
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CF’05, May 4-6, 2005, Ischia, Italy.
Copyright 2005 ACM 1-59593-018-3/05/0005…$5.00.

Balancing Clustering-Induced Stalls to Improve
Performance in Clustered Processors

Amirali Baniasadi
ECE Department, University of Victoria

3800 Finnerty Rd.
Victoria, BC, V8P 5C2, Canada

amirali@ece.uvic.ca

ABSTRACT
Clustered processors lose performance as a result of clustering-
induced stalls. Such stalls are the result of distributed resources
and cluster communication delays. Our performance analysis of
clustered architectures shows how previously proposed methods
reduce one group of stalls at the expense of the other. Moreover,
we extend previous work and present a new class of cluster
assignment heuristics for high-performance clustered processors.
We affirm that it is possible to improve performance in clustered
processors by taking a more balanced approach towards clustering-
induced stalls. Our techniques rely on estimating and predicting
resource utilization for clustered processors. We show that, on
average, our best technique reduces the performance gap between
a dual-clustered and a centralized processor down to 6.9% and
9.2% for 8-way and 6-way processors and for a representative
subset of SPEC2K benchmarks.

Categories and Subject Descriptors
C.1.1 [Single Data Stream Architectures] Pipeline processors.

General Terms
Design

Keywords
Clustered Processors, Clustering Stalls

1. INTRODUCTION
Exploiting instruction-level parallelism has facilitated rapid
performance improvements. One possible way to maintain the
steady improvement is to design and develop more complex
processors capable of executing more instructions every cycle.
Finding more independent instructions may call for searching a
larger instruction pool which in turn requires a larger
instruction window. However, previous studies show that
scaling existing centralized windows may not be possible
without adversely affecting clock cycle and consequently
performance[1,2,3].

One way to improve ILP while maintaining a fast clock is
clustering. In clustering, which is used by designs such as
ALPHA 21264[6], multiple smaller instruction windows
replace a larger window. As a result, clustered processors give
up scheduling flexibility to achieve lower complexity[1] and
faster clock. This results in stalling instructions or clustering-
induced stalls. Such stalls are either the result of inefficient
resource distribution (e.g., issue bandwidth) or of inter-cluster
communication latencies.

In contrast to a centralized configuration, in clustered
processors, each cluster is limited to only a fraction of the total
issue slots per cycle (for example, each of the dual clusters can
issue only 4 instructions of the total of 8 per cycle).
Accordingly, it is possible for an otherwise ready-to-issue
instruction to get stalled in one cluster while free issue slots
exist in other clusters. Moreover, since we assume that it takes
additional cycles to propagate results across clusters, it is
possible for an instruction to get stalled waiting for data that is
currently available at another cluster.
In this work we make two contributions:

• First, we perform a detailed analysis of clustered
architecture and study where and how performance is lost.
We show how previously suggested methods fail to take
into account all factors impacting performance.

• Second, we use our findings in the first part to maximize
performance through appropriate distribution methods.
We show that by taking a more balanced approach it is
possible to close the average performance gap between a
non-clustered processor and a dual-clustered one by 24%
(from 9.1% to 6.9%) for an 8-way and by 22% (from
11.8% to 9.2%) for a 6-way processor respectively.

The rest of the paper is as follows. In section 2 we briefly
discuss a number of trade-offs relevant to the design of
instruction distribution methods and discuss our model of a
dual clustered processor. In section 3 we present our
heuristics. In section 4 we report methodology and results. In
section 5 we present related work. Finally, in section 6 we
conclude and offer closing remarks.

2. Distribution Trade-Offs
In this Section, we present a model of a class of dual cluster
microarchitectures and discuss the trade-offs involved in
developing effective instruction distribution methods for them.
Throughout this paper we assume the model of a uniform dual
cluster organization shown in figure 1. The front-end delivers
instructions which are then dispatched to the two clusters via a
distribution mechanism. Previous work [1,5,11,12,14] has
introduced several distribution mechanisms. Reportedly, this
assignment process can dramatically impact performance.

