
Available online at www.sciencedirect.com
www.elsevier.com/locate/sysarc

Journal of Systems Architecture 54 (2008) 507–518
Using supplier locality in power-aware interconnects and caches
in chip multiprocessors

Ehsan Atoofian, Amirali Baniasadi *

Department of Electrical and Computer Engineering, University of Victoria, Victoria, B.C., Canada V8W 3P6

Received 23 December 2006; received in revised form 31 August 2007; accepted 18 September 2007
Available online 12 October 2007
Abstract

Conventional snoopy-based chip multiprocessors take an aggressive approach broadcasting snoop requests to all nodes. In addition
each node checks all received requests. This approach reduces the latency of cache to cache transfer misses at the expense of increasing
power. In this paper we show that a large portion of interconnect/cache transactions are redundant as many snoop requests miss in the
remote nodes.

We exploit this inefficiency and introduce power optimization techniques for chip multiprocessors. Our optimizations rely on the
observation that in a snoopy-based shared memory system the data supplier can be predicted with high accuracy. Our optimizations
reduce power by eliminating unnecessary activity at both the requester and the supplier end of snoop requests.

We reduce power as we (a) avoid broadcasting snoop requests to all processors and (b) avoid tag lookup for all nodes and for all
requests arriving. In particular, we use supplier locality and introduce the following two optimizations.

First, and at the requester end, we introduce speculative selective request (SSR) to reduce power dissipation in the binary tree inter-
connect. In SSR, we send the request only to the node more likely to have the missing data. We reduce power as we limit access only to
the interconnect components between the requestor and the supplier node.

Second, and at the supplier end, we propose speculative tag lookup (STL) to reduce power dissipation in data caches. We filter those
accesses more likely to miss in the L1 cache.

Using shared memory applications, we show that by limiting snoop requests to the speculated nodes we reduce interconnect power by
25% in a four-way multiprocessor. Moreover, we show that speculative tag lookup reduces power in tag arrays by 14.1% in a four-way
multiprocessor. Both optimizations come with negligible performance loss and hardware overhead.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Power-aware microarchitectures; Chip multiprocessors; Interconnect; Cache
1. Introduction

Exploiting thread-level parallelism is believed to be a
reliable way to achieve higher performance improvements
in the future. Moreover, as technology advances provide
microprocessor design with more options, finding new
solutions to use the possible capabilities is necessary. Chip
multiprocessing offers an attractive solution as using multi-
1383-7621/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.sysarc.2007.09.005

* Corresponding author. Tel.: +1 250 721 8613; fax: +1 250 721 6052.
E-mail addresses: eatoofian@ece.uvic.ca (E. Atoofian), amirali@ece.

uvic.ca (A. Baniasadi).
ple cores makes efficient execution of parallel threads pos-
sible. Accordingly, chip multiprocessors (CMPs) are
expected to become more popular as the number of on-
die transistors continue to increase.

In order to achieve high performance, conventional
snoopy-based CMPs take an aggressive and uniform
approach, broadcasting all snoop requests to all nodes.
This approach reduces the latency of cache to cache trans-
fer misses as it assures that all nodes receive and process the
request at the earliest possible. From the energy point of
view, however, this aggressive approach translates to
excessive and often unnecessary power dissipation. A large

mailto:eatoofian@ece.uvic.ca
mailto:amirali@ece. uvic.ca
mailto:amirali@ece. uvic.ca

508 E. Atoofian, A. Baniasadi / Journal of Systems Architecture 54 (2008) 507–518
portion of the dissipated power is wasted since, as we show
in this work, a high percentage of such requests are
received and processed by nodes that do not have the miss-
ing data.

In this work, we use supplier locality to address this
design inefficiency. Our study shows that the processor sup-
plying a missing data is often predictable. In other words,
for a cache miss occurring in processor A, if the required
data is residing in and provided by processor B’s local
cache, there is a high probability that next time A is missing
a data, it would be supplied by B again.

We take this locality into account and eliminate a large
number of unnecessary snoop requests and cache lookups.
We introduce two power optimization techniques for
snoopy cache coherence protocols:

First, we introduce speculative selective request (SSR) at
the requester end of snoop requests. In SSR, we avoid
broadcasting requests to all the nodes. Instead we send
the request only to the predicted supplier if there is a high
confidence that it would provide the missing data. We
reduce interconnect power since only necessary links and
switches (which connect the requestor and supplier) are
accessed. This eliminates unnecessary activities not only
in interconnects and internal switches but also in the tag
arrays of the non-supplying processors.

Second, we introduce speculative tag lookup (STL) to
reduce power dissipation in the tag arrays at the supplier
end of snoop requests. In a write-invalidate protocol, all
processors access their local caches upon receiving snoop
requests and respond to the requester processor when nec-
essary. However, a significant fraction of these snoops miss
in the caches and result in unnecessary power dissipation
[13–15].

