
Computational and Storage Power Optimizations for the
O-GEHL Branch Predictor

Kaveh Aasaraai
aasaraai@ece.uvic.ca

Amirali Baniasadi
amirali@ece.uvic.ca

Ehsan Atoofian
eatoofia@ece.uvic.ca

Electrical and Computer Engineering Department
University of Victoria

3800 Finnerty Rd.
Victoria, BC, Canada

ABSTRACT
In recent years, highly accurate branch predictors have been
proposed primarily for high performance processors. Un-
fortunately such predictors are extremely energy consuming
and in some cases not practical as they come with excessive
prediction latency. One example of such predictors is the
O-GEHL predictor. To achieve high accuracy, O-GEHL re-
lies on large tables and extensive computations and requires
high energy and long prediction delay.

In this work we propose power optimization techniques
that aim at reducing both computational complexity and
storage size for the O-GEHL predictor. We show that by
eliminating unnecessary data from computations, we can re-
duce both predictor’s energy consumption and delay. More-
over, we apply information theory findings to remove re-
dundant storage, without any significant accuracy penalty.
We reduce the dynamic and static power dissipated in the
computational parts of the predictor by up to 74% and 65%
respectively. Meantime we improve performance by up to
12% as we make faster prediction possible.

Categories and Subject Descriptors
C.1.0 [Computer Systems Organization]: Processor Ar-
chitectures—General

General Terms
Design Performance

Keywords
Power-Aware Microarchitectures, O-GEHL, Branch Predic-
tion

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’07, May 7–9, 2007, Ischia, Italy.
Copyright 2007 ACM 978-1-59593-683-7/07/0005 ...$5.00.

1. INTRODUCTION
Perceptron based predictors are highly accurate. The high

accuracy is the result of exploiting long history lengths [9]
and is achieved at the expense of high complexity.

The Optimized GEometric History Length (or simply O-
GEHL) predictor is an example of a perceptron like pre-
dictor. O-GEHL relies on exploiting behavior correlations
among branch instructions. To collect and store as much
information as possible, the O-GEHL branch predictor uses
multiple tables equipped with wide counters. The predic-
tor uses the collected data and performs many steps before
making the prediction. These steps include reading several
counters from the tables and performing several computa-
tions (e.g., additions and comparisons) on the collected data.

In this work we revisit the O-GEHL predictor and show
that while the conventional scheme provides high prediction
accuracy, it is not efficient from the energy point of view.
We are motivated by the following observations. First, our
study shows that not all the computations performed by
O-GEHL are necessary. This is particularly true for compu-
tations performed on counter lower bits. As we show later,
not all counter bits always impact the prediction outcome.
Therefore excluding less important bits from the computa-
tions, while reducing energy consumption, may not impact
accuracy. Second, we have observed that the tables used
by O-GEHL store redundant data. We show that the stored
data can be represented using less storage if this redundancy
is taken into account.

We rely on the above observations and introduce two pow-
er optimization techniques. Our techniques aim at reduc-
ing the power dissipated by the computation and storage
resources. We reduce power for computation resources by
eliminating unnecessary and redundant counter bits from
computations and by accessing and using fewer bits at the
prediction time. We reduce power for storage resources by
representing the required data using less bits. We achieve
this by having multiple counters sharing their lower bits. We
show that by intelligent bit sharing it is possible to reduce
predictor size while maintaining its accuracy. It should be
noted that since our optimizations are not performed dy-
namically, they come with no latency or power overhead at
runtime.

By applying our techniques we not only reduce power but
also improve processor performance. This is due to the fact

105

…

+

Counter

Sign (result) prediction direction

Counter

Counter Tables

Figure 1: The O-GEHL branch predictor using mul-
tiple tables and different indexes. Sum of all the
counters is used to make the prediction.

that by eliminating unnecessary computations we reduce
prediction latency, resulting in a faster yet highly accurate
prediction. We reduce the dynamic and static power dissi-
pation associated with predictor computations by 74% and
65% respectively while improving performance up to 12%.