21

Each cluster is capable of accepting up to CIW instructions per
cycle from the distribution mechanism. We assume that once
an instruction is assigned to a cluster the decision is final (an
alternative would be to decouple execution resources and
schedulers as done in the dual cluster 21264 [6]). Each cluster
has its own set of functional units including data cache ports.
Dependent instructions can issue back-to-back provided that
they reside in the same cluster. However, propagating results
across clusters incurs an additional delay. Finally, all clusters
are identical.

In this study, we aim at improving performance by introducing
appropriate distribution methods. Note that a perfect and ideal
schedule, while desirable, may practically be impossible.
Alternatively we aim at improving performance by reducing
clustering-induced stalls compared to an equivalent centralized
architecture equipped with the same number of resources.
Clustering-induced stalls are either issue-slot related or
communication latency related. That is, they are either the
result of limited per cluster issue bandwidth (and in general,
resource distribution including functional units) or of inter-
cluster communication latencies.

As a result of resource distribution in our clustered
architectures each cluster is limited to only a fraction of the
total issue slots per cycle (for example, each of the two clusters
can issue only 4 instructions of the total of 8 per cycle).
Accordingly, it is possible for an otherwise ready-to-issue
instruction to get stalled in one cluster while free issue slots
exist in other clusters. In this case we incur an issue-slot
related stall. Moreover, since we assume that it takes
additional cycles to propagate results across clusters, it is
possible for an instruction to get stalled waiting for data that is
currently available at another cluster. In this case, we incur a
communication related stall.

3. PERFORMANCE ANALYSIS
In this section, we analyze and provide better insight to
clustered microarchitecture’s performance. How and where
clustered processors lose performance depends on many
factors including the scheduling technique exploited. Previous
work has introduced several scheduling techniques. We take a

closer look at three of the better performing techniques. Later
we will use our findings to improve performance.

The first previously proposed method studied here is Firstfit
(FF) [14]. Instructions are assigned to the same cluster as long
as the cluster has space. Once a cluster is full, instructions are
assigned to the next cluster. It is important to note that FF
makes no explicit attempt to minimize neither communication-
nor issue-induced stalls. Nevertheless, dependent instructions
tend to be close in the instruction stream. This often results in
reducing the communication-stalls.

The second previously proposed method is Advanced Register
Mapping Based Steering (ARMBS)[5]. This method aims at
assigning dependent instructions to the same cluster as their
parents as long as there is reasonable workload balancing. If an
instruction has multiple parents that are assigned to different
clusters we pick the cluster holding the least number of
instructions. If there is a significant imbalance, instructions are
assigned to the least balanced cluster.

The third previously proposed method is the modulo n
(MODn)[14]. In this method, instructions are assigned to
clusters in a modulo n fashion. However while the best modulo
value may vary per benchmark, previous study shows that[14],
three is the best comprise for this class of methods. In the
MOD3 method, and for a dual-cluster processor, the first three
instructions are assigned to the first cluster, the second three to
the second cluster, the third group again to the first cluster and
so on.

To better understand where performance is lost, in figure 1, we
report the fraction of committed instructions that are delayed
due to clustering for each method in 6-way (part a) and 8-way
(part b) dual-cluster processors. Bars from left to right report
for FF, ARMBS and MOD3 for a representative subset of
SPEC 2000 benchmarks studied here (abbreviations are shown
under the “Ab.” column in table 1.) We report both the
percentage of instructions waiting for a result from a different
cluster (lower bar) and those delayed since issue-bandwidth
was unavailable in their cluster while available elsewhere
(upper bar).