In SLT, a remote node receiving a snoop request avoids
accessing its tag array if there is a high confidence that the
tag lookup would be unsuccessful. As such, SLT reduces
power dissipation in tag arrays.

In summary, we make the following contributions:

� We show that a simple and small predictor using node
IDs can often predict data suppliers with high accuracy.
� We introduce SSR to reduce power dissipation in inter-

connects. SSR limits sending requests only to the pre-
dicted remote nodes. We show that SSR reduces
interconnect power dissipation by 25% in a four-way
chip multiprocessor system. This comes with negligible
impact on performance.
� We introduce STL to reduce power dissipation in tag

arrays by eliminating a considerable portion of unneces-
sary cache snoops. We show that STL reduces tag array
power dissipation by 14.1% in a four-way chip multipro-
cessor system with negligible impact on performance.

The rest of the paper is organized as follows. In Section
2, we review related work. In Section 3, we review the
related background. In Section 4, we discuss supplier local-
ity. In Section 5, we discuss SSR. In Section 6, we review
SLT. In Section 7, we discuss methodology and results.
Finally, in Section 8 we offer concluding remarks.

2. Related work

Several speculative methods have been proposed to
improve performance in directory-based cache coherence
protocols [9,11,12,19]. To the best of our knowledge, this
is the first time ID-based speculation is used to reduce
power in snoopy cache coherence protocols.

Bjorkman et al. [19] proposed hints to reduce cache miss
penalty. For each block in memory, they use one hint to
identity the potential holder of the copy. For a local cache
miss, a request is sent to both home directory and to the
hint node. If the hint node has the copy, it sends it to the
requester and this reduces the cache miss delay by one
hop. Otherwise, the home directory provides data follow-
ing the conventional method.

Mukherjee and Hill [9] used prediction in distributed
shared memory systems to speculate coherent messages in
advance. They used a general pattern-based predictor
derived from the two-level PAp branch predictor [10].
Memory Sharing Predictor (MSPs) [11] is a special type
of general pattern-based predictor. MSP only predicts
remote memory accesses and not the subsequent coherent
messages. As such, it reduces predictor cost and improves
accuracy. Owner predictor [12] reduces latency of cache
to cache transfer in cc-NUMA. Requests are sent directly
to the speculated nodes, removing the directory from the
critical path.

All the speculative methods mentioned above target per-
formance and rely on cache block addresses. SSR is differ-
ent as we use processor ID to improve power dissipation.

Saldanha and Lipasti [6] proposed serial snooping to
reduce interconnects power. We introduce SSR as an alter-
native speculative approach and compare it to serial snoop-
ing in Section 7.

In Jetty [13], snoops from remote nodes are filtered to
reduce the number of L2 cache accesses in symmetric mul-
tiprocessors (SMPs). Each node has a filter on the bus side
of the L2 cache, checking the snoop requests sent from the
remote nodes. The filter identifies situations where the L2

cache does not include the requested data and eliminates
the associated extra L2 tag array lookups. Jetty uses two
different filters, one holding addresses that do not exist in
the L2 cache, and the other holding addresses existing in
the L2 cache. Both structures use tables indexed by the
cache line addresses. Ekman et al. [16] evaluated Jetty in
the context of CMPs. Their study reported that power sav-
ings achieved by Jetty are often negated by the overhead
associated with the filters. They concluded that Jetty, while
serving well for SMPs, would not improve power in CMPs.

In RegionScout [14], a node determines in advance that
a coarse grain region is not available in any other node.
Consequently, instead of broadcasting, the request is sent
directly to the memory, reducing both interconnect power
and bandwidth. Similar to Jetty, RegionScout uses address

E. Atoofian, A. Baniasadi / Journal of Systems Architecture 54 (2008) 507–518 509
of cache blocks to filter those snoop requests that will miss
in all remote nodes.

STL is different from Jetty and RegionScout as instead
of using the address of cache blocks, it uses the processor
ID to speculate tag lookup outcome. As such, STL does
not need the large tables indexed by address of cache
blocks.

3. Background

In Section 3.1, we review a basic write-invalidate snoop
protocol. We discuss the interconnect architecture used in
this work in Section 3.2.

3.1. Write-invalidate snoop protocol

The snoop protocol is used to maintain cache coherence
in shared memory multiprocessors. A cache coherence pro-
tocol is a collection of finite state machines that change
their states in response to their local processors’ requests
and messages received on the bus. Each finite state machine
is distributed over nodes with each local cache maintaining
the state of its local data. All caches connected to the bus
monitor bus transactions. Caches update the state of their
data and reply to requests whenever necessary.

