
Speculative Supplier Identification for Reducing Power
of Interconnects in Snoopy Cache Coherence Protocols

Ehsan Atoofian Amirali Baniasadi Kaveh Aasaraai
eatoofia@ece.uvic.ca amirali@ece.uvic.ca aasaraai@ece.uvic.ca

Electrical and Computer Engineering Department
University of Victoria
3800 Finnerty Rd.

Victoria, BC, Canada

ABSTRACT
In this work we reduce interconnect power dissipation in
Symmetric Multiprocessors or SMPs. We revisit snoopy cache
coherence protocols and reduce unnecessary interconnect activity
by speculating nodes expected to provide a missing data.

Conventional snoopy cache coherence protocols broadcast
requests to all nodes, reducing the latency of cache to cache
transfer misses at the expense of increasing interconnect power.
We show that it is possible to reduce the associated power
dissipation if such requests are broadcasted selectively and only
to nodes more likely to provide the missing data.

We reduce power as we limit access only to the interconnect
components between the requester and the supplier node. We
evaluate our technique using shared memory applications and
show that it is possible to reduce interconnect power by 21% in a
4-way multiprocessor without compromising performance. This
comes with negligible hardware overhead.

Categories and Subject Descriptors
C.1.2 [Multiple Data Stream Architectures]: Multiprocessors

General Terms
Design, Performance.

Keywords
SMP, Cache Coherence Protocol, Power, Interconnect

1. INTRODUCTION
With ever increasing demand for higher performance, symmetric
multiprocessors (or SMPs) offer an attractive solution as they
achieve higher performance by exploiting thread-level
parallelism.

Multithread workloads which run simultaneously on
multiprocessor nodes communicate through interconnect and
dissipate significant power. As a result, inter-processor
communication has become one of the bottlenecks in
multiprocessor systems consuming a considerable share of the
overall power [1]. Moreover, to improve performance of SMPs, it
is expected that the number of processors in SMPs will increase.
This in turn would result in higher interconnect complexity and
power dissipation in future SMPs.

In a shared memory multiprocessor system, processors access
interconnects to locate and provide data and instructions missing
in local caches [3, 6, 8, 15-17, 20, 21]. Maintaining the correct
state of the local data and responding to requests made by other
processors is the responsibility of local caches. In the event of a
cache miss and in a write-invalidate protocol, snoop requests,
invalidate messages, and block writebacks have to take place.
Such transactions contribute to the overall interconnect power
dissipation.

Previous studies [12, 23] show that processors providing missing
data show very high locality. In other words, if the required data
missing in processor A is provided by processor B’s local cache,
chances are that next time A is missing a data, it will be provided
by B again.

We introduce speculative supplier identification (or simply SSID)
to reduce power of interconnects by sending snoop requests only
to nodes more likely to provide the missing data. As we will
explain in Section 4, we use processors’ ID for speculation which
results in much simpler hardware than that proposed in [12, 16,
23].

In SSID, the requesting node sends the request only to the
previous supplier if there is high confidence that the previous
supplier would provide the missing data. Therefore, we avoid
broadcasting requests to every node. Consequently we reduce
interconnect energy and only access links and switches
connecting the requester and supplier. As a result we eliminate
unnecessary activities not only in interconnects and internal
switches but also in processor tag arrays.

In summary, we make the following contributions:

• We show supplier nodes tend to repeat their behavior. We show
that for the configuration and applications used in this study, two
consecutive cache misses are handled by the same remote node
84% of the time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CF’04, May 7–9, 2007, Ischia, Italy.
Copyright 2007 ACM 978-1-59593-683-7/07/0005...$5.00.

259

• We show that it is possible to identify the supplier processor for
a local cache miss with high accuracy by using a small and simple
predictor. We identify remote suppliers with an average accuracy
up to 96% by exploiting a single entry 4-bit predictor.

• By limiting sending requests only to the predicted remote node,
and while maintaining performance, we reduce link, switch and
tag array energy by 21%, 22% and 17%% in a 4-way
multiprocessor system respectively.

In this work, and as a case study, we use a binary tree
interconnect network, similar to Sun Fireplane [2]. However, our
method can also be used for other alternative non-bus
interconnects (e.g., benes and fat-tree [22]).

The rest of the paper is organized as follows. In Section 2, we
discuss our motivation. In Section 3, we review the related
background. In Section 4, we discuss SSID and explain
implementation details. In Section 5, we discuss methodology and
evaluate SSID. In Section 6, we review related work. Finally, in
Section 7, we offer concluding remarks.

