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ABSTRACT 
In this work we reduce interconnect power dissipation in 
Symmetric Multiprocessors or SMPs. We revisit snoopy cache 
coherence protocols and reduce unnecessary interconnect activity 
by speculating nodes expected to provide a missing data.   

Conventional snoopy cache coherence protocols broadcast 
requests to all nodes, reducing the latency of cache to cache 
transfer misses at the expense of increasing interconnect power. 
We show that it is possible to reduce the associated power 
dissipation if such requests are broadcasted selectively and only 
to nodes more likely to provide the missing data.  

We reduce power as we limit access only to the interconnect 
components between the requester and the supplier node. We 
evaluate our technique using shared memory applications and 
show that it is possible to reduce interconnect power by 21% in a 
4-way multiprocessor without compromising performance. This 
comes with negligible hardware overhead.   

Categories and Subject Descriptors 
C.1.2 [Multiple Data Stream Architectures]: Multiprocessors  

General Terms 
Design, Performance. 

Keywords 
SMP, Cache Coherence Protocol, Power, Interconnect 

 

1. INTRODUCTION 
With ever increasing demand for higher performance, symmetric 
multiprocessors (or SMPs) offer an attractive solution as they 
achieve higher performance by exploiting thread-level 
parallelism.  

Multithread workloads which run simultaneously on 
multiprocessor nodes communicate through interconnect and 
dissipate significant power. As a result, inter-processor 
communication has become one of the bottlenecks in 
multiprocessor systems consuming a considerable share of the 
overall power [1]. Moreover, to improve performance of SMPs, it 
is expected that the number of processors in SMPs will increase. 
This in turn would result in higher interconnect complexity and 
power dissipation in future SMPs. 

In a shared memory multiprocessor system, processors access 
interconnects to locate and provide data and instructions missing 
in local caches [3, 6, 8, 15-17, 20, 21].  Maintaining the correct 
state of the local data and responding to requests made by other 
processors is the responsibility of local caches. In the event of a 
cache miss and in a write-invalidate protocol, snoop requests, 
invalidate messages, and block writebacks have to take place. 
Such transactions contribute to the overall interconnect power 
dissipation.   

Previous studies [12, 23] show that processors providing missing 
data show very high locality. In other words, if the required data 
missing in processor A is provided by processor B’s local cache, 
chances are that next time A is missing a data, it will be provided 
by B again. 

We introduce speculative supplier identification (or simply SSID) 
to reduce power of interconnects by sending snoop requests only 
to nodes more likely to provide the missing data. As we will 
explain in Section 4, we use processors’ ID for speculation which 
results in much simpler hardware than that proposed in [12, 16, 
23]. 

In SSID, the requesting node sends the request only to the 
previous supplier if there is high confidence that the previous 
supplier would provide the missing data. Therefore, we avoid 
broadcasting requests to every node. Consequently we reduce 
interconnect energy and only access links and switches 
connecting the requester and supplier. As a result we eliminate 
unnecessary activities not only in interconnects and internal 
switches but also in processor tag arrays.  

In summary, we make the following contributions:  

• We show supplier nodes tend to repeat their behavior.  We show 
that for the configuration and applications used in this study, two 
consecutive cache misses are handled by the same remote node 
84% of the time.   
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• We show that it is possible to identify the supplier processor for 
a local cache miss with high accuracy by using a small and simple 
predictor. We identify remote suppliers with an average accuracy 
up to 96% by exploiting a single entry 4-bit predictor. 

• By limiting sending requests only to the predicted remote node, 
and while maintaining performance, we reduce link, switch and 
tag array energy by 21%, 22% and 17%% in a 4-way 
multiprocessor system respectively.  

In this work, and as a case study, we use a binary tree 
interconnect network, similar to Sun Fireplane [2]. However, our 
method can also be used for other alternative non-bus 
interconnects (e.g., benes and fat-tree [22]). 

The rest of the paper is organized as follows. In Section 2, we 
discuss our motivation. In Section 3, we review the related 
background. In Section 4, we discuss SSID and explain 
implementation details. In Section 5, we discuss methodology and 
evaluate SSID. In Section 6, we review related work. Finally, in 
Section 7, we offer concluding remarks. 