The rest of the paper is organized as follows. In Section 2
we discuss O-GEHL background. In Section 3 we discuss the
motivation. In Sections 4 and 5 we introduce our optimiza-
tions. In Section 6 we explain our simulations methodology
and report results. In Section 7 we discuss related work. In
Section 8 we offer concluding remarks.

2. BACKGROUND
The O-GEHL branch predictor [14] uses multiple tables

to store counters for each branch instruction. O-GEHL in-
dexes tables relying on different hashing functions which use
different history lengths. This is mainly done to exploit dif-
ferent history patterns and correlations while reducing the
destructive aliasing effect. The history lengths used form a
geometric series making use of both long and short history
lengths possible.

As presented in Figure 1, the O-GEHL predictor takes
the following steps to make a prediction. First, the predic-
tor loads each counter from a different table using different
indexing functions. Second, an adder tree computes the sum
of all the counters. Third, the predictor makes the prediction
based on the sum’s sign.

At the update time, the predictor updates the counters
using the actual outcome of the branch instruction. In case
of a taken branch, the predictor increments all the associated
counters. The predictor decrements all associated counters
if the branch’s outcome is not taken.

The correlation among branch instructions is collected us-
ing the constructive aliasing implicit in the indexing func-
tions. A counter being used by two or more different branch

Result (All Bits)
Result (High Bits)

Counter Values

= 1 + -3 + 2 + -1 + -8 + 5 + 4 + -2 = -2 à Not Taken
= 0 + -1 + 0 + -1 + -2 + 1 + 1 + -1 = -3 à Not Taken

11100100010110001111001011010001Binary

-245-8-12-31Decimal

Figure 2: The first calculation uses all counter bits
and predicts the branch outcome as “Not taken”.
The second one uses only higher bits (underlined)
and results in the same direction.

instructions is practically storing correlation data between
those branches effectively improving accuracy.

3. MOTIVATION
As presented in Figure 1, the O-GEHL predictor uses mul-

tiple counters per branch instruction. For every direction
prediction, the predictor computes the sum of all the in-
dexed counters.

The complexity of the computations involved in the sum-
mation process makes it a slow and energy hungry one. This
process requires an adder tree, with a size and complexity
proportional to the counters’ widths. The wider the counters
are, the more complex the summation process will be. Note
that the 64Kbits O-GEHL predictor proposed for CBP-1 [13]
uses a combination of 4- and 5-bit counters to achieve the
best accuracy.

Our study shows that the conventional O-GEHL scheme
is not efficient from the energy point of view. In particular
we have made the following observations.

a) Our study shows that not all counter bits are equally
important in making accurate predictions. In particular,
higher order bits are more likely to impact the final outcome
compared to lower order bits. In Figure 2 we present an
example to provide better understanding.

Outcome Difference

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

vo
rt

ex

bz
ip

2

tw
ol

f

A
ve

ra
ge

1 bit 2 bits 3 bits

Figure 3: How often removing the lower n bits from
the computations results in a different outcome com-
pared to the scenario where all bits are considered.
Bars from left to right report for scenarios where
one, two or three lower bits are excluded.

106

To investigate this further, in Figure 3 we report how ex-
cluding the lower n bits of each counter impacts prediction
outcome. As reported, on average, 0.4%, 0.9%, and 1.8%
of time eliminating the lower one, two or three bits results
in a different outcome respectively. This difference is worst
(2.7%) when the lower three bits are excluded for twolf (See
Section 6 for methodology).

We conclude from Figure 3 that eliminating lower order
bits (referred to as LOBs) of the counters from the predic-
tion process and using only higher order bits (referred to as
HOBs) would not significantly affect the predictor’s accu-
racy. We use this observation and reduce predictor’s latency
and power dissipation.

b) In Figure 4 we report how often the three lower order
bits of the counters used by O-GEHL have the maximum or
minimum possible values. As reported on average more than
60% of the time the counter value is biased. This suggests
that using three bits per counter may be too much as not all
counter values are equally frequent. This bias motivates us
to reduce storage size by representing lower order bits using
fewer resources (more on this in Section 5).

