
Journal of Systems Architecture 53 (2007) 587–601

www.elsevier.com/locate/sysarc
Speculative trivialization point advancing in
high-performance processors

Ehsan Atoofian, Amirali Baniasadi *

ECE Department, University of Victoria, Victoria BC, Canada V8P5C2

Received 3 May 2006; received in revised form 31 October 2006; accepted 19 December 2006
Available online 17 January 2007
Abstract

Trivial instructions are those instructions whose output can be determined without performing the actual computation.
This is due to the fact that for these instructions the output is often either one of the source operands or zero (e.g., addition
with or multiplication by zero). In this work we study trivial instructions and use our findings to improve performance in
high-performance processors.

In particular, we introduce speculative trivialization point advancing to detect and bypass trivial instructions as soon as
possible and as early as the decode stage. Consequently, we improve performance over a conventional processor (up to
30%) and a processor that detects and bypasses trivial instructions at their conventional point of trivialization (up to 5%).
� 2007 Elsevier B.V. All rights reserved.

Keywords: High-performance processors; Trivial instructions; Value prediction
1. Introduction

A trivial instruction (TI) is an instruction whose
output can be determined without performing the
actual computation. Almost all arithmetic and logic
computations could be trivialized. Examples are
and or add instructions where one of the input oper-
ands is zero. It is important to note that (a) an opti-
mizing compiler is often unable to remove TIs and
(b) TIs do not heavily depend on program specific
inputs [7].

TIs can account for as much as 20% of the exe-
cuted instructions in some applications. Executing
1383-7621/$ - see front matter � 2007 Elsevier B.V. All rights reserved

doi:10.1016/j.sysarc.2006.12.009

* Corresponding author.
E-mail address: amirali@ECE.UVic.CA (A. Baniasadi).
such instructions, unnecessarily, results in extra
latency and power dissipation. To exploit this inef-
ficiency previous study has suggested detecting and
bypassing TIs to improve performance [7]. By skip-
ping TIs we improve performance in two ways:
First, we determine the TI outcome sooner and
without performing the computation. As a result,
instructions depending on the TI outcome can exe-
cute sooner. Second, we increase the number of free
resources, reducing the number of structural haz-
ards and instruction stalls.

Assuming a typical load/store ISA, each instruc-
tion may have up to two source operands. We refer
to the operand which trivializes the operation as the
trivializing operand (TO). An example of a TO is
the operand equal to zero in an add operation.
We refer to the other operand, (e.g., the non-zero
.

mailto:amirali@ECE.UVic.CA

Table 1
Fully- and semi-trivial instructions and their trivializing operands

Operation Fully triviality condition

Multiplication: A*B A = 0 or B = 0
Division: A/B A = 0
AND: A & B A = 0 · 00000000 or

B = 0 · 00000000
Logical shift: A� B, A� B A = 0
Arithmetic shift: A� B, A� B A = 0

Operation Semi triviality condition
Addition: A + B A = 0 or B = 0
Subtraction: A � B B = 0
Multiplication: A*B A = 1 or B = 1
Division: A/B B = 1
AND A&B A = 0xffffffff or B = 0xffffffff
OR: AjB A = 0 · 00000000 or

B = 0 · 00000000
XOR: A XOR B A = 0 · 00000000 or

B = 0 · 00000000
Logical shift: A� B, A� B B = 0
Arithmetic shift: A� B, A� B B = 0

1 Between the two source operands of each instruction the non-
critical operand is the one which becomes available sooner than
the other. Since it is impossible to know the semi-trivial
instruction outcome before both operands are known, speculat-
ing the non-critical trivial operand does not result in early
instruction execution.

588 E. Atoofian, A. Baniasadi / Journal of Systems Architecture 53 (2007) 587–601
operand in the add operation) as the non-trivializing

operand (NTO).

To detect a TI, the instruction opcode and source
operands should be known. While the opcode is
known as early as instruction decode, source oper-
ands may become available later. The moment
source operands and the opcode are known a TI
can be identified and bypassed. We refer to this
moment in time as the Trivialization Point (TP). Per-
formance improvement achieved by bypassing a TI
depends on how early the TP occurs. In a conven-
tional processor TP coincides with the source oper-
ands availability time or instruction decode,
whichever comes later. This may occur at anytime
from instruction decode time (for already available
source operands) to instruction issue time (for
instructions whose source operands are not avail-
able at decode time).

In this paper we show that for the majority of the
TIs, TP occurs too late to be exploited efficiently.
In other words, by the time we know about the
instruction triviality, the instruction has already
consumed many processor resources. We use value
prediction to advance the trivialization point and
to identify TIs at a point earlier than their original
TP. We refer to our technique as speculative TP

advancing (or simply TP-advancing). TP-advancing
improves performance by breaking dependency
chains earlier than when it is done in a conventional
processor.

While identifying TIs is possible as soon as the
TO and the instruction opcode are known, comput-
ing the result may not always require knowledge of
both source operands. In some cases, e.g., multiply-
ing by zero, we do not need both operands to com-
pute the result as the result does not depend on the
NTO. In other cases, e.g., addition to zero, both
operands are needed. We refer to those TIs whose
outputs can be obtained knowing only one of the
operands as fully-trivial instructions. We refer to
those TIs whose result can be computed only after
knowing both operands as semi-trivial instructions.
In Table 1 we report fully- and semi-trivial compu-
tations studied in this work. We report both the
operation and the trivializing source operand value.
We exclude all instructions with invalid operands
(e.g., zero divide by zero) in this study. It is possible
to extend our study further to include other instruc-
tion types (e.g., ABS). However, this will not impact
our results as such instructions are very infre-
quent.It is important to note that the result of a
TI is either zero or the NTO.
TP-advancing could be applied to both fully- and
semi-trivial computations. Accordingly, fully-trivial
instructions could be bypassed as soon as the TO is
speculated (i.e., if the NTO is not available, there is
no need to wait for its availability). Semi-trivial
instructions could be executed as soon as the NTO
is known (i.e., we wait for the NTO but speculate
the TO).

TO speculation does not always improve perfor-
mance. To be precise, there is a subset of trivial
operands, i.e., non-critical trivial values in semi-triv-
ial instructions, whose accurate and early prediction
does not improve performance.1 In this work we
study TO criticality and show that the majority of
TIs benefit from TP-advancing.