2. MOTIVATION 
In Figure 1, we show how an SMP system handles a snoop 
request.  As presented, N processors sharing a single memory are 
connected through a network interconnect. Each processor has 
local L1 and L2. Assume that processor P0 is about to read the 
elements of a shared array for the first time. Meantime Pn-1 has 
already read the array, and all array elements are available in Pn-

1’s local cache. A miss occurs as soon as P0 reads the first array 
element. To find the missing data, P0 broadcasts snoop request to 
all nodes (Figure 1.a). P1, P2, …, and   Pn-1 receive snoop requests 
and check their tag arrays. Pn-1 finds the element and sends it to 
P0. The system goes through the same procedure every time P0 
reads a new (missing) element.  

This approach provides fast access but is inefficient from the 
energy point of view [6] as not all accesses made to interconnect 
components turn out to be useful.  All nodes are snooped every 
time that an array element is accessed in P0 but only one (Pn-1 in 
the example) provides the data.  

 

 

 

 

 

 

 

 

Figure 1. a) Conventional snooping. b) SSID snooping 
 

In this work, we report how SSID uses supplier locality to address 
this design inefficiency and to reduce power in snoop-based 
symmetric multiprocessor systems. Supplier locality shows how 
often the current supplier of a missing data in a local node is the 
same as the previous supplier. In Figure 2 we report supplier 

locality for the SPLASH-2 benchmarks used in this study (see 
Section 5.1 for methodology). Except for fft, all benchmarks have 
a locality higher than 70%. On average, supplier locality is 84%.  

SSID relies on this behavior to speculate the remote node 
providing the missing data. SSID sends the associated request 
only to the speculated node limiting the accesses to the path 
between the requester and supplier (Figure 1.b). This reduces 
power compared to a conventional snoop-based system where all 
nodes are accessed uniformly and regularly. 

If SSID fails to accurately identify the supplier then snoop 
requests have to be broadcasted to every node, resulting in energy 
and latency penalty. This penalty can negate our savings if 
mispredictions occur too often. However, as we show later in this 
work, savings outweigh the associated overhead.  
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Figure 2. Supplier locality for the applications and the 
configuration used in this study. 

 

3. BACKGROUND 
In Section 3.1, we review a basic write-invalidate snoop protocol. 
We discuss the interconnect architecture used in this work in 
Section 3.2. 

3.1 Write-Invalidate Snoop Protocol 
The snoop protocol is used to maintain cache coherence in shared 
memory multiprocessors. A cache coherence protocol is a set of 
finite state machines that change their states in response to their 
local processors’ requests and messages received on the bus. Each 
finite state machine is distributed over nodes with each local 
cache maintaining the state of its local data. Caches connected to 
the bus monitor bus transactions and update the state of their data 
and reply to requests when required. 

On a cache read miss, the missing processor sends a request to 
everyone. All nodes check their tag arrays with the missing 
address and send the (valid) data to the requester if found.  

In a write-invalidate protocol, upon a write miss, an invalidate 
request is sent over the bus. All processors having a copy of the 
address invalidate the corresponding entry in their caches. 
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3.2 Tree-base Interconnect Structure  
The address interconnect used in this paper is similar to Sun 
Fireplane interconnect [2]. Figure 3 shows address interconnect 
structure. The structure is implemented using two level switches. 
Processors reside at the leaves of the tree, and the memory is 
connected at the root. At any moment, at most one message exists in 
the tree. From the processor viewpoint, the tree structure is similar 
to a bus [6]. 

A missing processor sends the request to the root switch. In the next 
step, the root switch sends request copies to other processors. 
Processors search their tag arrays and reply. If any of the processors 
has the data, the root switch selects the closest processor to the 
requester and forwards the processor’s message. If none of the 
processors have the data, the root switch sends a request to the 
memory.  

In SSID, we modify the baseline cache coherence protocol and 
reduce the number of steps involved. Instead of sending requests to 
the root and then having the request broadcasted by the root, the 
request is directly sent to other nodes.  This reduces the number of 
accesses to the links by one and results in processors receiving 
snoops requests at different cycles. For example in Figure 3, under 
our system, a request sent by P0 is received by P1 earlier than P3. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Address interconnect structure. 
 

In our system, and similar to the conventional snoop-based system, 
processors reply to the root switch after tag lookup is performed. 
However, in our system, the root switch does not receive replies 
from processors at the same time. The root switch should wait to 
receive all replies and then select the closest supplier to the 
requester or send the request to the memory.  

In this work we assume separate data and address interconnects. 
Data interconnect is similar to address interconnect and uses two 
levels of switches. When the supplier is determined by the cache 
coherence protocol, the supplier sends data to the requester through 
the data interconnect. In this work we focus on the address 
interconnect. 