2. MOTIVATION
In Figure 1, we show how an SMP system handles a snoop
request. As presented, N processors sharing a single memory are
connected through a network interconnect. Each processor has
local L1 and L2. Assume that processor P0 is about to read the
elements of a shared array for the first time. Meantime Pn-1 has
already read the array, and all array elements are available in Pn-

1’s local cache. A miss occurs as soon as P0 reads the first array
element. To find the missing data, P0 broadcasts snoop request to
all nodes (Figure 1.a). P1, P2, …, and Pn-1 receive snoop requests
and check their tag arrays. Pn-1 finds the element and sends it to
P0. The system goes through the same procedure every time P0
reads a new (missing) element.

This approach provides fast access but is inefficient from the
energy point of view [6] as not all accesses made to interconnect
components turn out to be useful. All nodes are snooped every
time that an array element is accessed in P0 but only one (Pn-1 in
the example) provides the data.

Figure 1. a) Conventional snooping. b) SSID snooping

In this work, we report how SSID uses supplier locality to address
this design inefficiency and to reduce power in snoop-based
symmetric multiprocessor systems. Supplier locality shows how
often the current supplier of a missing data in a local node is the
same as the previous supplier. In Figure 2 we report supplier

locality for the SPLASH-2 benchmarks used in this study (see
Section 5.1 for methodology). Except for fft, all benchmarks have
a locality higher than 70%. On average, supplier locality is 84%.

SSID relies on this behavior to speculate the remote node
providing the missing data. SSID sends the associated request
only to the speculated node limiting the accesses to the path
between the requester and supplier (Figure 1.b). This reduces
power compared to a conventional snoop-based system where all
nodes are accessed uniformly and regularly.

If SSID fails to accurately identify the supplier then snoop
requests have to be broadcasted to every node, resulting in energy
and latency penalty. This penalty can negate our savings if
mispredictions occur too often. However, as we show later in this
work, savings outweigh the associated overhead.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Cho
les

ky

Fft

Lu
_c

on
t

Lu
_n

co
nt

Oce
an

_co
nt

Rad
ios

ity

Rad
ix

Ray
tra

ce

Water
_Nsq

Water
_Sp

AVG.

Figure 2. Supplier locality for the applications and the
configuration used in this study.

3. BACKGROUND
In Section 3.1, we review a basic write-invalidate snoop protocol.
We discuss the interconnect architecture used in this work in
Section 3.2.

3.1 Write-Invalidate Snoop Protocol
The snoop protocol is used to maintain cache coherence in shared
memory multiprocessors. A cache coherence protocol is a set of
finite state machines that change their states in response to their
local processors’ requests and messages received on the bus. Each
finite state machine is distributed over nodes with each local
cache maintaining the state of its local data. Caches connected to
the bus monitor bus transactions and update the state of their data
and reply to requests when required.

On a cache read miss, the missing processor sends a request to
everyone. All nodes check their tag arrays with the missing
address and send the (valid) data to the requester if found.

In a write-invalidate protocol, upon a write miss, an invalidate
request is sent over the bus. All processors having a copy of the
address invalidate the corresponding entry in their caches.

P0
P1 Pn-2

Pn-1
…

M

P0
P1 Pn-2

Pn-1

…

M

260

3.2 Tree-base Interconnect Structure
The address interconnect used in this paper is similar to Sun
Fireplane interconnect [2]. Figure 3 shows address interconnect
structure. The structure is implemented using two level switches.
Processors reside at the leaves of the tree, and the memory is
connected at the root. At any moment, at most one message exists in
the tree. From the processor viewpoint, the tree structure is similar
to a bus [6].

A missing processor sends the request to the root switch. In the next
step, the root switch sends request copies to other processors.
Processors search their tag arrays and reply. If any of the processors
has the data, the root switch selects the closest processor to the
requester and forwards the processor’s message. If none of the
processors have the data, the root switch sends a request to the
memory.

In SSID, we modify the baseline cache coherence protocol and
reduce the number of steps involved. Instead of sending requests to
the root and then having the request broadcasted by the root, the
request is directly sent to other nodes. This reduces the number of
accesses to the links by one and results in processors receiving
snoops requests at different cycles. For example in Figure 3, under
our system, a request sent by P0 is received by P1 earlier than P3.