In summary, we make the following contri-
butions:

(1) We study TIs from several aspects including
locality, triviality degree, point of triviality,
frequency and distribution.

(2) We show that using value prediction to
advance instruction TP improves processor
performance considerably over a conventional

E. Atoofian, A. Baniasadi / Journal of Systems Architecture 53 (2007) 587–601 589
processor. We also show that TP-advancing
improves performance over a processor
detecting and bypassing TIs at their original
TP (referred to as the TP-original processor).

(3) We introduce a low cost hardware implemen-
tation of TP-advancing. We achieve this by
using speculation selectively and for operands
with higher data locality. We also suggest
mechanisms to identify and bypass TIs.

(4) We show that speculating trivial source oper-
ands (rather than instruction results) can
achieve higher prediction accuracy.

The rest of the paper is organized as follows. In
Section 2 we discuss TP-advancing in more detail.
In Section 3 we explain hardware implementation.
In Section 4 we present the benchmarks and the
evaluation methodology. We report our results in
Section 5. We review related work in Section 6.
Finally, in Section 7, we summarize our findings
and offer conclusions.

2. TP-advancing

In this Section we discuss TP-advancing in more
details. We provide better insight by providing a
real example in Section 2.1. In Section 2.2 we dis-
cuss TI frequency and distribution. In Section 2.3
we use instruction TP and classify TIs to decode-
and issue-trivial and study how bypassing each
group impacts performance.

2.1. Trivial instruction example

To provide better insight on how TP-advancing
improves performance, in Fig. 1, we present an
example selected from the gzip benchmark. Gzip
divides streams into blocks and compresses each
block separately by using a combination of the
LZ77 algorithm [16] and Huffman coding [17].
LZ77 generates a file which is later used by Huffman
ct_tally(distance, length)
{
…
dyn_ltree[length_code[lc]+L
…
}

deflate()
{
…
ct_tally(d, l-3);
…
}

Fig. 1. (a) Deflate function, (b) ct_tally() function, (c) part
coding to produce the final compressed file. LZ77
algorithm finds repeating sequences in the input
data stream. The first time a sequence appears
LZ77 writes it to its output file. Future reappear-
ances of the sequence are coded using two numbers:
a distance showing how far back the first appear-
ance of the sequence is located and a length repre-
senting how many characters build the sequence.
Once LZ77 has processed all data blocks the gener-
ated file is passed to Huffman coding. Note that
Huffman codes are constant within a block. By
using Huffman coding gzip further compresses the
input file.

The deflate() function is a part of gzip (Fig. 1a).
This function generates compressed data by using
LZ77 and Huffman coding. Inside of this function,
the ct_tally() function is called (Fig. 1b). Ct_tally()
saves the matched information and counts the fre-
quency of different Huffman codes. The two argu-
ments of ct_tally() are distance and length for a
matched string. Length_code is an array that relates
matched length to Huffman code. Dyn_tree[].Freq
shows the number of times a Huffman code is used
during compression. In Fig. 1c we show a part of
the assembly code corresponding to the ct_tally()
function. The first instruction in Fig. 1c loads
length_code[lc] into the R [2] register. The Huffman
code corresponding to length three is equal to zero.
This value does not change within a block. When-
ever a match with length three is detected in the
input stream, lbu loads the same value (zero) into
register R [2]. By using value prediction, we can pre-
dict the value of R [2] when ct_tally() is called in the
future. All three instructions following lbu depend
directly or indirectly on the value of R [2]. Conse-
quently, by predicting the value of R [2] (which is
the TO of addiu), dependent instructions can exe-
cute earlier. Also, addiu no longer needs ALU
resources, leaving ALU resources to instructions
which may otherwise be stalled due to structural
hazards.
ITERALS+1].Freq++;

…
lbu R [2] ,0(R[3])
addiu R [3] ,R[2] ,25 7
addu R [4] ,R[0] ,R [3]
sll R [2] ,R[4] ,0 x 2
… .

of assembly code corresponding to ct_tally() function.

590 E. Atoofian, A. Baniasadi / Journal of Systems Architecture 53 (2007) 587–601
2.2. Trivial operand frequency and distribution

To decide if detecting and bypassing TIs is
worthwhile, in Fig. 2 we report TI frequency. In
addition, and to provide better insight we also
report both fully- and semi-trivial instruction fre-
quency for a subset of SPEC’2k and MiBench
benchmarks studied here. While the entire bar
represents total TIs, the lower part of each bar
shows the frequency of semi-trivial instructions
and the upper part represents fully-trivial instruc-
tions. TI frequency can be as low as 5% and as high
as 20% for the applications studied here. Basicmath,

patrica and qsort have higher number of TIs
compared to others. Adpcm-decode has the lowest
number of TIs.

In general semi-trivial instructions outnumber
fully-trivial instruction. Fully-trivial instructions
may account for as much as one third of the total
number of TIs (e.g., jpeg-encode). Meantime they
may account for less than 1% of the total number
of TIs (e.g., adpcm-decode).
0%

5%

10%

15%

20%

25%

17
6.

gc
c

17
7.

m
es

a

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
6.

bz
ip2

30
1.

ap
si

ad
pc

m
-d

C
o

m
m

it
te

d
 In

st
ru

ct
io

n
s

Semi-Trivia

Fig. 2. TI frequency and distribution: the entire bar represents TI freque
the upper part shows fully-trivial instruction frequency.

20%

30%

40%

50%

60%

70%

add sub mult div and or

C
o

m
m

it
te

d
 In

st
ru

ct
io

n
s

Fig. 3. Instruction type t
As reported in Table 1, different instruction types
can be trivial depending on their source operand
values. As reported in Fig. 3, at least 20% of each
instruction type is trivial. In cases such as mult
and or TIs account for more than half of the instruc-
tions. A high TI percentage for an instruction type
does not always mean that the particular instruction
type has a considerable impact on performance. For
example, while 69% of the multiplications are triv-
ial, they only account for less than 2% of the
instructions executed.