On a cache read miss, a request is broadcasted on the
bus. All caches lookup their tag arrays with the address
of the requesting message. If a cache has the requested
(valid) data, it sends the data to the requestor. In a write-
invalidate protocol, when a write miss occurs, an invalidate
request is sent over the bus. All processors that have a copy
of the message address invalidate the corresponding entry
in their local caches.

3.2. Tree-based interconnect structure

The address interconnect used in this paper is a binary
tree similar to the Sun Fireplane interconnect [2]. While
we focus on the binary tree interconnect in this work, it
should be noted that our techniques could also be used
for other alternative interconnects (e.g., benes and fattree
[18]). Fig. 1 shows the structure of the address intercon-
nects. The address interconnect is implemented using two
level switches. Processors are located at the leaves of the
tree, and the L2 cache is connected to the root. Memory
P3P2P1P0

L2

S0

S2S1

Fig. 1. Address interconnect structure.
is off the chip and is connected to the L2 cache. At any
moment, at most one message exists in the tree. Note that
from the processor viewpoint, the tree structure is similar
to a bus [6].

Upon broadcasting a request, the request is first sent to
the root switch. At the next step, the root switch sends cop-
ies of the request down to all processors. Processors use the
received data and lookup their tag arrays before replying to
the root switch. If any of the processors has the data, the
root switch selects the closest processor to the requestor
and forwards the processor’s message. If none of the pro-
cessors hold the requested data, the root switch sends a
request to the L2 cache. If the data is not found in the L2

cache, the processor sends an off the chip request to the
memory.

We use separate data and address interconnects. The
data interconnect is similar to the address interconnect
and uses two level of switches. When the supplier is deter-
mined by the cache coherence protocol, the supplier sends
the data to the requestor through the data interconnect.

We evaluate our techniques using the snoopy cache
coherent protocol often used in mid-sized multiprocessor
systems. It should be noted, however, that our techniques
can be applied to larger multiprocessor systems as the bin-
ary tree used here could be exploited in a wide range of sys-
tem sizes. For example a previous study shows how large
Fireplane systems use multiple snooping coherence
domains to maintain the low latency for local memory
accesses provided by snoopy coherency and the bandwidth
scalability of directory coherency [2]. Accordingly, each
domain is a mid-size multiprocessor system that uses the
snoopy cache coherence protocol. For inter-domain trans-
actions, the directory protocol maintains cache coherence.
Our techniques can be used in such systems as they can be
applied within domains to reduce power dissipation for
local transactions.

4. Supplier locality

Our study shows that there is a high chance that two
consecutive cache misses in a local cache are supplied by
the same remote node. We refer to this phenomenon as sup-

plier locality. We study and exploit this locality at both the
requester and the supplier end of the interconnect.

In Fig. 2, we report supplier locality at both ends for the
Splash-2 benchmarks used in this study (see Section 7.1 for
methodology). The first (left) bar for each application
reports supplier locality at the requester end. At this end,
locality shows how often the current supplier of a missing
data in a local node is the same as the previous supplier.
Except for barnes, all benchmarks have a locality higher
than 70%. On average, supplier locality is 82%. The second
(right) bar for each application reports supplier locality at
the supplier end. Our study shows that if a snoop request
from a remote node is missed in a local cache, chances
are, next time the same remote node sends a snoop request,
it will miss in the same local cache. We refer to this as

0%

10%

20%

30%

40%

50%
60%

70%

80%

90%

100%

Barn
es

Cho
les

ky

Lu_
co

nt

Lu_
nc

on
t

Oce
an

_c
on

t

Oce
an

_n
co

nt

Rad
ios

ity
Rad

ix

Ray
tra

ce
AVG.

Fig. 2. Supplier locality at the supplier end (first bar for each application) and the requester end (second bar for each application).

P0

P1
Pn-2

Pn-1

L2

P0
P1

Pn-2

Pn-1

L2

Fig. 3. (a) Conventional snooping and (b) SSR snooping.

510 E. Atoofian, A. Baniasadi / Journal of Systems Architecture 54 (2008) 507–518
supplier locality at the supplier end. Note that we measure
this locality regardless of the address of cache block and
based on the requester node ID. This locality is 94% on
average and higher than 80% for all applications.

We use supplier locality at both ends and suggest two
optimizations. At the requester end we suggest SSR to
reduce the number of requests sent. SSR avoids sending a
request to all nodes by sending requests to nodes more
likely to provide the data. As such, only the path between
the requestor and the supplier is accessed. This can reduce
power compared to a conventional snoop-based system
where all nodes are accessed uniformly and regularly.