4. IMPLEMENTATION 
In our proposed architecture, each node is equipped with a small 
single-entry predictor to speculate the supplier for missing data 
reads in the local cache. Using prediction for write commands has 

consistency model implications that are beyond the scope of this 
paper [5].  

Figure 4 depicts a typical processor in our SMP configuration. Each 
processor includes a core, a private L1 cache, a private L2 cache, and 
a supplier predictor. Each predictor entry is equipped with two 
fields. The first field is a log2N bit field, where N is the number of 
processors, and is referred to as speculated supplier or SPL. SPL is 
used to record the last supplier. The second field is an n-bit 
saturating counter. We use saturating counters to achieve high 
accuracy. We increment the counter if the prediction is correct and 
reset it upon a misprediction. The predictor is trusted only if the 
saturating counter is more than a pre-decided threshold. The area 
and energy overhead associated with the predictor is negligible as 
the predictor only includes an n-bit counter and a log2N bit register. 
We refer to an SSID system using an n-bit counter as SSID-n (e.g., 
SSID-2 uses a single 2-bit counter).  

Initially, there is no record of any previous supplier in the predictor. 
Therefore, no prediction is made when the first miss occurs. Under 
such circumstances, the processor broadcasts a snoop request to all 
nodes, basically following the conventional approach. When the 
supplier processor responds, the predictor is updated with the 
supplier number. For future cache misses, if the saturating counter 
exceeds the threshold, the request is only sent to the predicted node. 
The predicted node checks for the requested address, and replies. 
For accurate predictions and if the valid data is found in the 
speculated supplier, no additional step is needed. Consequently, 
instead of accessing all switches, links, and tag arrays, only the 
required components are accessed reducing power in both 
interconnect and tag arrays.  

In the event of a supplier misprediction, the requester has to send a 
snoop request to all the other nodes. This results in extra accesses to 
interconnect and an increase in data communication latency. We 
show in Section 5, that the benefits of correct predictions outweigh 
the associated misprediction costs. 

 

 

 

 

 

 

Figure 4. A processor using a node predictor: each predictor 
includes a speculative supplier (SPL) and a saturating 
counter. 
 

SSID does not impose any changes to the state transitions of the 
underlying cache coherence protocol. In a MESI protocol [22], 
the requested cache block in the speculated supplier node could 
be in one of the following four states: modified, exclusive, shared, 
or invalid. If the state is modified, exclusive, or shared, and 
speculation turns out to be accurate, then both the supplier and 
requester will end up having the shared state. However, if the 
state of the requested cache block is invalid, a misprediction will 
occur and the requester will broadcast a snoop request. 
Consequently, whether the prediction is right or wrong, SSID 
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would not change any state transition in the MESI protocol. Also, 
SSID does not impose any limitation on software, and is 
completely transparent to the operating system. 

To provide better understanding, in Figure 5, we show the actions 
taken under SSID for the example discussed earlier in Section 2. 
We assume SSID-1 with a prediction threshold equal to zero.  

 

 

 

 

 

 

 

 
Figure 5. An SSID example: P0 and Pn-1 share an array. Pn-1 
has already read the elements and has them in its L2 cache. P0 
starts reading the (missing) array elements. a.1) P0 asks the 
predictor for the likely supplier. a.2) The predictor cannot 
make a prediction as there is no previous record. a.3) P0 
broadcasts snoop request to all nodes. b.4) Pn-1 sends the data 
to P0. Predictor is updated with the supplier processor 
number, and data is stored in P0’s local cache. a.5, a.6) Upon 
missing the array’s second element, the predictor speculates 
Pn-1 as the likely supplier. The predictor is not trusted since 
the saturating counter is not greater than the threshold. a.7) 
P0 broadcasts snoop request to all nodes. b.8) The saturating 
counter is incremented as the predictor has made a correct 
prediction. c.9) For the third array element, P0 probes the 
predictor. c.10) Predictor speculates that Pn-1 is supplier. c.11) 
P0 sends the request only to Pn-1 (instead of broadcasting). Pn-1 
provides the array element. 

 

5. EVALUATION 
In this Section, we evaluate SSID. In Section 5.1 we present the 
methodology. In Section 5.2 we report the results.  