2.3. Decode- and issue-trivial instructions

TI source availability time impacts performance
improvement achieved by TP-advancing. Advanc-
ing TP is only possible if the instruction operands
are not available at decode. If the TI source oper-
ands are available at decode, the TI can be identified
and bypassed without speculation. Accordingly,
based on the source operand(s) availability time(s),
we categorize TIs into two groups:
ec
od

e

ba
sic

m
at

h

jpe
g-

en
co

de

jpe
g-

de
co

de fft

pa
tri

cia

qs
or

t

l Fully-Trivial

ncy. The lower part shows semi-trivial instruction frequency while

xor shift fadd fsub fmult fdiv

riviality frequency.

E. Atoofian, A. Baniasadi / Journal of Systems Architecture 53 (2007) 587–601 591
The first group includes instructions whose
source operand(s) (both operands for semi-trivial,
the TO for fully-trivial) is/are known while they
are at the decode stage. For this group, the required
source operands have been produced early enough
so the TI could be bypassed at the decode stage.

The second group of TIs includes instructions
whose necessary operands are not available at the
decode stage. Therefore, these TIs could not be
bypassed at the decode stage and are sent to the
issue queue where they wait for their operands
and the required resources to become available. In
a conventional processor this group of TIs can only
be detected at the issue stage and when the required
source operands (again, both operands for semi-
trivial, TO for fully-trivial) are known.

We refer to the TIs detectable at decode as
decode-trivial and to those detectable at issue as
issue-trivial. In Fig. 4 we report the percentage of
decode-trivial and issue-trivial instructions. While
0%

5%

10%

15%

20%

25%

17
6.

gc
c

17
7.

m
es

a

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
6.

bz
ip2

30
1.

ap
si

ad
pc

m
-d

C
o

m
m

it
te

d
 In

st
ru

ct
io

n
s

Decode-Trivi

Fig. 4. TI frequency and distribution: the entire bar represents TI frequ
the upper part shows issue-trivial instruction frequency.

40%

20%

60%

80%

100%

17
6.

gc
c

17
7.

m
es

a

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
6.

bz
ip2

30
1.

ap
si

ad
pc

m
-d

Fig. 5. Trivializing operand
the entire bar represents total TIs, the lower part
of each bar shows the frequency of decode-trivial
instructions and the upper part represents issue-triv-
ial instructions. Issue-trivial instructions account for
the majority of the TIs for most benchmarks. How-
ever, for others (e.g., gcc and parser), decode-trivial
instructions outnumber issue-trivial instructions.

TP-advancing only applies to issue-trivial
instructions as it identifies issue-trivial instructions
earlier than when they could be identified in a con-
ventional processor. While TP-advancing relies on
accurate and early TO value prediction, accurate
TO prediction is not always helpful. To be precise,
there is a subset of TOs, i.e., non-critical TOs in
semi-trivial instructions, whose accurate and early
predications do not improve performance. Since it
is impossible to know the semi-trivial instruction
outcome before both operands are known, speculat-
ing the non-critical TO does not result in early
instruction execution. In such cases, the processor
ec
od

e

ba
sic

m
at

h

jpe
g-

en
co

de

jpe
g-

de
co

de fft

pa
tri

cia

qs
or

t

al Issue-Trivial

ency, lower part shows decode-trivial instruction frequency while

ec
od

e

ba
sic

m
at

h

jpe
g-

en
co

de

jpe
g-d

ec
od

e fft

pa
tri

cia
qs

or
t

criticality frequency.

0%

20%

40%

60%

80%

100%

17
6.

gc
c

17
7.

m
es

a

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
6.

bz
ip2

30
1.

ap
si

ad
pc

m
-d

ec
od

e

ba
sic

m
at

h

jpe
g-

en
co

de

jpe
g-

de
co

de fft

pa
tri

cia

qs
or

t

TO Value Locality NTO Value Locality Output Value Locality

Fig. 6. Bars from left to right report value locality for TOs, NTOs and TI outcomes.

592 E. Atoofian, A. Baniasadi / Journal of Systems Architecture 53 (2007) 587–601
has to wait for both operands before it can start
instruction execution. As such, no matter how early
and accurately we predict the non-critical operand;
we will not reduce the program execution time.
Fig. 5 reports how often TOs are critical in issue-
trivial instructions. As reported, for many applica-
tions, TOs are indeed often critical.

One alternative to TO prediction is to speculate
the TI result. This would make faster (speculative)
instruction execution possible as by speculating the
instruction result, we no longer have to wait for
both source operands.2 Predicting the TI outcome
would have been an attractive alternative if the TI
output was as predictable as the TO. Unfortunately,
this is not the case. To explain this further, in Fig. 6
we report value locality for TOs, NTOs and the TI
outcomes for the baseline processor (see Table 2).
Value locality describes the likelihood of the recur-
rence of a previously seen value within a register.
We report value locality for a history depth of
one, i.e., how often the retrieved operand matches
the most recently seen value. As reported, across
all benchmarks, TO shows higher value locality
compared to the NTO and TI outcome. Accord-
ingly, to maintain accuracy, we do not speculate
the output.
3. Implementation

In this work we assume that all reservation sta-
tions monitor their source operands for data avail-
ability simultaneously. We also assume that at
2 Note that in speculating one of the source operands (i.e., the
TO), sometimes (i.e., when the NTO is critical in semi-trivial
instructions), we may still have to wait for the availability of the
second operand (i.e., the NTO).
dispatch, already-available operand values are read
from the register file and stored in the reservation
station. The reservation station logic compares the
operand tags of unavailable data with the result tags
of completing instructions. Once a match is
detected, the operand is read from the bypass logic.
As soon as all operands become available in the res-
ervation station, the instruction may issue (subject
to resource availability) [18]. An alternative imple-
mentation is storing pointers to where the operand
can be found (e.g., in the register file) rather than
storing the data in the reservation station [19].
While TI bypassing could be used on top of both
implementations, here we assume the former.
3.1. Trivial bypassing hardware

Fig. 7 shows the schematic of a processor that
bypasses TIs and the procedures followed. The Triv-

ial Instruction Detection Unit (TDU) detects
decode-trivial instructions at decode (Fig. 7b).
Upon detection, the rename table is modified so it
maps the destination register to the physical register
assigned to the input source operand or to the zero
register. To avoid increasing front-end latency we
assume an increase in the number of renaming
ports. Once the renaming table is modified, we no
longer execute the TI. As such, instructions depend-
ing on the TI result can start execution immediately.
Decode-trivial instructions, once detected, do not
consume execution unit resources and do not
require an additional output register as the output
is either zero or the NTO.