Based on the above observations, in this work we propose
two optimization methods for the O-GEHL branch predictor.
First, we reduce the computation complexity associated with
making predictions. Second, we reduce the predictor’s table
sizes as we represent the same information using less storage.

4. LOB ELIMINATION
Considering the data presented in Section 3, we suggest

eliminating the LOBs of the counters from the lookup and
summation process. During predictor update, however, we
increment/decrement counters without excluding any of the
lower bits.

In Figure 5 we present our scheme. In this scheme, the
adder tree does not load or use all counter bits. Instead, the
adder tree bypasses the LOBs of the counters, and performs
the accumulation process only on the HOBs. Eliminating
LOBs reduces power but can impact accuracy and perfor-
mance.

Lower Bits Bias

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

vo
rt

ex

bz
ip

2

tw
ol

f

A
ve

ra
ge

Figure 4: Bars show the percentage of time three
lower bits of the counters are biased. On average
60% of time counters are biased compared to 25%
on a uniform distribution.

…

+

HOBs LOBs HOBs LOBs

Counter Tables

Sign (result) prediction direction

Figure 5: The optimized adder tree bypasses LOBs
of the counters and performs the addition only on
the HOBs. Eliminating LOBs results in a smaller
and faster adder tree.

a) Accuracy and Performance: The number of input
bits decides the adder tree size used in the O-GEHL predic-
tor. Excluding LOBs from the computation reduces adder
tree’s input size resulting in a shorter computation time.
This makes faster prediction possible but can potentially
harm accuracy.

A previous study on branch prediction delay shows that
further prediction accuracy improvement may not be worth-
while if it results in a slower prediction scheme[8]. Re-
portedly a relatively accurate single-cycle latency predictor
outperforms a 100% accurate predictor with two cycles la-
tency[8]. This observation motivates us to study whether the
prediction speedup obtained by eliminating LOBs is worth
the accuracy cost. In Section 6 we investigate this trade-
off and show that for the benchmarks used in this work
the performance improvements achieved by faster prediction
outweigh the cost associated with the extra mispredictions.

b) Power: We reduce both the dynamic and the static
power dissipated by the predictor. As we reduce adder tree’s
size, fewer gates are used in its structure. Consequently, it
dissipates less static power. We also reduce dynamic power
as fewer switching activities occur.

We eliminate LOBs from the computations necessary at
the prediction time. Therefore reading all bitlines is no
longer necessary. One straightforward mechanism to make
this possible is to decouple LOBs and HOBs. Accordingly,
we store LOBs and HOBs in two separate set of tables. Fig-
ure 6 shows this in more detail.

At the prediction time, the predictor accesses only the
set of tables storing the HOBs, saving the energy consumed
for accessing LOBs in the conventional O-GEHL predictor.
Note that while we save the energy spent on wordline, bitline
and sense amplifiers, we do not reduce the decoder energy
consumption as we do not reduce the number of table entries
for this optimization.

107

…

+

HOBs HOBs

Counter Tables – HOB set Counter Tables – LOB set

Sign (result) prediction direction

Figure 6: Predictor tables are divided into two sets,
HOB set and LOB set. Only the HOB set is accessed
at the prediction time in order to reduce power dis-
sipation.

5. ENTROPY-AWARE STORAGE
In this Section we propose a scheme to reduce predictor

tables’ sizes. We measure the information conveyed by the
counters and compute their entropy and the necessary num-
ber of bits required to carry this information. Knowing the
exact entropy of these bits, we can avoid dedicating unnec-
essary storage.

