques suggested to reduce BTB power dissipation
include banking and prediction probe detector (PPD) [5]. Banking
reduces the active portion of the predictor. Predictor Probe
Detection (PPD) [5] reduces branch predictor energy
consumption. PPD aims at reducing the power dissipated during
predictor lookups. PPD identifies when a cache line has no
conditional branches so that a lookup in the predictor buffer can
be avoided. Also, it identifies when a cache line has no control-

Figure 6. Average performance slowdown and BTB energy
reduction for different BLC-filter configurations and for the
MiBench benchmarks studied here. For each GHR-size (x-
axis) bars from left to right report for 2 to 6-bit saturating
counters.

flow instructions at all, so that the BTB lookup can be eliminated.
Our predictor can be used on top of banking to further reduce
power dissipation. Our predictor is different from PPD as it
predicts application behavior in future cycles.

Chung and Park proposed early branch predictor accessing to
predict BTB access [1]. There method required modifying the
branch predictor. Our method is independent of the branch
predictor implementation and uses past behavior to make
predictions.

6. CONCLUSION
In this work we introduced BLCP, a power efficient method to
identify and avoid unnecessary BTB accesses. BLCP relies on a
small filter referred to as the BLC-filter to record and use
instruction fetch history. BLCP uses the recorded information to
identify cycles where there is no instruction among those fetched.

We studied how variations in the BLC-filter configuration impacts
energy and performance. By using a small low-overhead structure

we reduced BTB energy consumption considerably with
negligible performance cost. BLCP does not impact predictor

delay as it stops unnecessary accesses occurring in future cycles.

7. ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and Engineering
Research Council of Canada, Discovery Grants Program and
Canada Foundation of Innovation, New Opportunities Fund.
8. REFERENCE
[1] Sung Woo Chung, Sung-Bae Park, �A Low Power Branch

Predictor to Selectively Access the BTB�, Asia-Pacific
Computer Systems Arch. Conference, pp 374-384, September
2004.

[2] Peter Petrov and Alex Orailoglu. �Low-Power Branch Target
Buffer for Application-Specific Embedded Processors'�
Euromicro Symposium on Digital System Design (DSD), pp.
158-165, September 2003.

[3] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst,
Todd M. Austin, Trevor Mudge, Richard B. Brown,
�MiBench: A free, commercially representative embedded
benchmark suite�, IEEE 4th Annual Workshop on Workload
Characterization, Austin, TX, December 2001

[4] Sudarshan K. Srinivasan, Miroslav N. Velev, �Formal
Verification of an Intel XScale Processor Model with
Scoreboarding, Specialized Execution Pipelines, and Impress
Data-Memory Exceptions�, MEMOCODE 2003, pp. 65-74

[5] Dharmesh Parikh, Kevin Skadron, Yan Zhang, Mircea R.
Stan, �Power-Aware Branch Prediction: Characterization and
Design�, IEEE Transaction on Computers, Vol. 53,No. 2, pp.
168-186, February 2004.

[6] D. Brooks, V. Tiwari, and M. Martonosi, �Wattch: A frame
work for architectural power analysis and optimizations,� in
Proc. 27th Int. Symp. Computer Architecture, 2000, pp. 83�
94.

[7] V Agarwal, M.S. Hrishikesh, D. Burger, �Clock rate versus
ipc: The end of the road for conventional
microarchitectures�, ISCA 27, May 2000

[8] Daniel A. Jimenez, Stephen W. Keckler, and Calvin Lin.
�The impact of delay on the design of branch predictors�, In
Proceedings of the 33rd Annual Int�l Symposium on
Microarchitecture, Nov 2000.

[9] D. C. Burger and T. M. Austin. �The SimpleScalar tool
set,version 2.0.�, Computer Architecture News, 25(3):13�25,
Jun. 1997.

[10] S. Wilton and N. Jouppi. �An Enhanced Access and Cycle
Time Model for On-chip Caches.� In WRL Research Report
93/5, DEC Western Research Laboratory, 1994.

[11] Michele Co, Dee A.B. Weikle, and Kevin Skadron, �A
Break-Even Formulation for Evaluating Branch Predictor
Energy Efficiency�, Workshop on Complexity-Effective
Design (WCED) in conjunction with the 32nd Annual
ACM/IEEE International Symposium on Computer
Architecture, 2005

(a)
Performance Slowdown

-1.00%
0.00%
1.00%
2.00%
3.00%
4.00%
5.00%
6.00%
7.00%
8.00%
9.00%

10.00%
11.00%
12.00%

1 2 3 4 5 6
GHR-Size

2 bits
3 bits
4 bits
5 bits
6 bits

(b)
AVG BTB Energy reduction

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

1 2 3 4 5 6GHR-Size

2 bits
3 bits
4 bits
5 bits
6 bits