Figure 3. Address interconnect structure.

In our system, and similar to the conventional snoop-based system,
processors reply to the root switch after tag lookup is performed.
However, in our system, the root switch does not receive replies
from processors at the same time. The root switch should wait to
receive all replies and then select the closest supplier to the
requester or send the request to the memory.

In this work we assume separate data and address interconnects.
Data interconnect is similar to address interconnect and uses two
levels of switches. When the supplier is determined by the cache
coherence protocol, the supplier sends data to the requester through
the data interconnect. In this work we focus on the address
interconnect.

4. IMPLEMENTATION
In our proposed architecture, each node is equipped with a small
single-entry predictor to speculate the supplier for missing data
reads in the local cache. Using prediction for write commands has

consistency model implications that are beyond the scope of this
paper [5].

Figure 4 depicts a typical processor in our SMP configuration. Each
processor includes a core, a private L1 cache, a private L2 cache, and
a supplier predictor. Each predictor entry is equipped with two
fields. The first field is a log2N bit field, where N is the number of
processors, and is referred to as speculated supplier or SPL. SPL is
used to record the last supplier. The second field is an n-bit
saturating counter. We use saturating counters to achieve high
accuracy. We increment the counter if the prediction is correct and
reset it upon a misprediction. The predictor is trusted only if the
saturating counter is more than a pre-decided threshold. The area
and energy overhead associated with the predictor is negligible as
the predictor only includes an n-bit counter and a log2N bit register.
We refer to an SSID system using an n-bit counter as SSID-n (e.g.,
SSID-2 uses a single 2-bit counter).

Initially, there is no record of any previous supplier in the predictor.
Therefore, no prediction is made when the first miss occurs. Under
such circumstances, the processor broadcasts a snoop request to all
nodes, basically following the conventional approach. When the
supplier processor responds, the predictor is updated with the
supplier number. For future cache misses, if the saturating counter
exceeds the threshold, the request is only sent to the predicted node.
The predicted node checks for the requested address, and replies.
For accurate predictions and if the valid data is found in the
speculated supplier, no additional step is needed. Consequently,
instead of accessing all switches, links, and tag arrays, only the
required components are accessed reducing power in both
interconnect and tag arrays.

In the event of a supplier misprediction, the requester has to send a
snoop request to all the other nodes. This results in extra accesses to
interconnect and an increase in data communication latency. We
show in Section 5, that the benefits of correct predictions outweigh
the associated misprediction costs.

Figure 4. A processor using a node predictor: each predictor
includes a speculative supplier (SPL) and a saturating
counter.

SSID does not impose any changes to the state transitions of the
underlying cache coherence protocol. In a MESI protocol [22],
the requested cache block in the speculated supplier node could
be in one of the following four states: modified, exclusive, shared,
or invalid. If the state is modified, exclusive, or shared, and
speculation turns out to be accurate, then both the supplier and
requester will end up having the shared state. However, if the
state of the requested cache block is invalid, a misprediction will
occur and the requester will broadcast a snoop request.
Consequently, whether the prediction is right or wrong, SSID

P3 P2 P1 P0

M

S0

S2 S1

Core

L1 Predictor

Processor

SPL Saturating
Counter

Predictor
L2

261

would not change any state transition in the MESI protocol. Also,
SSID does not impose any limitation on software, and is
completely transparent to the operating system.

To provide better understanding, in Figure 5, we show the actions
taken under SSID for the example discussed earlier in Section 2.
We assume SSID-1 with a prediction threshold equal to zero.

Figure 5. An SSID example: P0 and Pn-1 share an array. Pn-1
has already read the elements and has them in its L2 cache. P0
starts reading the (missing) array elements. a.1) P0 asks the
predictor for the likely supplier. a.2) The predictor cannot
make a prediction as there is no previous record. a.3) P0
broadcasts snoop request to all nodes. b.4) Pn-1 sends the data
to P0. Predictor is updated with the supplier processor
number, and data is stored in P0’s local cache. a.5, a.6) Upon
missing the array’s second element, the predictor speculates
Pn-1 as the likely supplier. The predictor is not trusted since
the saturating counter is not greater than the threshold. a.7)
P0 broadcasts snoop request to all nodes. b.8) The saturating
counter is incremented as the predictor has made a correct
prediction. c.9) For the third array element, P0 probes the
predictor. c.10) Predictor speculates that Pn-1 is supplier. c.11)
P0 sends the request only to Pn-1 (instead of broadcasting). Pn-1
provides the array element.