5.1 Entropy
The formal definition of the information a message carries

depends on the probability of that message. The information
carried by each message can be represented as:

I = − log2 P

where P is the message occurrence probability. Shannon’s
theorem states that number of bits needed to represent a
messages set is equal to its entropy. Entropy is defined as:

H =
∑
i∈M

PiIi

where M is the message set. If we have a b-bit counter, we
have 2b possible messages. Therefore we can compute its
entropy as:

H =

2b−1∑
i=0

PiIi =

2b−1∑
i=0

−Pi log2 Pi

where Pi is the probability of the counter having a value of
i. In the case of having equal probabilities for all counter
values, message set entropy is equal to b bits, which is the
number of bits we have already dedicated. However, if any
message has a higher probability, message set’s entropy de-
creases to a value less than 2b, meaning that it is possible
to represent this message set with less than b bits. Know-
ing the amount of information carried by each message in
the set, we can derive the set’s entropy and determine the
actual number of bits required for representation.

Counter Tables – HOB set Counter Tables – LOB set

Counter 1

Counter 2

Figure 7: Two counters share their LOBs. The pre-
dictor indexes the same LOB entry for counters us-
ing different HOBs.

Compression Ratio

0%

10%

20%

30%

40%

50%

60%

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

vo
rt

ex

bz
ip

2

tw
ol

f

A
vg

Figure 8: Compression ratio for data carried by
three LOBs. On average, the data can be com-
pressed to one-fourth of its size.

Note that the entropy of the message set may not always
be an integer number, requiring several entries sharing a
single bit. To this end, we exploit sharing groups in which
counters share their bits. Under this situation, the group
size determines the real number of bits being dedicated to
each counter. A previous study has used a similar approach
to share the hysteresis bits of the Gshare predictor [10]. In
Figure 7 we show an example clarifying this further.

To reduce storage size we exploit the bias of the LOBs
presented in Section 3, and change the information repre-
sentation. In order to measure LOBs’ entropy, we record
counters values at prediction time. We compress the stored
information using gzip program with ”–best” flag. Similar
to previous study we use the compression ratio to estimate
the entropy of the message set [10].

Figure 8 shows the compression ratio for the data carried
by three lower bits of the O-GEHL counters. As reported
on average less than 25% of current reserved bits suffice to
carry the information. In order to fascilitate using fewer
bits, we have multiple entries share their LOBs. We form
counter groups of up to size four, effectively avoiding using

108

Table 1: Processor Microarchitectural Configura-
tions

Fetch/Decode/Commit 6
BTB 512

L1 I-Cache 32 KB, 32B blk, 2 way
L1 D-Cache 32 KB, 32B blk, 4 way

L2 Unified-Cache 512 KB, 64B blk, 2 way
L2 Hit Latency 6
L2 Miss Latency 100
Predictor Budget 64Kbits

Adder Tree's Latency

0

0.5

1

1.5

2

2.5

O-GEHL O-GEHL-1/1 O-GEHL-2/1 O-GEHL-3/1

T
im

e
(n

s)

Figure 9: Time / Cycle required to compute the sum
of counters.

the redundant storage. However, and in order to maintain
accuracy, conservatively, we use a group size of two where
every two counters share their LOBs. Note that having a
power of two group size simplifies implementation issues. As
a result, we reduce the table size by half.

6. METHODOLOGY AND RESULTS
For our simulations, we modify the SimpleScalar tool set

[4] to include the conventional O-GEHL branch predictor
and our proposed optimizations. We use Simpoint [15] to
identify representative 500 million instructions regions of the
benchmarks. We use a subset of SPEC2K-INT benchmarks
for our simulations.

Table 1 reports the baseline processor used in our study.
For predictor configuration, we use the 64Kb budget O-
GEHL predictor proposed in CBP-I [13].

For predictor energy and timing reports, we use Synop-
sys Design Compiler synthesis tool assuming the 0.18 um
technology. We use the high effort optimization option of
the Design Compiler, and optimize the circuit for delay. We
simulated both the conventional and the optimized O-GEHL
predictors. We also use CACTI [16] to compute the predic-
tor table access time and power dissipation.

For our simulations, we assume the processor has a 2GHz
frequency.