To guarantee accurate code execution under TP-
advancing, after a destination register of a decode-
trivial instruction is mapped to the source operand,

TRIVIAL INST. DETECTION

FETCH
DECODE &

RENAME
ISSUE COMPLETE COMMIT

Read Operand From Register
File

Trivial? Do Nothing

Bypass Instruction:
Remap Renaming Table to Source
Operand or Register Zero

Read Operand From Bypass
Logic

Bypass Instruction:
Do not Execute, Send Zero or the
Non-Trivializing Source Operand
to Bypass Logic & Register File

No

Yes

No

Yes

Trivial? Do Nothing

Fig. 7. (a) Schematic for a pipelined processor bypassing TIs. (b) Decode-trivial instruction detection procedure. (c) Issue-trivial
instruction detection procedure.

Table 2
Base processor configuration

Reorder buffer size 128 Unified L2 256 K, 4-way SA, 64-byte blocks,
16-cycle hit latency

Load/store queue size 64 Main memory Infinite, 100 cycles
Scheduler 64 entries, RUU-like Memory port # 2
Fetch unit Up to 8 instructions/cycle 64-Entry

fetch buffer
Branch predictor 16 K GShare + 16 K bi-modal

w/16 K selector
OOO Core 8 instructions/cycle Latency from branch predict to

decode stage
8

L1 – instruction caches 64 K, 4-way SA, 32-byte blocks,
3 cycle hit latency

Decode & Renaming Latency 5

L1 – data caches 32 K, 2-way SA, 32-byte blocks,
3 cycle hit latency

Write-back to commit latency 6

E. Atoofian, A. Baniasadi / Journal of Systems Architecture 53 (2007) 587–601 593
the physical register is not released until a subse-
quent non-trivial instruction with the same destina-
tion register commits.

In order to improve performance, modern pro-
cessors wakeup consumer instructions in advance
and before the data is actually available. This makes
executing producer-consumer pairs in consecutive
cycles possible. As a result, issue-trivial instructions
would have to be issued first and then read operands
to test triviality. Therefore, we assume that issue-
trivial instructions take issue slots but produce
results without using the ALU.

To identify issue-trivial instructions, the TDU
checks the produced operand as soon as the associ-
ated tag is received by the reservation station. Upon
detecting an issue-trivial instruction, we bypass the
instruction and send the result to the write-back unit
(Fig. 7c).
3.2. Trivial value prediction

Previous work has introduced several value pre-
diction techniques including last value predictor
[2,3] stride predictor [4,20] context predictor
[4,11,27] and hybrid predictor [13,21].

We use the context predictor [11] presented in
Fig. 8. We picked this predictor as our study shows
that, compared to other alternatives, this predictor
provides good accuracy without imposing unneces-
sary overhead.

The context predictor has two tables: the Value
History Table (VHT), and the Pattern History
Table (PHT). Each VHT-entry records a tag,
LRU, data, and value history pattern (VHP) [12].
The data field stores the four most recent unique
values. LRU is an 8-bit (two bits per data value)
field which determines which value in the data field

Tag LRU Data VHP PHT

XOR

 =

PC

Valid Predicted Value

PC

Fig. 8. Structure of a context predictor.

594 E. Atoofian, A. Baniasadi / Journal of Systems Architecture 53 (2007) 587–601
should be replaced if a new value arrives. VHP is
also an 8-bit (two bits per data value) field that
records the four most recent data values used. It is
important to note that LRU and VHP fields do
not store actual values. Rather they use binary
encoding (00, 01, 10, and 11) to point to values in
the data field. Every PHT-entry holds four 2-bit
confidence counters. Every counter in PHT corre-
sponds to one value in the VHT data filed. The con-
fidence threshold is set to two. Among the four
counters in the PHT-entry the one that has highest
value is selected. If the selected entry has a value
higher than the threshold the corresponding value
in VHT is selected as the predicted value. To reduce
the overhead we do not store data values in the
VHT data field. Instead we use the 3-bit binary
codes presented to represent TOs. Note that TOs
are limited to 0, 1 and 0xffffffff (see Table 1). Since
each instruction has two source operands we need
6 combinations (requiring 3-bits) to store both the
TO and whether the operand is the first or second
source operand in the instruction.

Fig. 9 shows how accurately the 128-entry con-
text predictor with 2-bit confidence counters pre-
40%

50%

60%

70%

80%

90%

100%

17
6.

gc
c

17
7.

m
es

a

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
6.

bz
ip2

30
1.

ap
si

ad
pc

m
-d

e

Fig. 9. Prediction accuracy for the 128-
dicts TOs for the TP-advanced processor. As
reported we are able to predict trivial values with
accuracy up to 95%.

In Fig. 10 we show the architecture of a processor
that predicts trivial operands. The processor fetches
instructions from the instruction cache. In the next
step, instructions are decoded based on their opcode
and renamed to eliminate false dependency. Those
instructions whose source operands are not ready
wait in the issue window to receive the source oper-
ands from producer instructions. Upon functional
unit availability, instructions execute. To predict
the TO, we access the value predictor at the fetch
stage. Since the predictor is accessed using instruc-
tion PC, we assume accessing the predictor can be
done in parallel with instruction fetch/decode and
would not result in a deeper pipeline front-end.

Skipping TIs requires knowing whether the out-
put is zero or the NTO. This depends on the opera-
tion and may not be known at prediction time. To
address this issue we store an extra bit per predictor
entry indicating if the TI output is zero or the NTO.

While we allow speculated TIs to advance in the
pipeline, we make sure they do not commit specula-
tively. To assure this, for speculated instructions, an
extra bit (per-entry) is used to mark both the TO
and the output register in the register alias table
(RAT). We also mark the output register for
instructions depending on a TI directly or indirectly.
During register renaming, if one of the source oper-
ands of an instruction is marked as speculated we
mark the output as speculated too. Marking specu-
lated registers is necessary as future consumers
should know if they are using speculated values.
Upon validating a speculated operand, the associ-
ated TI and the depending instructions are allowed
to commit using conventional mechanisms [9]. On a
co
de

ba
sic

m
at

h

jpe
g-

en
co

de

jpe
g-

de
co

de fft

pa
tri

cia
qs

or
t

entry predictor used in this work.