5. EVALUATION
In this Section, we evaluate SSID. In Section 5.1 we present the
methodology. In Section 5.2 we report the results.

5.1 Methodology
We used SPLASH-2 [4] benchmarks (details reported in Table 1)
to evaluate our scheme. For simulation, we used the execution
driven mode of SESC [7] modeling the out of order processors
and the memory subsystem presented in Table 2. We used MESI
protocol to maintain cache coherence in L2 caches.

We used Orion [18] to estimate power of interconnects. We used
CACTI [19] to measure tag arrays power dissipation.

5.2 Results
In Section 5.2.1, we report SSID coverage and accuracy. In
Sections 5.2.2 and 5.2.3, we report how SSID impacts
performance and energy of interconnects. We compare SSID to

conventional cache coherence where snoop requests are
broadcasted to all nodes upon any local cache miss.

Table 1. Splash2 benchmarks and input parameters

Benchmarks Input Parameters

Cholesky tk29.O

Fft 1M complex data points

Lu(contiguous, non-contiguous) 512×512 matrix, B=16

Ocean contiguous 258×258 grid

Radiosity -batch –room

Radix 8M keys

Raytrace Balls4.env

Water(nsquared, spatial) 4k molecules

Table 2. System parameters

Processor Interconnect Memory System

branch predictor:16K
entry
bimodal and gshare
branch penalty: 17
Fetch/issue/commit:
6/4/4
RAS: 32 entries
BTB: 2K entries, 2-
way

bus clock cycle:
7 processor
cycles
switch latency: 1
cycle
link latency: 1
cycle
interconnect
width: 64B

cache block size:
64B
split I-L1, D-L1:
32KB, 4-way
L1 latency: 2
L2: 512KB/8-way
L2 latency: 11
memory latency: 70
processor cycles

To make better evaluation of SSID possible, in Section 5.2.4., we
compare SSID to serial snooping [6]. In serial snooping, a snoop
request is initially sent only to the neighbor node. The neighbor
node looks up its local cache and replies to the requester if the
requested data is found, otherwise, it sends the snoop request to
the next node. In both SSID and serial snooping, at any moment,
at most one message exists in interconnect. As such, memory
consistency is maintained accurately [24]. To the best of our
knowledge, serial snooping is the only power aware snoop-based
cache coherence in binary tree interconnects.

To provide better insight, in Section 5.2.4, we report how SSID
and serial snooping affect performance and energy of
interconnects in SMP systems with 4, 8, 16, and 32 nodes.

5.2.1 Coverage and Accuracy
In this Section, we report coverage and accuracy for SSID in a 4-
way SMP system. Note that in a 4-way multiprocessor there are
four predictors, one predictor per processor. We report average
data for the four predictors.

We define coverage as the percentage of all supplier nodes in
cache to cache transfers that are accurately identified by
predictors.

P0

Predictor

 1,5
2,6 3,7

broadcast

P0

Predictor 4,8

Received
message

P0
9

10
11

Only to
Pn-1

Predictor

262

In figure 6.a, we report coverage for predictors with different
sizes. We report for SSID-1, SSID-2, SSID-3 and SSID-4. We use
thresholds values equal to zero, two, six, and 14, for SSID-1,
SSID-2, SSID-3 and SSID-4 respectively. We picked these
thresholds after testing different alternatives. In general, coverage
is reduced as the counter size increases. On average, coverage
varies from 51% to 77% for different counter sizes.

In Figure 6.b we report accuracy for predictors with different
counter sizes. Accuracy shows how often the speculated supplier
turns out to be the correct one. In general, accuracy improves as
counter size increases. On average, accuracy changes from 89%
to 96% for different counter sizes.

0%

20%

40%

60%

80%

100%

Cho
les

ky

Fft

Lu
_c

on
t

Lu
_n

co
nt

Oce
an

_co
nt

Rad
ios

ity

Rad
ix

Ray
tra

ce

Water
_Nsq

Water
_Sp

AVG.

1 2 3 4

a) Coverage

0%

20%

40%

60%

80%

100%

Cho
les

ky

Fft

Lu
_c

on
t

Lu
_n

co
nt

Oce
an

_co
nt

Rad
ios

ity

Rad
ix

Ray
tra

ce

Water
_Nsq

Water
_Sp

AVG.