Of particular concern is the relative fractions of instructions
delayed due to communication or issued-bandwidth. First, we
discuss the 6-way processor. As reported, for the 6-way
machine, for FF, most instructions are delayed due to
insufficient issue-bandwidth (upper bar). Meantime, not many
instructions are delayed due to cluster communication. This is
the result of the fact that dependent instructions tend to appear
close in the code sequence. However, instructions that appear
close in the instruction stream are also more likely to issue
about the same time. Consequently, for FF, a large number of
instructions are stalled due to per-cluster issue restriction. For
ARMBS and MOD3, however, we observe a different kind of
behavior, i.e., most instructions are delayed due to cluster
communication (lower bar).

In general, in the 8-way processor (reported in part b) stall
distribution is similar to that observed in the 6-way processor.
Again, FF reduces the communication-stalls effectively but at
the expense of high percentage of issue-stalls. Also, ARMBS
and MOD3 reduce issue-stalls more effectively but they
increase the number of communication-stalls.

Note that ARMBS reduces the issue-stalls as dependent
instructions cannot issue at the same cycle. Therefore the issue
width is utilized more uniformly. MOD3 also benefits from a

Figure 1: The dual cluster processor model used in this work.

Front End

cluster
1

cluster
2

 Distribution Dispatch

IW

CIW

22

relatively balanced work load as it switches between the
clusters regularly.

Also note that, in general, the percentage of issue-stalls is
lower for the 8-way processor compared to the 6-way
processor. This is caused by the larger number of issue slots
available to each cluster in the 8-way machine.

We conclude from figure 1 that state-of-the-art methods have
an unbalanced approach. In FF, when assigning instruction
streams to the same cluster we benefit from lower
communication at the expense of lower resource utilization. In
ARMBS and MOD3 we benefit from higher resource
utilization at the expense of higher communication.

While clustered architectures lose performance as the result of
the stalls, not always stall frequency indicates performance
loss. In fact, it is not strictly true that an effective distribution
mechanism should minimize all stalls. To be precise, it is only
those stalls that impact the critical computation path that are
really important. It may be possible to tolerate some other
stalls. Therefore, as we report later, an accurate evaluation of
scheduling techniques should rely on performance
measurement.

4. SCHEDULING HEURISTICS
Our goal is to improve processor performance by taking a more
balanced approach and by reducing both kind of clustering-
induced stalls simultaneously. Our work relies on estimating
and predicting resource utilization in each cluster.

The fact that FF reduces so many communication-stalls
encourages assigning consecutive instructions to the same
cluster. However, to avoid increasing the number of issue-
stalls, we need to assure that not many instructions with the
same issue-time are assigned to the same cluster. To do so we
aim at assigning as many as consecutive instructions to the
same cluster as long as per-cluster issue bandwidth is not
overutilized. Key to the success of our techniques is accurate
estimation of issue bandwidth utilization.
In this work we introduce two heuristics. In both we aim at
assigning maximum number of consecutive instructions to the
same cluster as long as we are confident that the issue-
bandwidth is not saturated. In the first method we use current
issue-bandwidth utilization to do so. In the second method we
predict future issue-bandwidth usage by estimating instruction
issue time.

4.1 Issue Slot Utilization (ISU)
Initially, in this technique we assign consecutive instructions
to the first cluster. Meantime, we monitor the number of
instructions issuing in the cluster. We continue assigning
instructions to the cluster so long the cluster issue-width is not
entirely used. Once, and as soon as the issue width is fully
utilized, we switch to the next cluster. We repeat the same
process in the new cluster, i.e., we keep assigning instructions
to the same cluster as long as the issue width is underutilized
and switch to the next cluster once the condition is no longer
true.
Our goal is to switch to the new cluster only if resources are
already fully utilized in the current cluster. However, since
there is a gap between the time that instructions are assigned to
different clusters, i.e., the dispatch time, and the time they
issue, we may witness resource overutilization occasionally for
ISU during this time period. To address this issue we introduce
the prediction-based technique discussed in the next section.