FETCH DECODE &
RENAME

ISSUE Execut COMMIT

Value Predictor Update

Fig. 10. TP-advanced processor architecture.

To write back stage

… …

Functional
Unit

Ye s

No

Is P bit set?

Issue Window

Correct
Prediction

Fig. 12. D-SPEC instruction execution procedure.

E. Atoofian, A. Baniasadi / Journal of Systems Architecture 53 (2007) 587–601 595
misprediction, we use selective flush [9] so that only
the affected instructions are flushed. At the commit
stage, the predictor is updated to reflect the accu-
racy of the latest predictions.

To simulate a TP-advanced processor we assume
the modified reservation station presented in
Fig. 11. Every entry has three tag values corre-
sponding to source0, source1 and output. Every
source operand has four fields and can be either
speculated or non-speculated. To issue an instruc-
tion, the ready bit (R) of both source operands
should be set. The predict bit (P) is set when the
source operand is a speculated value.

We categorize instructions into three groups:

(1) Non-Speculated Instructions (N-SPEC):
Instructions that do not use predicted values.

(2) Directly Speculated Instructions (D-SPEC):
Instructions that have at least one speculated
TO directly predicted by the value predictor.

(3) Indirectly Speculated Instructions (I-SPEC):
Instructions that do not depend on a specu-
lated TO directly but are using a speculated
outcome produced by a D-SPEC or another
I-SPEC instruction.

N-SPEC instructions are easy to identify as their
P bits are zero and are executed in a conventional
manner. D-SPEC instructions enter the issue win-
dow and wait until their predicted TO is known.
These instructions are not executed as they are pre-
dicted as trivial. Later, if the predicted value is val-
idated, D-SPEC instructions commit (as presented
by the correct prediction path in Fig. 12). A vali-
Data Tag R P Data

Source 0

Fig. 11. Reservation station in
dated TI informs depending instructions so they
can commit. This requires forwarding the result
tag with a validation signal. In the case of a mispre-
diction, the instruction clears the P bit and sets the
corresponding R bit. The instruction stays in the
issue window until ALU becomes available. After
execution, the instruction forwards the result tag,
the result data and an invalidation signal to the
instructions waiting in issue window. Depending
instructions re-execute using the correct data value.
Depending instructions inform I-SPEC instructions
so they can re-execute too.

I-SPEC instructions may use values generated by
either other D-SPEC or I-SPEC instructions. In
both cases the P-bit of the speculated (directly or
indirectly) source operands is set. When both source
Tag R P

Source1

Output-Tag

a TP-advanced processor.

596 E. Atoofian, A. Baniasadi / Journal of Systems Architecture 53 (2007) 587–601
operands are ready (speculatively or no-specula-
tively) the instruction executes subject to resource
availability. Executed I-SPEC instructions forward
their result and the data tag to dependent instruc-
tions residing in the issue window. These instruc-
tions, as Fig. 12 shows, do not leave their issue
window entry so long their P bit is set. They wait
in the issue window until they receive the correct
data. The next steps are similar to steps taken by
D-SPEC instructions.

We use selective execution to resolve mispredic-
tions [9]. We re-execute only those instructions
whose outcome is affected by the misprediction val-
ues. One alternative is flushing all instructions after
the misspeculated instruction. We do not use this to
avoid re-executing the correctly executed
instructions.
4. Methodology

We used both the SPEC CPU2000 suite and
MiBench [22] benchmarks compiled for the MIPS-
like PISA architecture [26] used by the Simplescalar
v3.0 simulation tool set [5]. We used GNU’s gcc
compiler (flags: -O3-funroll-loops -finline-func-
tions). We simulated 500 M instructions after skip-
ping fast forward values generated by the
SimPoint toolkit [29]. We use an aggressive 8-way
superscalar processor. The processor is deeply pipe-
lined to reflect modern processors. We detail the
base processor model in Table 2.
5. Results

To evaluate TP-advancing, we compare our pro-
cessor to a conventional processor. To show that
5%
10%
15%
20%
25%
30%
35%

17
6.

gc
c

17
7.

m
es

a

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
6.

bz
ip2

30
1.

ap
si

ad
pc

m
-d

ec

TP-original

Fig. 13. Bars from left to right report performance improvement a
processor.
advancing TP improves performance, we also com-
pare to a processor which bypasses TIs detected at
their original TP. We refer to this processor as the
TP-original processor. Also, to provide better under-
standing, we report how TP-advancing impacts
average instruction issue delay. We also investigate
the overhead associated with TP-advancing and
compare performance improvement for TP-advanc-
ing to a processor using conventional value predic-
tion. In addition and to provide better insight, we
evaluate trivial instructions frequency in a processor
with higher execution bandwidth.

Our TP-advanced processor relies on a 128-entry
context value predictor. We selected this predictor
after testing alternative configurations. Our study
shows that further increases in the predictor size
do not impact performance considerably. Every
VHT-entry in the context predictor has 54 bits
(25 bits tag, 4 · 2 bits LRU, 4 · 3 bits data,
4 · 2 bits value history pattern, and 1 bit output is
zero or NTO). Every PHT-entry has 4 · 2 bits.
Therefore the total predictor size of a 128-entry pre-
dictor is less than 8 K (128 · (54 + 8)) bits.
5.1. Performance

In Fig. 13 we report performance improvements
achieved by TP-advancing over a conventional pro-
cessor. We also report the performance improve-
ment achieved by the TP-original processor. As
reported, TP-advancing improves performance
across all benchmarks over the base (between 11%
and 30%) and the TP-original processor (between
1% and 5%).

In Fig. 14 we report average instruction issue
delay reduction for the TP-original processor and
od
e

ba
sic

m
at

h

jpe
g-

en
co

de

jeg
-d

ec
od

ep fft

pa
tri

cia

qs
or

t

TP-advanced

chieved by TP-original and TP-advancing over a conventional

0%

10%

20%

30%

40%

50%

17
6.

gc
c

17
7.

m
es

a

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
6.

bz
ip2

30
1.

ap
si

ad
pc

m
-d

ec
od

e

ba
sic

m
at

h

jpe
g-

en
co

de

jpe
g-

de
co

de fft

pa
tri

cia
qs

or
t

TP-original TP-advanced

Fig. 14. Issue delay reduction by TP-original and TP-advanced compared to a conventional processor.