1 2 3 4

b) Accuracy

Figure 6. Bars from left to right report coverage and accuracy
for predictors equipped with 1-, 2-, 3- and 4-bit counters.

5.2.2 Performance
In this Section, we report performance for SSID-1, SSID-2, SSID-
3, and SSID-4 compared to the baseline cache coherence protocol.
Figure 7 reports performance for different benchmarks. Numbers
less than one indicate a performance slowdown.

SSID has negligible impact on performance. For most
benchmarks, the impact is less than 0.5%. Note that for some

benchmarks (e.g., raytrace) SSID improves performance. This
could be explained by the following: a) for these benchmarks,
often the missing data is provided by local caches rather than the
memory and b) SSID can speculate the supplier caches with high
accuracy.

0.990

0.995

1.000

1.005

1.010

1.015

1.020

Cho
les

ky

Fft

Lu
_c

on
t

Lu
_n

co
nt

Oce
an

_co
nt

Rad
ios

ity

Rad
ix

Ray
tra

ce

Water
_Nsq

Water
_Sp

AVG.

1 2 3 4

Figure 7. Performance for different predictor configurations.
Bars from left to right report for predictors equipped with 1-,
2-, 3- and 4-bit counters.

5.2.3 Energy Reduction
In Figure 8, we report energy reduction in links, switches, and tag
arrays for SSID-1, SSID-2, SSID-3, and SSID-4 compared to the
baseline cache coherence scenario. Generally, energy reduction is
often lower for higher counter sizes. This is intuitive as smaller
counters have higher coverage.

In Figure 8.a we report link energy reduction. On average, SSID-
1, SSID-2, SSID-3 and SSID-4 reduce link energy by 21%, 20%,
18%, and 17% respectively. In Figure 8.b we report switch energy
reduction. On average, SSID-1, SSID-2, SSID-3 and SSID-4
reduce switch energy by 22%, 21%, 21% and 20% respectively.
In Figure 8.c we report energy reduction for tag arrays. SSID-1,
SSID-2, SSID-3 and SSID-4 improve tag array energy by 17%,
15%, 13% and 11% respectively.

Our investigation shows that high performance and power
improvement for raytrace is due to the fact that most of missed
data are provided by peer caches. SSID speculates the supplier
cache with high confidence and eliminates most of the
unnecessary interconnect accesses.

Note that tag array energy reduction is close to zero for cholesky
and fft. Our study shows that cache to cache transfers occur rarely
in these benchmarks. As such, despite high accuracy, SSID does
not improve tag array activity. However, the two benchmarks
show energy reduction in links and switches as the result of the
cache coherence step reduction explained in Section 3.2.

We conclude from Figure 8 that SSID-1 provides substantial
power savings with negligible performance degradation, and
minimal hardware overhead.

263

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

Cho
les

ky

Fft

Lu
_c

on
t

Lu
_n

co
nt

Oce
an

_co
nt

Rad
ios

ity

Rad
ix

Ray
tra

ce

Water
_Nsq

Water
_Sp

AVG.

1 2 3 4

a) Link energy reduction

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

Cho
les

ky

Fft

Lu
_c

on
t

Lu
_n

co
nt

Oce
an

_co
nt

Rad
ios

ity

Rad
ix

Ray
tra

ce

Water
_Nsq

Water
_Sp

AVG.

1 2 3 4

b) Switch energy reduction

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

Cho
les

ky

Fft

Lu
_c

on
t

Lu
_n

co
nt

Oce
an

_co
nt

Rad
ios

ity

Rad
ix

Ray
tra

ce

Water
_Nsq

Water
_Sp

AVG.

1 2 3 4

c) Tag array energy reduction

Figure 8. Energy reduction in links, switches, and tag arrays.
Bars from left to right report for predictors equipped with 1-,
2-, 3- and 4-bit counters.

5.2.4 Comparison with Serial Snooping
In this Section, we report performance and interconnect energy
for SSID-1 and serial snooping in 4-, 8-, 16-, and 32-way SMP
systems.

In Figure 9 we report performance relative to the baseline.
Performance of SSID-1 is improved as higher numbers of nodes
are exploited. On average, performance improves from 0.17% in
a 4-way SMP to 1.7% in a 32-way SMP under SSID-1.