In the interest of space we use the O-GEHL-n/s notation
to refer to different low-complexity predictors suggested in
this study. We use O-GEHL-n/s to refer to an O-GEHL pre-
dictor in which the lower n bits of the counters are excluded

Table 2: Table Access Time / Power Dissipation

Predictor
Access Time (ns) Energy (pJ)
Predict Update Predict Update

O-GEHL 1.15 1.15 167.04 167.04
O-GEHL-1/1 1.15 1.15 149.02 167.55
O-GEHL-2/1 1.10 1.10 130.68 167.52
O-GEHL-3/1 1.08 1.10 112.34 167.52

Adder Tree's Power Reduction

0%
10%
20%
30%
40%
50%
60%
70%
80%

O-GEHL-1/1 O-GEHL-2/1 O-GEHL-3/1

Dynamic Power Static Power

Figure 10: Energy reduction of the adder tree com-
pared to conventional O-GEHL. Results are shown
for O-GEHL-1/1, O-GEHL-2/1 and O-GEHL-3/1.

from the summation process and the sharing group size is
equal to s. For example O-GEHL-3/2 refers to a low-power
O-GEHL where the lower three bits of each counter are ex-
cluded from the summation and two table entries share their
lower three bits. Also O-GEHL-3/1 refers to a low-power
O-GEHL where the lower three bits of each counter are ex-
cluded from the summation but there is no lower bit sharing,
i.e., group size is one.

6.1 Timing
Figure 9 reports time (in nanoseconds) and the number

of cycles required to compute the predictor computation re-
sult. We report results for the original O-GEHL predictor
and three different optimized ones. As reported, the origi-
nal predictor takes 5 clock cycles to compute the result. By
eliminating one bit from the computation process no clock
cycle is saved. While our study shows that by removing two
or three bits one and two clock cycles can be saved respec-
tively, in this study we take a conservative approach and
assume that only one clock cycle is saved after eliminating
two or three lower bits.

Table 2 reports predictor’s table access time for four dif-
ferent O-GEHL predictors. Since the optimized predictor
accesses only the LOB tables at the prediction time, access
time is slightly lower.

6.2 Power Dissipation
Figure 10 reports the reduction in both leakage and dy-

namic energy consumption for the predictor’s adder tree.
Results are obtained by gate level synthesis of the circuit.
Eliminating one bit saves up to 41% of the dynamic energy

109

Prediction Accuracy

85%
87%
89%
91%
93%
95%
97%
99%

101%
gz

ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

vo
rt

ex

bz
ip

2

tw
ol

f

A
ve

ra
ge

H
it

 R
at

io

O-GEHL O-GEHL-1/1 O-GEHL-2/1
O-GEHL-3/1 O-GEHL-3/2

Figure 11: Prediction accuracy for the conventional
O-GEHL predictor and four optimized versions,
O-GEHL-1/1, O-GEHL-2/1, O-GEHL-3/1 and O-
GEHL-3/2. The accuracy loss is negligible.

and 44% of the static energy consumption. Energy reduc-
tion is higher when the number of eliminated bits increases.
This is the result of exploiting smaller adders.

Table 2 reports the power dissipated while accessing HOB
and LOB tables. At the prediction time, only LOB tables
are accessed whereas at the update time, both sets are ac-
cessed. Since the same decoder is used for each pair of tables,
accessing two tables at the update time does not impose any
noticeable power overhead.

6.3 Prediction Accuracy
As we use fewer bits for making prediction, we can poten-

tially harm accuracy. To investigate this further in Figure 11
we compare prediction accuracy for five different predictors:
The original O-GEHL predictor, O-GEHL-1/1, O-GEHL-
2/1, O-GEHL-3/1 and O-GEHL-3/2. On average prediction
accuracy is decreased by 0.06%, 0.1%, 0.3% and 0.5% for O-
GEHL-1/1, O-GEHL-2/1, O-GEHL-3/1 and O-GEHL-3/2
respectively. Maximum accuracy loss is 1.1% for twolf un-
der O-GEHL-3/2.