E. Atoofian, A. Baniasadi / Journal of Systems Architecture 53 (2007) 587–601 597
TP-advancing. Issue delay is the time instructions
wait in the issue window before their source oper-
ands and the required functional units become
available. By bypassing TIs, TI outcomes become
available sooner. Consequently, dependent instruc-
tions may not need to wait in the issue window as
much as they wait in a conventional processor.
TP-advancing impacts issue delay further as it
makes detecting a higher number of TIs possible.

5.2. Discussion

In this section we discuss how different applica-
tions react to TP-advancing. We consider TI fre-
quency, issue- and decode-trivial distribution, the
percentage of critical trivial operands and predic-
tion accuracy.

Applications could be categorized to the follow-
ing two groups based on their performance
improvement under TP-advancing compared to a
conventional processor.

1. The first group includes those showing higher
performance improvements (i.e., more than 15%).
This group includes mesa, crafty, jepg-decode, qsort,

basicmath and patricia. Qsort, patrica and basicmath

have high number of TIs which explains why they
belong to this group (see Fig. 2). Mesa, crafty and
jpeg-decode, however, have a lower number of TIs
when compared to the other three. To explain why
mesa, crafty and jpeg-decode perform so well under
TP-advancing we take into account the percentage
of issue-trivial and critical TOs presented in Figs.
4 and 5. A high percentage of TOs in mesa and
crafty are critical. This could explain the high-per-
formance improvement. As for jpeg-decode, a high
percentage of TIs are issue-trivial which may
explain why this application has high performance
improvement.

A closer look at Fig. 13 reveals that among this
group qsort shows a relatively small gap between
TP-advancing and the TP-original processor. The
fact that qsort has the lowest number of critical
TOs among this group explains this. Note that if a
TO is not critical, TP-advancing hardly results in
faster TI execution.

2. The second group includes benchmarks that
still offer acceptable performance but fall behind
the first group. We include gcc, parser, perlbmk,
bzip2, apsi, adpcm-decode, jpeg-encode, and fft in this
group as their performance improvements are less
than 15% compared to a conventional processor.

Parser, bzip2, apsi and adpcm-decode have fewer
TIs compared to the first group. Fft has fewer TIs
compared to all applications in the first group but
jpeg-decode, crafty and mesa. Fft, however, has
fewer critical TOs compared to mesa and crafty
(see Fig. 5) and fewer issue-trivials (see Fig. 6) and
lower accuracy (see Fig. 9) compared to jpeg-decode.
The fact that critical TOs are less frequent in gcc,
perlbmk and jpeg-encode compared to crafty could
explain why the three fall behind crafty in perfor-
mance while having higher number of TIs.

Note that adpcm-decode has a low TI frequency
compared to the other applications included in this
group. Nonetheless, it exhibits high performance
improvement. This is consistent with the fact that
adpcm-decode has a very high number of critical
TOs. As presented in Fig. 5 almost all TOs are crit-
ical for adpcm-decode. As a result, when compared
to the TP-original processor, adpcm-decode sees a
performance improvement better than other bench-
marks (see Fig. 13).

598 E. Atoofian, A. Baniasadi / Journal of Systems Architecture 53 (2007) 587–601
5.3. Overhead evaluation

In this section we investigate whether processor
resources could be better used for other purposes.
To investigate this, we study performance improve-
ments achieved, if, instead of using TP-advancing, a
bigger cache or a larger branch predictor is used.
Our base processor configuration is presented in
Table 2.

In Fig. 15 we report performance improvements
for TP-advancing, a processor using a twice as big
gshare branch predictor (BR-processor) and a pro-
cessor using a cache blocks twice as big (CA-proces-
sor). This processor uses 64-entry cache blocks
instead of the 32 entries used by the base processor.
Note that both the BR and CA processor bypass
TIs but do not use value prediction to advance TP.

The size of 128-entry context predictor is less
than 8 K bits. Doubling the 16 k-entries gshare
branch predictor and using a twice as big cache
0%

5%

10%

15%

20%

25%

30%

35%

17
6.

gc
c

17
7.

m
es

a

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
6.

bz
ip2

30
1.

ap
si

ad

BR CA

Fig. 15. Performance improvement for BR,

5%
10%
15%
20%
25%
30%
35%

17
6.

gc
c

17
7.

m
es

a

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
6.

bz
ip2

30
1.

ap
si

ad
pc

m
-d

ec

TP-advanced C

Fig. 16. Bars from left to right report performance improvements achie
baseline processor.
block, comes with 32 K bit and 32 K byte space
overhead, respectively. Therefore the real-estate
used by the BR- and CA-processor is 4 times and
32 times that used by TP-advancing. Also, our sim-
ulation with CACTI [32] shows that the power over-
head associated with TP-advancing is 65% and 23%
of the power overhead associated with BR- and CA-
processors, respectively. Despite this, for most
applications, TP-advancing provides better perfor-
mance improvement compared to both the BR-
and the CA-processor.

5.4. TP-advanced vs. conventional value prediction

In Fig. 16, we report performance improvements
achieved by TP-advancing and conventional value
prediction over the baseline processor. In the con-
ventional method, source operands of all instruc-
tions are speculated. We use the context predictor
with the same size for both TP-advanced and the
pc
m

ba
sic

m
at

h
cjp

eg

djp
eg fft

pa
tri

cia
qs

or
t

TP-advanced

CA, and the TP-advanced processor.

od
e

ba
sic

m
at

h

jpe
g-

en
co

de

jpe
g-

de
co

de fft

pa
tri

cia
qs

or
t

onventionalPrediction

ved by TP-advancing and conventional value prediction over the

0%

5%

10%

15%

20%

17
6.

gc
c

17
7.

m
es

a

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
6.

bz
ip2

30
1.

ap
si

ad
pc

m
-d

ec
od

e

ba
sic

m
at

h

jpe
g-

en
co

de

jpe
g-

de
co

de fft

pa
tri

cia
qs

or
t

Decode-Trivial Issue-Trivial

Fig. 17. Sensitivity of trivial instructions to processor execution bandwidth. For each benchmark, the left and right bar report trivial
instruction frequency for 8-way and 16-way processors, respectively.