Serial snooping, on the other hand, shows much higher
performance loss as the number of nodes is increased. In the 32-
way SMP, serial snooping shows a performance loss of 19%. It
should be noted that in serial snooping, cache to cache transfer
latency depends on the number of links. In a binary tree with n
leaves, the number of links is equal to 2n-2. As such, latency
grows linearly with the number of processors in serial snooping.
In SSID, however, latency depends on the height of tree which is
equal to Log2 n. Therefore, performance is less sensitive to the
number of processor nodes under SSID.

0.50

0.60

0.70

0.80

0.90

1.00

1.10

Cho
les

ky

Fft

Lu
_c

on
t

Lu
_n

co
nt

Oce
an

_co
nt

Rad
ios

ity

Rad
ix

Ray
tra

ce

Water
_Nsq

Water
_Sp

AVG.

4-w ay SSID-1 4-w ay Serial 8-w ay SSID-1 8-w ay Serial

16-w ay SSID-1 16-w ay Serial 32-w ay SSID-1 32-w ay Serial

Figure 9. Performance for SSID-1 and serial snooping in 4-, 8-
, 16-, and 32-way SMPs.

In some benchmarks, e.g. fft, serial snooping degrades
performance considerably. In these benchmarks, quite often,
memory is the supplier. However, in serial snooping, all remote
caches are snooped one by one before a request is sent to the
memory. This results in a considerable performance penalty.

In Figure 10, we report energy reduction in interconnect and tag
arrays for SSID-1 and serial snooping compared to baseline cache
coherence scenario in 4-, 8-, 16-, and 32-way SMPs.

In Figure 10.a we report link energy. On average, SSID improves
link energy by 21%, 36%, 48%, and 57% when the number of
processors varies from 4 to 32. SSID falls slightly behind serial
snooping in link energy. However, as Figure 9 shows, this comes
with significant performance loss for serial snooping.

In Figure 10.b we report switch energy reduction. On average,
SSID-1 reduces energy of switches from 22% to 55% when the
number of processors increases from 4 to 32. In some
benchmarks, e.g., fft, serial snooping increases switch energy up
to 23%. On average, serial snooping falls behind SSID-1 for all
SMP configurations. This is due to the fact that in serial snooping,
whenever a cache lookup fails, the request is forwarded to the
next node. Consequently, the closest switch to the processor is
accessed at least twice. For example, in Figure 3, if P1 receives a
snoop request from P0, and the requested address misses in P1, the
request is forwarded to P2 through S1 , and S1 is accessed twice:
once, when P0 sends snoop request to P1, and once when P1
forwards snoop request to P2. This is not the case under SSID.

264

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Cho
les

ky

Fft

Lu
_c

on
t

Lu
_n

co
nt

Oce
an

_co
nt

Rad
ios

ity

Rad
ix

Ray
tra

ce

Water
_Nsq

Water
_Sp

AVG.

4-w ay SSID-1 4-w ay Serial 8-w ay SSID-1 8-w ay Serial

16-w ay SSID-1 16-w ay Serial 32-w ay SSID-1 32-w ay Serial

a) Link energy reduction

-40%

-20%

0%

20%

40%

60%

80%

100%

Cho
les

ky

Fft

Lu
_c

on
t

Lu
_n

co
nt

Oce
an

_co
nt

Rad
ios

ity

Rad
ix

Ray
tra

ce

Water
_Nsq

Water
_Sp

AVG.

4-w ay SSID-1 4-w ay Serial 8-w ay SSID-1 8-w ay Serial

16-w ay SSID-1 16-w ay Serial 32-w ay SSID-1 32-w ay Serial

b) Switch energy reduction

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Cho
les

ky

Fft

Lu
_c

on
t

Lu
_n

co
nt

Oce
an

_co
nt

Rad
ios

ity

Rad
ix

Ray
tra

ce

Water
_Nsq

Water
_Sp

AVG.

4-w ay SSID-1 4-w ay Serial 8-w ay SSID-1 8-w ay Serial

16-w ay SSID-1 16-w ay Serial 32-w ay SSID-1 32-w ay Serial

c) Tag array energy reduction

Figure 10. Energy reduction in links, switches, and tag arrays
for serial snooping and SSID.

In Figure 10.c we report tag array energy reduction. Both methods
improve tag array energy competitively. SSID-1 improves tag
array energy from 17% to 51% for different number of
processors.

We conclude from Figure 10 that SSID, while maintaining
performance, improves interconnect and tag array energy as the
number of ways increases in SMPs. On the other side, serial
snooping harms performance considerably when the number of
processors increases.