5.1 Methodology  
We used SPLASH-2 [4] benchmarks (details reported in Table 1) 
to evaluate our scheme.  For simulation, we used the execution 
driven mode of SESC [7] modeling the out of order processors 
and the memory subsystem presented in Table 2. We used MESI 
protocol to maintain cache coherence in L2 caches.  

We used Orion [18] to estimate power of interconnects. We used 
CACTI [19] to measure tag arrays power dissipation. 

5.2 Results  
In Section 5.2.1, we report SSID coverage and accuracy. In 
Sections 5.2.2 and 5.2.3, we report how SSID impacts 
performance and energy of interconnects. We compare SSID to 

conventional cache coherence where snoop requests are 
broadcasted to all nodes upon any local cache miss. 

Table 1. Splash2 benchmarks and input parameters  

Benchmarks Input Parameters 

Cholesky tk29.O 

Fft 1M complex data points 

Lu(contiguous, non-contiguous) 512×512 matrix, B=16 

Ocean contiguous 258×258 grid  

Radiosity -batch –room 

Radix 8M keys 

Raytrace Balls4.env 

Water(nsquared, spatial) 4k molecules 

 
Table 2. System parameters  

Processor Interconnect Memory System 

branch predictor:16K 
entry  
bimodal and gshare 
branch penalty: 17 
Fetch/issue/commit: 
6/4/4 
RAS: 32 entries 
BTB: 2K entries, 2-
way 

bus clock cycle: 
7 processor 
cycles 
switch latency: 1 
cycle 
link latency: 1 
cycle 
interconnect 
width: 64B 

cache block size: 
64B 
split I-L1, D-L1: 
32KB, 4-way 
L1 latency: 2 
L2: 512KB/8-way 
L2 latency: 11 
memory latency: 70 
processor cycles 

 
To make better evaluation of SSID possible, in Section 5.2.4., we 
compare SSID to serial snooping [6]. In serial snooping, a snoop 
request is initially sent only to the neighbor node. The neighbor 
node looks up its local cache and replies to the requester if the 
requested data is found, otherwise, it sends the snoop request to 
the next node. In both SSID and serial snooping, at any moment, 
at most one message exists in interconnect. As such, memory 
consistency is maintained accurately [24]. To the best of our 
knowledge, serial snooping is the only power aware snoop-based 
cache coherence in binary tree interconnects. 

To provide better insight, in Section 5.2.4, we report how SSID 
and serial snooping affect performance and energy of 
interconnects in SMP systems with 4, 8, 16, and 32 nodes. 

5.2.1 Coverage and Accuracy 
In this Section, we report coverage and accuracy for SSID in a 4-
way SMP system. Note that in a 4-way multiprocessor there are 
four predictors, one predictor per processor. We report average 
data for the four predictors.  

We define coverage as the percentage of all supplier nodes in 
cache to cache transfers that are accurately identified by 
predictors.  
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In figure 6.a, we report coverage for predictors with different 
sizes. We report for SSID-1, SSID-2, SSID-3 and SSID-4. We use 
thresholds values equal to zero, two, six, and 14, for SSID-1, 
SSID-2, SSID-3 and SSID-4 respectively. We picked these 
thresholds after testing different alternatives.  In general, coverage 
is reduced as the counter size increases. On average, coverage 
varies from 51% to 77% for different counter sizes. 

In Figure 6.b we report accuracy for predictors with different 
counter sizes. Accuracy shows how often the speculated supplier 
turns out to be the correct one. In general, accuracy improves as 
counter size increases. On average, accuracy changes from 89% 
to 96% for different counter sizes. 
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a) Coverage 
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b) Accuracy 

Figure 6. Bars from left to right report coverage and accuracy 
for predictors equipped with 1-, 2-, 3- and 4-bit counters. 
 

5.2.2 Performance  
In this Section, we report performance for SSID-1, SSID-2, SSID-
3, and SSID-4 compared to the baseline cache coherence protocol. 
Figure 7 reports performance for different benchmarks. Numbers 
less than one indicate a performance slowdown. 

SSID has negligible impact on performance. For most 
benchmarks, the impact is less than 0.5%.  Note that for some 

benchmarks (e.g., raytrace) SSID improves performance. This 
could be explained by the following: a) for these benchmarks, 
often the missing data is provided by local caches rather than the 
memory and b) SSID can speculate the supplier caches with high 
accuracy. 
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Figure 7. Performance for different predictor configurations. 
Bars from left to right report for predictors equipped with 1-, 
2-, 3- and 4-bit counters. 
 