4.2 Issue Slot Utilization Prediction (ISP)
If we had an oracle and knew in advance when an instruction
will issue, then a heuristic for cluster assignment would be as
follows: as instructions are being dispatched and assigned to
each cluster, keep a record of the number of instructions
issuing at future cycles in each cluster. Later on, and before
assigning instructions to each cluster, use the instruction issue
time to check if at the time there will be issue slots available in
the cluster. In case all issue slots will be taken at the time in
the cluster, check the next cluster.
Of course, we cannot have such an oracle. Instead, we estimate
the issue time of instructions as they are dispatched. This is
straightforward: we associate a completion time with every
register. As instructions are dispatched we predict how long
they will take to execute once issued (i.e., we “predict” the
latency of the associated functional unit). We also obtain the
maximum completion time for its source operands. Adding the
two we obtain an estimate for when this instruction will
complete. Later for each instruction we check the completion
time for its parents. An instruction issue time is estimated to be
the maximum of the two parents’ completion time. In case both
parents have completed at the time of instruction dispatch, we
assume that the instruction will immediately issue once
dispatch is over.
Once the issue-time is estimated for an instruction we check to
find which cluster has available issue slots at the time. If all

Figure 2: Percentage of committed instructions that are delayed
due to cluster communication (lower bar) and per-cluster issue
bandwidth restriction (upper bar) for a) 6-way and b) 8-way
dual-cluster processors. Bars from left to right report for FF,
ARMBS and MOD3 for the benchmarks studied here.
Abbreviations are shown under the Ab. column in table 1.

0%
10%
20%
30%
40%
50%
60%
70%
80%

0%

10%

20%

30%

40%

50%

60%

70%

80%

(a)

(b)

23

clusters will be out of issue slots at the predicted time, we pick
the cluster holding the fewest number of instructions. Simply
put, we continue assigning instructions to the same cluster as
long as the instructions have issue slots available at the time
they will issue.

To implement this we store the number of instructions
predicted to issue at every cycle in a 1024-entry circular
buffer. This allows us to store information for a total of 1024
consecutive cycles. Each entry holds two counters, one per
cluster. To decide the buffer size we measured the average
time an instruction stays in the pipeline and the average
number of occupied reservation stations for all benchmarks.
We used the product of the two numbers divided by the
number of issue slots to approximate the number of buffer
entries needed. We have observed that 1024 entries provide
adequate space to store the required information across all
benchmarks.

 At the event of branch mispredictions we squash this buffer
and re-fill it as instructions arrive. This is done to avoid wrong
path instructions impacting our future decisions.

5. METHODOLOGY AND RESULTS
In this section, we present our analysis of our methods. We
report performance results for 6- and 8-way dual-cluster
machines. In all cases our base case is a centralized non-
clustered machine with the same number of resources. We also
report performance for previously suggested methods, i.e., FF,
ARMBS and MOD3, and show that our techniques improve
performance over them. To provide better insight we also
report stall distribution.

We used programs from the SPEC’2k suite compiled for the
MIPS-like architecture used by the Simplescalar v3.0
simulation tool set[13]. We used GNU’s gcc compiler (flags: -
O2 –funroll-loops –finline-functions). In the interest of space,
we use the abbreviations listed under the “Ab.” column in table
1 to refer to these benchmarks. We also report the IPC for the
benchmarks studied here for 8-way and 6-way non-clustered
processors. The benchmark set studied here incudes different
programs including high and low IPC and those limited by
memory, branch misprediction, etc. We simulated 1B of the
instructions after skipping the initialization. The main
architectural parameters of our clustered processor models are
shown in table 2.

We simulate high-performance processor models which are
motivated by the need to run high IPC codes. Nevertheless,
rapid execution of low-IPC code is still necessary in such
machines. Therefore, we also include low-IPC programs in the
benchmark set.