6. RELATED WORK
Acacio et al., exploited supplier (owner) locality to reduce latency
of cache to cache transfer in cc-NUMA [12]. They used a two
level predictor to convert 3-hop misses to 2-hop misses. The first
level of predictor determined those misses that are satisfied by
cache to cache transfers. The second level determined the list of
nodes that have a valid copy of memory line. Requests were sent
directly to the speculated nodes, removing the directory from the
critical path. Martin et al. [16] proposed destination set prediction
to achieve low latency of snoopy protocols and low bandwidth of
directory protocols. They explored the design space by using
different predictors. In all predictors, they used data or instruction
address for indexing which requires exploiting large tables.
Our work is different from the above works, as we exploit
supplier locality in snoopy cache coherence protocols and reduce
energy (not latency). We report direct energy measurements and
compare our technique to state-of-the-art power-aware cache
coherence techniques. In addition, we report sensitivity analysis
and study how changes in system architecture impact
performance and energy improvements. Moreover, as energy is
our major concern, we exploit predictors which are far simpler
than that used in [12, 16].

Bjorkman et al. [23] proposed hints to reduce cache miss penalty.
For each block in memory, they use one hint to identity the
potential holder of the copy. When a cache miss can not be
serviced in the local node, a request is sent to both home directory
and to the hint node. If hint node has the copy, it sends it to the
requestor and this reduces the cache miss delay by one hop.
Otherwise, home directory provides data following convention
method. While their method improves performance, sending two
requests for each cache miss pollutes interconnect network and
increases power dissipation in inter-node communication. In
addition, they use hints for each memory block which increases
hardware complexity dramatically. SSID, however, uses one SPL
per node to reduce power dissipation in interconnects.

Saldanha and Lipasti [6] proposed serial snooping to reduce
interconnects power. We introduce SSID as an alternative
speculative approach and compare it to serial snooping.

Mukherjee and Hill [9] used prediction in distributed shared
memory systems to speculate coherent messages in advance.
Their work is based on the observation that memory blocks have a
small number of repetitive sharing patterns. They used a general
pattern-based predictor derived from two-level PAp branch
predictor [10]. Memory Sharing Predictor (MSPs) [11] is a special
type of general pattern-based predictor. MSP only predicts remote
memory accesses and not the subsequent coherent messages. As
such, it reduces predictor cost and improves accuracy.

While all works discussed above use speculation in directory-
based cache coherence, we apply speculation in snoopy cache
coherence to reduce power of interconnect.

In Jetty [13] snoops from remote nodes are filtered to reduce the
number of L2 cache accesses in SMPs. Each node has a filter on
the bus side of the L2 cache, checking the snoop requests sent
from remote nodes. The filter identifies situations where the L2
cache does not include the requested data and eliminates the
associated extra L2 tag arrays lookups. In RegionScout [14] a
node determines in advance that a coarse grain region is not

265

available in none of the other nodes. As such, the request is sent
directly to the memory, reducing both interconnect power and
bandwidth. SSID can be used on top of Jetty and RegionScout
possibly increasing power savings.

7. CONCLUSION
We introduced a power-aware speculative cache coherence
protocol for SMPs. In our protocol we used a small and simple
predictor to identify the node supplying local missing data.
Consequently we limited sending requests only and directly to the
speculated supplier. We saved power by avoiding broadcasting
whenever there is high confidence in the prediction outcome. We
identified and removed a large portion of unnecessary
interconnect activities with high accuracy. We reduced energy of
links, switches, and tag arrays by 21%, 22%, 17% respectively.

8. ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and
Engineering Research Council of Canada, Discovery Grants
Program and Canada Foundation for Innovation, New
Opportunities Fund.

9. REFERENCES
[1] S. Mukherjee et al., The Alpha 21364 network Architecture,

IEEE Micro, Volume 22 Issue 1, pp.26-35, 2002.
[2] Alan E. Charlesworth. The Sun Fireplane System Interconnect,

In Proceedings of the 2001 ACM/IEEE conference on
Supercomputing, 2001.

[3] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato, The Use
of Prediction for Accelerating Upgrade Misses in CCNUMA
Multiprocessors, In Proceedings of PACT-11, 2002.

[4] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In International Symposium on Computer
Architecture, June 1995.

[5] Robert C. Steinke, Gary J. Nutt, A unified theory of shared
memory consistency, Journal of the ACM (JACM), v.51 n.5,
p.800-849, September 2004.