Sharing the LOBs would result in an overall smaller stor-
age. To make better evaluation of our scheme possible, we
also compare the accuracy of an optimized O-GEHL pre-
dictor (sharing groups of size two for three low order bits)
to a conventional O-GEHL using the same real-estate bud-
get (but not sharing the LOBs). As reported in Figure 12,
the optimized O-GEHL predictor achieves higher accuracy
across all applications except for crafty.

6.4 Performance
Figure 13 reports processor’s overall performance com-

pared to a processor using the original O-GEHL predictor.
We report for four different processors using O-GEHL-1/1,
O-GEHL-2/1, O-GEHL-3/1 and O-GEHL-3/2 branch pre-
dictors. As reported on average we improve performance
by 4.7%, 4.6%, 4.3% and 3.9% for O-GEHL-1/1, O-GEHL-
2/1, O-GEHL-3/1 and O-GEHL-3/2 respectively. Although
the optimized O-GEHL predictors achieve slightly lower ac-
curacy compared to the original one, the overall processor

Sharing Scheme Accuracy

82%
84%
86%
88%
90%
92%
94%
96%
98%

100%

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

vo
rt

ex

bz
ip

2

tw
ol

f

H
it

 R
at

io

Optimized O-GEHL O-GEHL

Figure 12: Accuracy for an optimized O-GEHL pre-
dictor (sharing groups of size two for three LOBs)
and a conventional O-GEHL using the same real-
estate budget.

Performance Improvement

-2%
0%
2%
4%
6%
8%

10%
12%
14%

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

vo
rt

ex

bz
ip

2

tw
ol

f

A
vg

IP
C

 In
cr

ea
se

O-GEHL-1/1 O-GEHL-2/1 O-GEHL-3/1 O-GEHL-3/2

Figure 13: Performance improvement compared to a
processor using the conventional O-GEHL predictor.
Results are shown for processors using O-GEHL-1/1,
O-GEHL-2/1, O-GEHL-3/1 and O-GEHL-3/2 pre-
dictors.

performance is higher. As explained earlier, this is the result
of achieving faster prediction by eliminating LOBs.

7. RELATED WORK
Loh et al. [10] used the hysteresis bit bias to reduce ta-

ble size in branch predictors using 2-bit saturating counters.
They used data compression techniques and showed that
hysteresis bit’s entropy in 2-bit saturating counters is less
than 1-bit.

Loh and Jimenez [11] introduced two optimization tech-
niques for perceptron. They proposed a modulo path-history
mechanism to decouple the branch outcome history length
from the path length. They also suggested bias-based filter-
ing exploiting the fact that neural predictors can easily track
strongly biased branches whose frequencies are high.

110

Aasaraai and Baniasadi [1] proposed weight disabling to
reduce branch prediction delay in the perceptron branch pre-
dictor. They dynamically reduce adder tree’s delay by iden-
tifying and eliminating noneffective weights from computa-
tions.

Parikh et al. explored how branch prediction impacts
processor power dissipation. They introduced banking to
reduce the active portion of the predictor. They also intro-
duced prediction probe detector (PPD) to identify when a
cache line has no branches so that a lookup in the predictor
buffer/BTB can be avoided [12].

Baniasadi and Moshovos introduced Branch Predictor Pre-
diction (BPP) [2]. They stored information regarding the
sub-predictors accessed by the most recent branch instruc-
tions executed and avoided accessing underlying structures.
They also introduced Selective Predictor Access (SEPAS) [3]
which selectively accessed a small filter to avoid unnecessary
lookups or updates to the branch predictor.

Huang et al. used profiling to reduce branch predictor’s
power dissipation [7]. They disabled tables that do not im-
prove accuracy and reduced BTB size for applications with
low number of static branches.

Chang et al. [5] suggested identifying easily predictable
branches and avoiding the pattern history table usage for
such branches to reduce aliasing.

Eden and Mudge [6] introduced YAGS to reduce aliasing
in the pattern history table.

Jimenez et al. [8] suggested using an overriding branch
predictor to reduce delay. They used two predictions, one
faster and one slower and less accurate consecutively.