E. Atoofian, A. Baniasadi / Journal of Systems Architecture 53 (2007) 587–601 599
conventional prediction. Generally, Conventional
method falls behind TP-advancing. This is mainly
due to the fact that TP-advancing uses value predic-
tion selectively and only for those operands that
have high locality. Conventional value prediction,
on the other hand, speculates source operands of
all instructions. This results in less accurate and
therefore less reliable predictions.

5.5. Impact of issue width

In this section we discuss how trivial instruction
distribution changes as we increase processor execu-
tion bandwidth. Fig. 17 reports trivial instruction
frequency for 8-way and 16-way processors. The
lower and upper part of each bar report decode-
and issue-trivial instruction frequency, respectively.
For both processors, the majority of trivial instruc-
tions are issue-trivial. We conclude from Fig. 17
that decode- and issue-trivial instruction’s frequency
does not heavily depend on processor execution
bandwidth.

6. Related work

Molina et al. [23] and Sodani and Sohi [24] used
value reuse to eliminate repetitive computations.
Our work is different as it does not rely on value
reuse. Instead we take into account triviality to skip
unnecessary computations.

Richardson [31] shows that detecting and elimi-
nating trivial instructions dynamically can reduce
the program’s execution time. Yi and Lilja [7]
extend their work by extending the scope of trivial
instructions. Tran et al. [14] evaluated dynamic
methods to reduce pressure on the register file. They
explored the impact of bypassing trivial instructions
on the register file pressure.

In our earlier work [25], we studied the effect of
trivial bypassing on power dissipation in high-per-
formance processors. We investigated power saving
in different units and showed that ALU, register file
and issue window benefit most from trivial
bypassing.

Our work is different from the above studies. We
use value prediction to advance trivialization point
and to identify and execute TIs as early as possible.
By using speculation, we improve performance by
identifying a larger number of TIs and at an earlier
stage. We also extend trivial bypassing to issue-triv-
ial instructions. We provide a detailed study of TIs
and explain how TIs can be categorized based on
their triviality kind, trivialization point, and TO
criticality. Moreover, we discussed implementation
details which were not studied in any of the above
studies.

Many studies have suggested different value pre-
diction techniques. These techniques include last
value prediction ([2,3]) stride prediction ([8,10]) con-
text prediction ([4,11]), and hybrid predictors
([12,13,28]). In this work, we used the context pre-
dictor, as our study showed that other predictors
are either less accurate or are not worth the addi-
tional complexity.

Value prediction has proven to be efficient if per-
formed with high accuracy. However, achieving
high prediction accuracies could be costly. While
many studies have introduced highly accurate value
predictors ([11–13]) there are a few which have
addressed the cost, i.e., access latency and energy,

600 E. Atoofian, A. Baniasadi / Journal of Systems Architecture 53 (2007) 587–601
associated with value prediction (e.g., [6]). One way
to reduce the cost and complexity associated with
value prediction is to use it selectively and only for
those values that there is high confidence in their
behavior.

Calder et al. [1] examined selective techniques for
using value prediction in the presence of predictor
size restrictions and misprediction penalties. They
used filtering to exploit value prediction only for
instructions on the longest data dependence path.
Consequently they minimized capacity conflicts.
We selectively use value prediction for TOs as we
have observed that TOs make good candidates for
selective value prediction since they show strong
value locality and appear frequently.

Bhargava and John [6] introduced latency and
energy aware value prediction. Their study showed
that the latency of a high-performance value predic-
tor cannot be completely hidden by the early stages
of the instruction pipeline as many studies have
assumed and can result in noticeable performance
degradation. To address this problem they studied
a value prediction approach that combined the
latency-friendly approach of decoupled value pre-
diction with a more energy-efficient implementation.

Sato and Arita [15] proposed techniques that
exploit frequent value locality, resulting in budget
reduction. They evaluated two value predictors
(i.e., the zero-value predictor and the 0/1-value pre-
dictor). Their low-cost 0/1 predictors could poten-
tially be used as attractive TO predictors as TOs
mostly consist of 0 and 1.

7. Conclusions

In this work we introduced speculative trivializa-
tion point advancing to break dependencies and
increase the number of available resources in high-
performance processors. We used value prediction
to speculate the trivializing operand of TIs and
improved performance over a conventional proces-
sor and a processor that bypasses TIs without spec-
ulating the operands.

Furthermore, we studied TI locality, behavior,
frequency and distribution. We showed that trivial
operands are attractive candidates for value predic-
tion as they show higher data locality.

We also suggested an efficient hardware imple-
mentation to detect, predict and bypass TIs. We
reviewed how bypassing predicted TIs improves
performance for applications from the SPEC2k
and MiBench. We also discussed how applications
react to our technique and compared our method
to a conventional value prediction scheme that uses
the same hardware budget to speculate source oper-
ands for all instructions.

We believe that TP-advancing and trivial compu-
tation bypassing can be exploited in other design
spaces and at alternative levels. One possible future
research avenue is investigating trivial functions in
programs. By detecting and bypassing such func-
tions the processor can run programs faster and
with spending less energy. We also believe that
due to its low overhead, bypassing trivial computa-
tions can also be used in the embedded space and
for processors similar to intel’s XScale [30].
Acknowledgments

This work was supported by the Natural Sciences
and Engineering Research Council of Canada, Dis-
covery Grants Program and Canada Foundation
for Innovation, New Opportunities Fund.
References

[1] B. Calder, G. Reinman, D.M. Tullsen, Selective value
prediction, in: 25th International Symposium on Computer
Architecture, May 1999, pp. 64–74.

[2] M.H. Lipasti, J.P. Shen, Exceeding the data flow limit via
value prediction, in: 29th International Symposium on
Microarchitectures, December 1996, pp. 226–237.

[3] M.H. Lipasti, C.B. Wilkerson, J.P. Shen, Value locality and
load value prediction, in: 7th International Conference on
Architectural Support for Programming Languages and
Operating Systems, October 1996, pp. 138–147.

[4] Y. Sazeides, J.E. Smith, The predictability of data values, in:
30th International Symposium on Microarchitecture,
December 1997, pp. 248–258.

[5] D. Burger, T.M. Austin, S. Bennett, Evaluating Future
Microprocessors: The SimpleScalar Tool Set, Technical
Report CS-TR-96-1308, University of Wisconsin-Madison,
July 1996.