5.2.3 Energy Reduction  
In Figure 8, we report energy reduction in links, switches, and tag 
arrays for SSID-1, SSID-2, SSID-3, and SSID-4 compared to the 
baseline cache coherence scenario. Generally, energy reduction is 
often lower for higher counter sizes. This is intuitive as smaller 
counters have higher coverage.  

In Figure 8.a we report link energy reduction. On average, SSID-
1, SSID-2, SSID-3 and SSID-4 reduce link energy by 21%, 20%, 
18%, and 17% respectively. In Figure 8.b we report switch energy 
reduction. On average, SSID-1, SSID-2, SSID-3 and SSID-4 
reduce switch energy by 22%, 21%, 21% and 20% respectively. 
In Figure 8.c we report energy reduction for tag arrays. SSID-1, 
SSID-2, SSID-3 and SSID-4 improve tag array energy by 17%, 
15%, 13% and 11% respectively. 

Our investigation shows that high performance and power 
improvement for raytrace is due to the fact that most of missed 
data are provided by peer caches. SSID speculates the supplier 
cache with high confidence and eliminates most of the 
unnecessary interconnect accesses.  

Note that tag array energy reduction is close to zero for cholesky 
and fft. Our study shows that cache to cache transfers occur rarely 
in these benchmarks. As such, despite high accuracy, SSID does 
not improve tag array activity. However, the two benchmarks 
show energy reduction in links and switches as the result of the 
cache coherence step reduction explained in Section 3.2. 

We conclude from Figure 8 that SSID-1 provides substantial 
power savings with negligible performance degradation, and 
minimal hardware overhead. 
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a) Link energy reduction  
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b) Switch energy reduction  
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c) Tag array energy reduction  

Figure 8. Energy reduction in links, switches, and tag arrays. 
Bars from left to right report for predictors equipped with 1-, 
2-, 3- and 4-bit counters. 

5.2.4 Comparison with Serial Snooping  
In this Section, we report performance and interconnect energy 
for SSID-1 and serial snooping in 4-, 8-, 16-, and 32-way SMP 
systems. 

In Figure 9 we report performance relative to the baseline. 
Performance of SSID-1 is improved as higher numbers of nodes 
are exploited.  On average, performance improves from 0.17% in 
a 4-way SMP to 1.7% in a 32-way SMP under SSID-1. 

Serial snooping, on the other hand, shows much higher 
performance loss as the number of nodes is increased. In the 32-
way SMP, serial snooping shows a performance loss of 19%. It 
should be noted that in serial snooping, cache to cache transfer 
latency depends on the number of links. In a binary tree with n 
leaves, the number of links is equal to 2n-2. As such, latency 
grows linearly with the number of processors in serial snooping.  
In SSID, however, latency depends on the height of tree which is 
equal to Log2 n. Therefore, performance is less sensitive to the 
number of processor nodes under SSID. 
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Figure 9. Performance for SSID-1 and serial snooping in 4-, 8-
, 16-, and 32-way SMPs. 
 

In some benchmarks, e.g. fft, serial snooping degrades 
performance considerably. In these benchmarks, quite often, 
memory is the supplier. However, in serial snooping, all remote 
caches are snooped one by one before a request is sent to the 
memory. This results in a considerable performance penalty.  

In Figure 10, we report energy reduction in interconnect and tag 
arrays for SSID-1 and serial snooping compared to baseline cache 
coherence scenario in 4-, 8-, 16-, and 32-way SMPs.  

In Figure 10.a we report link energy. On average, SSID improves 
link energy by 21%, 36%, 48%, and 57% when the number of 
processors varies from 4 to 32. SSID falls slightly behind serial 
snooping in link energy. However, as Figure 9 shows, this comes 
with significant performance loss for serial snooping. 

In Figure 10.b we report switch energy reduction. On average, 
SSID-1 reduces energy of switches from 22% to 55% when the 
number of processors increases from 4 to 32. In some 
benchmarks, e.g., fft, serial snooping increases switch energy up 
to 23%. On average, serial snooping falls behind SSID-1 for all 
SMP configurations. This is due to the fact that in serial snooping, 
whenever a cache lookup fails, the request is forwarded to the 
next node. Consequently, the closest switch to the processor is 
accessed at least twice. For example, in Figure 3, if P1 receives a 
snoop request from P0, and the requested address misses in P1, the 
request is forwarded to P2 through S1 , and S1 is accessed twice: 
once, when P0 sends snoop request to P1, and once when P1 
forwards snoop request to P2. This is not the case under SSID. 
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a) Link energy reduction 
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b) Switch energy reduction 
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c) Tag array energy reduction  

Figure 10. Energy reduction in links, switches, and tag arrays 
for serial snooping and SSID. 
 