Our work is different from all the above studies as it elim-
inates unnecessary and redundant computations for the O-
GEHL predictor to reduce power. Unlike many previously
suggested techniques, our optimizations do not come with
any timing or energy overhead as we do not perform any
extra computation or use any additional storage.

8. CONCLUSIONS
We studied the O-GEHL predictor and showed that by

identifying and eliminating unnecessary computations, both
static and dynamic power dissipation can be reduced con-
siderably. We also showed that avoiding such computations
reduces prediction latency, which results in better perfor-
mance.

Moreover, we suggested exploiting sharing groups in which
counters share their bits to reduce the necessary storage.
Using sharing groups, we reduce predictor’s table sizes and
therefore power dissipation.

9. ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and

Engineering Research Council of Canada, Discovery Grants
Program and Canada Foundation for Innovation, New Op-
portunities Fund.

10. REFERENCES
[1] K. Aasaraai and A. Baniasadi. Low-power perceptron

branch predictor. Journal of Low Power Electronics,
2(3):333:341, 2006.

[2] A. Baniasadi and A. Moshovos. Branch predictor
prediction: A power-aware branch predictor for
high-performance processors. In Proceedings of 20th
International Conference on Computer Design (ICCD
2002), pages 458–461, 2002.

[3] A. Baniasadi and A. Moshovos. Sepas: A highly
accurate energy-efficient branch predictor. In
Proceedings of the 2004 International Symposium on
Low Power Electronics and Design, pages 38–43, 2004.

[4] D. Burger and T. M. Austin. The simplescalar tool set
version 2.0. Technical report, Technical Report 1342,
Computer Sciences Department, University of
Wisconsin, June 1997.

[5] P.-Y. Chang, M. Evers, and Y. N. Patt. Improving
branch prediction accuracy by reducing pattern
history table interference. In Proceedings of the 1996
Conference on Parallel Architectures and Compilation
Techniques (PACT ’96), pages 48–57, 1996.

[6] A. N. Eden and T. Mudge. The yags branch prediction
scheme. In Proceedings of 31st International
Symposium on Microarchitecture, 1998.

[7] M. C. Huang, D. Chaver, L. Pinuel, M. Prieto, and
F. Tirado. Customizing the branch predictor to reduce
complexity and energy consumption. In Proceedings of
33rd International Symposium on Microarchitecture,
pages 12–25, 2003.

[8] D. A. Jimenez, S. W. Keckler, and C. Lin. The impact
of delay on the design of branch predictors. In
Proceedings of the 33rd International Symposium on
Microarchitecture (MICRO-33), pages 66–77, 2000.

[9] D. A. Jimenez and C. Lin. Neural methods for
dynamic branch prediction. ACM Transactions on
Computer Systems, pages 369–397, 2002.

[10] G. H. Loh, D. S. Henry, and A. Krishnamurthy.
Exploiting bias in the hysteresis bit of 2-bit saturating
counters in branch predictors. Journal of Instruction
Level Parallelism (JILP), 5:1–32, 2003.

[11] G. H. Loh and D. A. Jimenez. Reducing the power and
complexity of path-based neural branch prediction. In
Proceedings of the 5th Workshop on Complexity
Effective Design (WCED), pages 1–8, 2005.

[12] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and
M. Stan. Power issues related to branch prediction. In
Proceedings of the Eighth International Symposium on
High-Performance Computer Architecture, pages 233–,
2002.

[13] A. Seznec. The o-gehl branch predictor. The 1st JILP
Championship Branch Prediction Competition
(CBP-1), in conjunction with MICRO-37, 2004.

[14] A. Seznec. Analysis of the o-geometric history length
branch predictor. In 32nd Annual International
Symposium on Computer Architecture, 2005.

[15] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program
behavior. In Proceedings of the Tenth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2002.

[16] D. Tarjan, S. Thoziyoor, and N. P. Jouppi. Cacti 4.0.
Technical report, HP Laboratories Palo Alto, 2006.

111