5.1 Performance
Clustering is used in high performance designs in order to
achieve higher operating frequency. Nevertheless, we need to
know how much faster the clock rate of the clustered
architecture has to be (vs. the centralized architecture’s clock
rate) to result in higher performance. Accordingly, in this
section we report performance slowdowns compared to a non-
clustered architecture assuming the same clock frequency.
Moreover, we assume that the non-clustered architecture has
the same overall resources. These slowdowns can serve as
bounds on how much faster the clock cycle of the clustered
implementation must be.

Figure 3 reports performance. The base case configurations are
presented in table 2. In 3(a) and 3(b) we compare 6-way and 8-
way dual-cluster machines with non-clustered centralized
processors equipped with the same execution bandwidth. We
also include results for FF, ARMBS and MOD3 for the sake of
comparison. Bars from left to right show relative performance
for FF, ARMBS, MOD3, ISU and ISP methods. As reported in
part (a), for the dual-cluster 6-way machine, on average,
performance slowdown is 15.3%, 11.7%, 11%, 9.9% and 9.2%
for FF, ARMBS, MOD3, ISU and ISP respectively. For the 8-
way dual-cluster machine (part b), average performance
slowdown is 9.1%, 10.7%, 10%, 7.5% and 6.9% for FF,
ARMBS, MOD3, ISU and ISP respectively.

 We conclude from figure 3 that our methods improve
performance over previously suggested methods. Moreover,
figures 3(a) and 3(b) show that, for the benchmarks studied
here, both 6-way and 8-way processors, while having minor
differences, follow a similar performance trend. On average,
ISP outperforms the rest for both processors.

Table 1: Benchmarks IPC for 8-way and 6-way non-
clustered processors.

Benchmark Ab. IPC(8-way) IPC(6-way)

ammp amm 0.63 0.62
compress cmp 1.95 1.85
gcc gcc 1.60 1.51
mcf mcf 1.42 1.36
mesa mes 4.02 3.57
parser prs 1.73 1.63
vpr vpr 2.06 1.89
wolf wlf 1.33 1.27

Table 2: Base configuration details.

Base Processor Configuration
 Branch Predic-
tor

32K GShare+32K bi-modal w/ 32K selector

Scheduler 128 entries, RUU-like
Fetch Unit 8-way: Up to 8 instr. 6-way: Up to 6 instr. per

cycle. Max 2 branches per cycle, 64-entry
Fetch Buffer

Load/Store
Queue

8-way:64 entries,4 loads/stores per cycle
6-way:64 entries 3 loads/stores per cycle

Issue, Decode,
Commit Band-
width

any 8/6 instructions / cycle per cluster in 8-
way/6-way processors. Bandwidth distributed
uniformly among clusters.

Functional l
Unit Latencies

same as MIPS R10000

L1 - Instruction
/Data Caches

64K, 4-way SA, 32-byte blocks, 3 cycle hit
latency

Unified L2 256K, 4-way SA, 64-byte blocks, 16-cycle hit
latency

Main Memory Infinite, 100 cycles

24

5.2 Stall Distribution
As explained earlier one of our goals in this study is to provide
a balanced approach which aims at reducing both kind of stalls
simultaneously. To evaluate our success, in figures 4(a) and
4(b) we report stall distribution for the dual-cluster 6- and 8-
way processors. We include stall distribution for FF, ARMBS
and MOD3 for the sake of comparison. Again, we report both
the percentage of instructions waiting for a result from a
different cluster (lower bar) and those delayed since issue-
bandwidth was unavailable in their cluster while available
elsewhere (upper bar). Consequently, the entire bar represents
the percentage of instructions delayed to clustering. An
obvious conclusion from figure 4 is that stall distribution is
more balanced for ISU and ISP compared to previously
proposed methods. Also, as the entire bar represents, the total
number of stalled instructions for ISU and ISP is less than both
ARMBS and MOD3 for both the 6- and 8-way processor.We
conclude from figure 4 that, as affirmed by figure 3, better
performance could be achieved by aiming at minimizing both
kind of stalls and by using resource utilization estimation.