In Figure 10.c we report tag array energy reduction. Both methods 
improve tag array energy competitively. SSID-1 improves tag 
array energy from 17% to 51% for different number of 
processors. 

We conclude from Figure 10 that SSID, while maintaining 
performance, improves interconnect and tag array energy as the 
number of ways increases in SMPs. On the other side, serial 
snooping harms performance considerably when the number of 
processors increases. 

6. RELATED WORK 
Acacio et al., exploited supplier (owner) locality to reduce latency 
of cache to cache transfer in cc-NUMA [12]. They used a two 
level predictor to convert 3-hop misses to 2-hop misses. The first 
level of predictor determined those misses that are satisfied by 
cache to cache transfers. The second level determined the list of 
nodes that have a valid copy of memory line. Requests were sent 
directly to the speculated nodes, removing the directory from the 
critical path. Martin et al. [16] proposed destination set prediction 
to achieve low latency of snoopy protocols and low bandwidth of 
directory protocols. They explored the design space by using 
different predictors. In all predictors, they used data or instruction 
address for indexing which requires exploiting large tables.  
Our work is different from the above works, as we exploit 
supplier locality in snoopy cache coherence protocols and reduce 
energy (not latency). We report direct energy measurements and 
compare our technique to state-of-the-art power-aware cache 
coherence techniques. In addition, we report sensitivity analysis 
and study how changes in system architecture impact 
performance and energy improvements. Moreover, as energy is 
our major concern, we exploit predictors which are far simpler 
than that used in [12, 16]. 

Bjorkman et al. [23] proposed hints to reduce cache miss penalty. 
For each block in memory, they use one hint to identity the 
potential holder of the copy. When a cache miss can not be 
serviced in the local node, a request is sent to both home directory 
and to the hint node. If hint node has the copy, it sends it to the 
requestor and this reduces the cache miss delay by one hop. 
Otherwise, home directory provides data following convention 
method. While their method improves performance, sending two 
requests for each cache miss pollutes interconnect network and 
increases power dissipation in inter-node communication. In 
addition, they use hints for each memory block which increases 
hardware complexity dramatically. SSID, however, uses one SPL 
per node to reduce power dissipation in interconnects. 

Saldanha and Lipasti [6] proposed serial snooping to reduce 
interconnects power. We introduce SSID as an alternative 
speculative approach and compare it to serial snooping.  

Mukherjee and Hill [9] used prediction in distributed shared 
memory systems to speculate coherent messages in advance. 
Their work is based on the observation that memory blocks have a 
small number of repetitive sharing patterns. They used a general 
pattern-based predictor derived from two-level PAp branch 
predictor [10]. Memory Sharing Predictor (MSPs) [11] is a special 
type of general pattern-based predictor. MSP only predicts remote 
memory accesses and not the subsequent coherent messages. As 
such, it reduces predictor cost and improves accuracy. 

While all works discussed above use speculation in directory-
based cache coherence, we apply speculation in snoopy cache 
coherence to reduce power of interconnect. 

In Jetty [13] snoops from remote nodes are filtered to reduce the 
number of L2 cache accesses in SMPs. Each node has a filter on 
the bus side of the L2 cache, checking the snoop requests sent 
from remote nodes. The filter identifies situations where the L2 
cache does not include the requested data and eliminates the 
associated extra L2 tag arrays lookups. In RegionScout [14] a 
node determines in advance that a coarse grain region is not 
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available in none of the other nodes. As such, the request is sent 
directly to the memory, reducing both interconnect power and 
bandwidth. SSID can be used on top of Jetty and RegionScout 
possibly increasing power savings.  

7. CONCLUSION 
We introduced a power-aware speculative cache coherence 
protocol for SMPs. In our protocol we used a small and simple 
predictor to identify the node supplying local missing data. 
Consequently we limited sending requests only and directly to the 
speculated supplier. We saved power by avoiding broadcasting 
whenever there is high confidence in the prediction outcome. We 
identified and removed a large portion of unnecessary 
interconnect activities with high accuracy. We reduced energy of 
links, switches, and tag arrays by 21%, 22%, 17% respectively. 
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