[6] R. Bhargava, L. John, Latency and energy aware value
prediction for high-frequency processors, in: Proceedings of
16th ACM International Conference on Supercomputing,
June 2002, pp. 45–56.

[7] J.J. Yi, D.J. Lilja, Improving Processor Performance by
Simplifying and Bypassing Trivial Computations, in: IEEE
International Conference on Computer Design: VLSI in
Computers and Processors, Germany, August 2002, pp. 462–
465.

[8] F. Gabbay, A. Mendelson, The effect of instruction fetch
bandwidth on value prediction, in: 25th International
Symposium on Computer Architecture, June 1998, pp.
272–281.

[9] B. Rychlik, J. Faistl, B. Krug, J.P.Shen, Efficacy and
performance impact of value prediction, in: International

E. Atoofian, A. Baniasadi / Journal of Systems Architecture 53 (2007) 587–601 601
Conference on Parallel Architectures and Compilation
Techniques, October 1998, pp. 148–154.

[10] F. Gabbay, A. Mendelson, Speculative execution based on
value prediction, Technical Report 1080, Technion – Israel
Institute of Technology, November 1996.

[11] K. Wang, M. Franklin, Highly accurate data value predic-
tion using hybrid predictors, in: 30th International Sympo-
sium on Microarchitecture, December 1997, pp. 281–290.

[12] S. Lee, Y. Wang, P. Yew, Decoupled value prediction on
trace processors, in: 6th International Symposium on High
Performance Computer Architecture, January 2000, pp. 231–
240.

[13] B. Rychlik, J.W. Faistl, B.P. Krug, A.Y. Kurland, J.J. Sung,
M.N. Velev, J.P. Shen, Efficient and accurate value predic-
tion using dynamic classification, Technical report, Carnegie
Mellon University, 1998.

[14] L. Tran, N. Nelson, F. Ngai, S. Dropsho, M. Huang.
Dynamically reducing pressure on the physical register file
through simple register sharing, in: International Symposium
on Performance Analysis of Systems and Software, March
2004.

[15] T. Sato, I. Arita, Low-cost value predictors using frequent
value locality, in: High Performance Computing: 4th Inter-
national Symposium, ISHPC 2002, Kansai Science City,
Japan, May 2002.

[16] J. Ziv, A. Lempel, A universal algorithm for sequential data
compression, IEEE Transactions on Information Theory 23
(3) (1997) 337–343.

[17] D.A. Huffman, A method for the construction of minimum
redundancy codes, in: Proceedings of the Institute of Radio
Engineers, vol. 40, Number 9, September 1952, pp. 1098–
1101.

[18] J. Hennessy, D. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kauffman, San Francisco,
CA, 2003.

[19] G. Sohi, Instruction issue logic for high-performance,
interruptible, multiple functional unit, pipelined computers,
IEEE Transactions on Computers 39 (1990) 349–359.

[20] R. Eickemeyer, S. Vassiliadis, A load instruction unit for
pipelined processors, IBM Journal of Research and Devel-
opment 37 (1993) 547–564.

[21] G. Reinman, B. Calder, Predictive techniques for aggressive
load speculation, in: 31st International Symposium on
Microarchitecture, Dallas, Texas, IEEE Computer Society
Press, Los Alamitos, CA, 1998, pp. 127–137.

[22] M. Guthuas, J. Ringenberg, D. Ernst, T. Austin, T. Mudget,
R. Brown, MiBench: a free, commercially representative
embedded benchmark suite, in: IEEE 4th Annual Workshop
on Workload Characterization (WWC-4), December 2001.

[23] C. Molina, A. González, J. Tubella, Dynamic removal of
redundant computations, in: Proceedings of the 13th inter-
national conference on Supercomputing, NY, USA, 1999,
pp. 474–481.

[24] A. Sodani, G. Sohi, Dynamic Instruction Reuse, in: Inter-
national Symposium on Computer Architecture, ACM
Press, New York, NY, 1997, pp. 474–481.

[25] E. Atoofian, A. Baniasadi, Improving energy-efficiency in
high-performance processors by bypassing trivial instruc-
tions, in: the IEE Proceedings Computer and Digital
Techniques, vol. 153, Issue 5, September 2006, pp. 313–322.

[26] Kenneth C. Yeager, The MIPS R10000 Superscalar Micro-
processor, IEEE Micro 16 (2) (1996) 28–40.

[27] B. Goeman, H. Vandierendonck, K. de Bosschere, Differen-
tial FCM: increasing value prediction accuracy by improving
table usage efficiency, in: 7th International Symposium on
High Performance Computer Architecture, January 2001,
pp. 207–216.

[28] Martin Burtscher, Benjamin G. Zorn, Hybrid load-value
predictors, IEEE Transactions on Computers 51 (7) (2002)
759–774.

[29] T. Sherwood, E. Perelman, G. Hamerly, B. Calder, Auto-
matically characterizing large scale program behavior, in:
10th International Conference on Architectural Support for
Programming Languages and Operating Systems, October
2002.

[30] L.T. Clark, E.J. Hoffman, J. Miller, M. Biyani, Y. Liao, S.
Strazdus, M. Morrow, K.E. Velarde, M.A. Yarch, An
embedded 32-bit microprocessor core for low-power and
high-performance applications, IEEE Journal of Solid-State
Circuits 36 (11) (2001) 1599–1608.

[31] S. Richardson, Caching function results: faster arithmetic by
avoiding unnecessary computation, in: International Sym-
posium on Computer Arithmetic, 1993.

[32] P. Shivakumar, N. Jouppi, CACTI 3.0: An Integrated Cache
Timing, Power and Area Model, Technical Report 2001/2,
Compaq Computer Corporation, August 2001.

	Speculative trivialization point advancing in high-performance processors
	Introduction
	TP-advancing
	Trivial instruction example
	Trivial operand frequency and distribution
	Decode- and issue-trivial instructions

	Implementation
	Trivial bypassing hardware
	Trivial value prediction

	Methodology
	Results
	Performance
	Discussion
	Overhead evaluation
	TP-advanced vs. conventional value prediction
	Impact of issue width

	Related work
	Conclusions
	Acknowledgments
	References