5.3 Discussion
We conclude from figures 3 and 4 that our methods improve
performance over previously suggested methods by effectively
reducing both issue- and communication-stalls. However,
based on applications response to the techniques discussed
here, we realize that not all application perform best under ISP

or ISU. In other words, there are applications which either
perform best under any of the previously suggested methods or
previously suggested methods offer competitive performance.

Applications that perform best under ISU and ISP, benefit
from effective reduction in both kind of stalls. In this section
we explain why ISP and ISU do not work as effective for some
applications.

As reported in figure 3, in the case of the 8-way processor, for
6 of the 8 benchmarks, i.e., cmp, gcc, prs, vpr, mcf and wlf,
either ISP or ISU outperform previous techniques. However,
ISP and ISU do not improve performance over all previously
suggested methods for amm and mes. While FF offers
competitive performance for amm, MOD3 offers competitive
performance for mes.

In the case of the 6-way processor, the only benchmark that
does not perform best under either ISU or ISP is mes. For mes,
MOD3 performs best.

First we discuss why FF does so well for amm in the 8-way
processor. Later we explain why mes performs so well under
MOD3 for both 8- and 6-way processors.

 Amm has the lowest IPC as reported in table 1. Consequently,
it has the lowest resource utilization among all benchmarks
[15]. Accordingly, there is not much room for optimizations
aiming at efficient usage of distributed issue-slots. ISU and
ISP aim at avoiding occasions where resources are

Figure 3: Performance slowdown for a)6-way b)8-way dual-
cluster processors compared to a centralized processor with the
same number of resources. Bars from left to right report for FF,
ARMBS, MOD3. ISU and ISP. Lower is better.

0%

5%

10%

15%

20%

25%

30%

am
m

cm
p

gc
c

mcf
mes prs vp

r
wlf

AVG

FF DEP MOD3 ISU ISP

0%

5%

10%

15%

20%

25%

30%

am
m

cm
p

gc
c

mcf
mes prs vp

r
wlf

AVG

(a)

(b)

Figure 4: Percentage of committed instructions that are delayed
due to cluster communication (lower bar) and cluster issue
bandwidth restriction (upper bar) for a) 6-way and b) 8-way
dual-cluster processors. Bars from left to right report for FF,
ARMBS, MOD3, ISU and ISP.

0 %

1 0 %

2 0 %

3 0 %

4 0 %

5 0 %

6 0 %

7 0 %

8 0 %

9 0 %

am
m

cm
p

gc
c

m
cf

m
es pr
s

vp
r

w
lf

A
V

G

0%

10%

20%

30%

40%

50%

60%

(a)

(b)

25

underutilized in one cluster while needed in another cluster.
For applications with low resource utilization such occasions
are less likely to happen as we rarely face resource shortage in
any of the clusters. This is specially true for the 8-way
processor which contains higher number of resources
compared to the 6-way processor. Therefore, in the 8-way
processor and for low-IPC applications, a simple method such
as FF may perform well since instructions rarely experience
issue slot saturation. As the 6-way processor has less number
of resources, FF no longer performs as well as it does for the 8-
way processor.

As a result of low resource utilization, amm has the lowest
performance slowdown among all benchmarks. Consistently,
amm shows the least sensitivity to issue-bandwidth (for amm
IPC changes from 0.63 to 0.62 when we change the issue-
width from 8 to 6 as reported in table 1).

Mes, on the other hand, has the highest IPC and sensitivity to
issue-bandwidth among all benchmarks (see table 1.). As a
result, resource utilization is the highest for this benchmark.
Therefore, quite often, issue-slots are fully utilized in both
clusters. Consequently, ISU and ISP are forced to switch
clusters frequently. Accordingly, for mes, we have observed
that average number of consecutive instructions assigned to the
same cluster for our methods could be as low as two
instructions. As a result, the number of communication stalls is
increased. Therefore MOD3 (which switches between the two
clusters less often as average number of consecutive
instructions assigned to the same cluster is 3) performs better.
In other words, for mes, scheduling techniques can rarely
address the resource shortage when there is no free resource
available in any of the clusters. Under such circumstances,
MOD3 outperforms the rest since it minimizes the number of
communication stalls. Recall that as the number of consecutive
instructions assigned to a cluster increases, communication
stalls start to decrease.