[6] C. Saldanha and M. H. Lipasti, Power Efficient Cache
Coherence, High Performance Memory Systems, Springer-
Verlag, 2003.

[7] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
K. Strauss, S. Sarangi, P. Sack, and P. Montesinos. SESC
Simulator, Jan 2005. http://sesc.sourceforge.net.

[8] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin, M. D.
Hill, and D. A. Wood, Multicast Snooping: A New Coherence
Method using a Multicast Address Network, SIGARCH
Comput. Architure News, pp. 294–304, 1999.

[9] Shubhendu S. Mukherjee and Mark D. Hill, Using prediction
to accelerate coherence protocols, In Proceedings of the 25th
Annual International Symposium on Computer Architecture,
June 1998.

[10] Tse-Yuh Yeh and Yale Patt, Alternative implementations of
two-level adaptive branch prediction, In Proceedings of the
19th Annual International Symposium on Computer
Architecture, May 1992.

[11] A.-C. Lai and B. Falsafi, Memory sharing predictor: the key to
a speculative coherent DSM, In Proceedings of the 26th annual
international symposium on Computer architecture, pp. 172–
183, 1999.

[12] M. E. Acacio, J. González, J. M. García, and J. Duato, Owner
Prediction for Accelerating Cache-to-Cache Transfers in a cc-
NUMA Architecture, In Proceedings of SC2002, Nov. 2002.

[13] A. Moshovos, B. Falsafi and A. Choudhary, JETTY: Filtering
Snoops for Reduced Energy Consumption in SMP Servers, In
Proceedings of the 7th International Symposium on High-
Performance Computer Architecture, January 2001.

[14] J. Cantin, A. Moshovos, M. Lipasti, J. Smith, and B. Falsafi,
Coarse-Grain Coherence Tracking: RegionScout and Region
Coherence Arrays, IEEE Micro, v.26, n.1, pp. 70-79, Jan-Feb
2006.

[15] J. Huh, J. Chang, D. Burger, and G. S. Sohi, Coherence
Decoupling: Making Use of Incoherence, In Proceedings of
ASPLOS-XI, pp. 97-106, 2004.

[16] Milo M. K. Martin, Pacia J. Harper, Daniel J. Sorin, Mark D.
Hill, and David A. Wood, Using Destination-Set Prediction to
Improve the Latency/Bandwidth Tradeoff in Shared-Memory
Multiprocessors, In Proceedings of the 30th Annual
International Symposium on Computer Architecture, pages
206-217, 2003.

[17] K. M. Lepak and M. H. Lipasti, Temporally Silent Stores, In
Proceedings of ASPLOS-X, pages 30–41, 2002.

[18] H. S. Wang, X. P. Zhu, L. S. Peh, and S. Malik. Orion: A
Power-Performance Simulator for Interconnection Networks.
In International Symposium on Microarchitecture, Nov. 002.

[19] P. Shivakumar and N. Jouppi. CACTI 3.0: An Integrated
Cache Timing, Power and Area Model. Technical Report
2001/2, Compaq Computer Corporation, Aug. 2001.

[20] R. Iyer, L. N. Bhuyan and A. Nanda. “Using Switch
Directories to Speed Up Cache-to-Cache Transfers in
CCNUMA Multiprocessors”, In Proc. of the 14th Int’l Parallel
and Distributed Processing Symposium (IPDPS’00), pp. 721–
728, May 2000.

[21] L. A. Barroso, K. Gharachorloo and E. Bugnion, “Memory
System Characterization of Commercial Workloads”, In Proc.
of the 25th Int’l Symposium on Computer Architecture
(ISCA’98), pp. 3–14, June 1998.

[22] D. E. Culler, J. Singh, A. Gupta, Parallel Computer
Architecture: A Hardware/Software Approach, Morgan
Kaufmann Publishers, San Francisco, Calif., 1998.

[23] M. Bjorkman, F. Dahlgren, and P. Stenstrom, Using Hints to
Reduce the Read Miss Penalty for Flat COMA Protocols, In
Proceedings of the 28th Annual Hawaii International
Conference of System Sciences, pages 242-251, January 1995.

[24] A. Landin, E. Hagersten, and S. Haridi, Race-free
interconnection networks and multiprocessor consistency, In
Proc. of the 18th Intl. Symp. on Comp. Architecture, 1991.

266

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