5.4 Latency Considerations
The timing overhead associated with ISU should not be an
issue since the information needed to decide about switching
clusters is available and maintained easily by monitoring the
cluster issue width usage. A possible implementation
comprises a per cluster global-AND of the utilized flags of the
cluster’s issue slots and a global current-cluster pointer.

 As for ISP, latency impact could be potentially more critical.
Note that the circular buffer used by ISP is cycle-indexed. As
such, to access this filter, instruction issue time estimation is
needed. the register completion time information required by
this method can be made available via the register renaming
mechanism. The estimated issue time can be computed in
parallel with register renaming. Therefore, through this work
we assume that implementing ISP would not result in
additional latency.

6. RELATED WORK
Numerous studies have investigated partitioning as a way of
scaling over existing, centralized dynamically-scheduled
superscalar architectures. A class of methods aims at
extracting parallelism by making large prediction-based steps
in the dynamic instruction stream, e.g., [4, 7, 8, 9, 10]. Here we
restrict our attention to works that investigated partitioning a
traditional architecture.

Palacharla, Jouppi and Smith studied the delay characteristics
of key processor structures [1]. They demonstrated that it will
not be possible to naively scale existing designs without
adverse effects on clock cycle. They proposed using clustering
as a solution and studied various non-traditional scheduling
mechanisms for dual-clustered architectures (e.g., FIFO-based
schedulers). They also suggested the dependence-based
method. The ARMBS method studied here should be viewed as
a variation of their technique.

Farkas, Chow, Jouppi and Vransevic proposed and studied a
dual-clustered architecture along with a cluster-aware static
scheduling technique [11]. Canal, Parcerisa and González
studied a variety of instruction distribution methods also for a
non-uniform dual-clustered architecture [5].

Fields et al. [12] used a criticality predictor to improve
performance in clustered architectures. They used criticality-
based information and modified the ARMBS method to
introduce “focused instruction steering”. Accordingly, when an
instruction has two non-complete parents, they assign in to the
cluster of the critical predecessor. We simulated their
techniques and compared it to our methods. We do not report
results for this methods since, as both our findings and their
experiments show, performance-wise, their method performs
very similar to the ARMBS method. This is due to the fact that
“focused instruction steering” uses the critical path only to
break ties, which occur in ARMBS infrequently.

Alpha 21264 uses a dual-cluster integer execution unit[6]. In
this processor, the execution integer unit includes four integer
pipelines and two integer register files. The unit is divided to
two clusters each containing two integer pipes and a single
integer register file. The difference between our
microarchitecture and that used by Alpha 21264 is that in the
latter issue queues are not tied to a specific cluster. In other
words, instruction execution clusters (i.e., functional units,
register files and cache ports) and schedulers are decoupled.
Accordingly, an instruction is first assigned to a scheduler and
then, based on input operand availability, is sent to the
appropriate execution cluster. However, Alpha 21264 cannot
schedule each instruction to all four integer execution units.
Rather is statically assigns instructions to two of the fours
pipelines before they enter the queue. Compared with the
model used here, the Alpha approach provides higher
scheduler flexibility at the cost of more complexity. With a
centralized scheduler, clustering hardly reduces the
complexities associated with wakeup/select logic.

Baniasadi and Moshovos [14] investigated instruction
distribution methods for quad-cluster, dynamically-scheduled
superscalar processors. They studied a variety of methods
including FF and Modulo method also presented here. We have
compared our work to their techniques and affirmed that by
exploiting resource utilization performance could be further
improved.

Balasubramonian et al. [16] introduced techniques to match
the hardware to application’s needs dynamically in clustered
architectures. They showed that by gathering program metrics
at periodic intervals it is possible to improve performance for
reconfigurable clustered architectures. In this work we focus
on statically defined architectures.

Aggarwal and Franklin studied the effect of various hardware
parameters on the scalability of different instruction
distributions including MOD3 and FF [17].

26

7. CONCLUSION
We extended previous work on cluster assignment techniques
by introducing a new class of heuristics. In addition, we
investigated how our proposed techniques impact performance
and the distribution and frequency of clustering-induced stalls.
We improved previous methods by estimating application
resource utilization and by reducing both kind of stalls
simultaneously. On average, our best method (which predicts
future resource utilization) reduced the performance gap
between the dual-cluster and non-clustered 8-way and 6-way
processors to 6.9% and 9.2% for a subset of SPEC 2K
benchmarks.

8. REFERENCES
[1] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-

effective superscalar processors. In Proc. International
Symposium on Computer Architecture-24, June 1997.

[2] M. T. Bohr. Interconnect scaling - the real limiter to high
performance ULSI. International Electron Devices Meeting
Technical Digest, 1995.

[3] D. Matzke. Will Physical Scalability Sabotaze Performance
Gains?. In IEEE Computer, 30(9), Sept. 1997.

[4] H. Akkary and M. A. Driscoll. A dynamic multithreading
processor. In Annual International Symposium on
Microarchitecture-31, Nov. 1998.

[5] R. Canal, J. M. Parcerisa, and A. Gonzalez. Dynamic Cluster
Assignment Mechanisms. In Proc. High Performance
Architecture 6, Jan. 2000.

[6] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha
21264 architecture. In Proc. of International Conference on
Computer Design, Dec. 1998.

[7] L. Hammond, M. Willey, and K. Olukotun. Data speculation
support for a chip multiprocessor. In Proc. Symposium on
Architectural Support for Languages and Operating Systems
VIII, Oct. 1998.

[8] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace
processors. In Proc. on Annual International Symposium on
Microarchitecture-30, Dec. 1997.

[9] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In Proc. International Symposium on Computer
Architecture-22, June 1995.

[10] J. G. Steffan and T. Mowry. The potential for using thread-
level data speculation to facilitate automatic parallelization.
In Proc. High Performance Computer Architecture-4, Jan.
1998.

[11] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The
Multicluster Architecture: Reducing Cycle Time Through
Partitioning. In Proc. Annual International Symposium on
Microarchitecture-30, Dec. 1997.

[12] B. Fields, S. Rubin, R. Bodik, Focusing Processor Policies via
Critical-Path Prediction. In Proc. of ISCA-28, July 2001.

[13] D. Burger and T. M. Austin. The SimpleScalar tool set,
version 2.0. Technical Report Computer Sciences Tech.
Report #1342, University of Wisconsin-Madison, June 1997

[14] A. Baniasadi and A. Moshovos. Instruction Distribution
Heuristics for Quad-Cluster, Dynamically-Scheduling
Superscalar Processors. In Proc. of MCRO-33. Dec. 2000

[15] . Buyuktosunoglu, A., Schuster, S., Brooks, D., Bose, P.,
Cook, P. and Albonesi, D., An Adaptive Issue Queue for
Reduced Power at High Performance, Workshop on Power-
Aware Computer Systems, held in conjunction with ASPLOS,
November 2000.

[16] R. Balasubramonian, S. Dwarkadas and D.H. Albonesi.
“Dynamically Managing the Communication-Parallelism
Trade-off in Future Clustered Processors”. In Proc. of ISCA-
30. June 2003.

[17] A. Aggarwal, M. Franklin. “An Empirical Study of
Scalability Aspects of Instruction Distribution Algorithms for
Clustered Processors”. In Proceedings of ISPASS, 2001

27