At the supplier end we suggest STL. STL avoids tag
lookup for all arriving requests by limiting lookups to
those more likely to return the data. In STL L1 caches
are snooped only when there is high confidence that a miss
will not occur. This can reduce power in tag arrays com-
pared to a conventional snoop-based system if the predic-
tion turns to be correct.

Power savings is possible if the supplier node is pre-
dicted accurately at both ends. In the event of a mispredic-
tion, for SSR, snoop requests have to be broadcasted to all
nodes resulting in energy and latency penalty. For STL, if
misprediction occurs, all tag arrays that have not been
snooped should be snooped resulting in energy and latency
penalty.

Misprediction penalty can negate our savings if the nec-
essary behavior is not there. However, as we show later in
this work, savings outweigh the associated overhead for
both optimizations

5. SSR

In this section, we discuss motivation and implementa-
tion details for SSR.

5.1. Motivation

In Fig. 3, we show how a snoop request is handled. As
presented, N processors sharing a single L2 cache are con-
nected through a network interconnect. Suppose that pro-
cessor P0 is about to read the elements of a shared array for
the first time. Meantime assume that Pn�1 has already read
the array, and all array elements are available in Pn�1’s
local cache. A miss occurs as soon as P0 reads the first array
element. To find the missing data, P0 broadcasts snoop
requests to all the other nodes (Fig. 3a). P1,P2, . . .,Pn�1

receive snoop requests and lookup their tag arrays. Pn�1

finds the element and sends it to P0. The system goes
through the same procedure every time P0 reads a new
(missing) element.

Note that all interconnect components are accessed
every time that an array element is accessed in P0. How-
ever, only one of the many processors (Pn�1 in the example)
provides the data. This approach provides fast access to the
missing data but is inefficient from the energy point of view
[6].
5.2. Implementation

In SSR, we modify the baseline cache coherence proto-
col and reduce the number of steps involved. Instead of
sending the request to the root and then having the request
broadcasted by the root, the request is directly sent to other
nodes. This reduces the number of accesses to the links by
one and results in processors receiving snoops requests at
different cycles. For example in Fig. 1, and under our sys-
tem, a request sent by P0 is received by P1 sooner than P3.

In our system, and similar to the conventional snoop-
based system, processors reply to the root switch after
tag lookup is performed. However, in our system, the root
switch does not receive replies from processors at the same

Core

L1 Predictor

Processor

PSL Saturating
Counter

Predictor

Fig. 4. A processor using a node predictor: each predictor includes a
speculative supplier (PSL) and a saturating counter.

Processor

Predictor

1,5
2,6 3,7

broadcast

Processor

Predictor
4,8

Received
message

Processor

9
10

11

Only to
Pn-1

Predictor

Fig. 5. SSR example: P0 and Pn�1 share an array. Pn�1 has already read
the elements and has them in its L1 cache. P0 starts reading the (missing)
array elements. (a.1) P0 asks the predictor for the likely supplier. (a.2) The
predictor cannot make a prediction as there is no previous record. (a.3) P0

broadcasts snoop request to all nodes. (b.4) Pn�1 sends the data to P0.
Predictor is updated with the supplier processor number, and data is
stored in P0’s local cache. (a.5, a.6) Upon missing the array’s second
element, the predictor speculates P as the likely supplier. The predictor

E. Atoofian, A. Baniasadi / Journal of Systems Architecture 54 (2008) 507–518 511
time. The root switch should wait to receive all replies and
then select the closest supplier to the requestor or send the
request to the L2 cache.

In SSR, each node is equipped with a small single-entry
predictor to speculate the supplier for the missing data
reads1 in the local cache.

Fig. 4 depicts a typical SSR-enhanced processor in our
CMP configuration. Each processor includes a core, a pri-
vate L1 cache, and a supplier predictor. Each predictor
entry is equipped with two fields: a log2 N bit field, where
N is the number of processors, referred to as the predicted
supplier or PSL (PSL has two bits in our example of four
processors) and a q-bit saturating counter. PSL records
the last supplier node for the processor. To achieve high
accuracy, we use saturating counters. If the prediction is
correct, the counter is incremented. For mispredictions,
the counter is reset to zero. The predictor is trusted only
if the value of the saturating counter is more than a pre-
decided threshold. Note that the area and energy overhead
associated with the predictor is negligible as the predictor
only includes a q-bit counter and a log2 N bit register. We
refer to an SSR system using a q-bit counter as SSR-q
(e.g., SSR-2 uses a single two-bit counter).

Initially the predictor does not include any information.
Therefore, no prediction is made when the first miss occurs
as there is no record of any previous supplier. Under such
circumstances, the processor follows the conventional
approach and broadcasts a snoop request on the intercon-
nect. When the supplier processor responds, the predictor
is updated with the supplier ID. Upon the next cache miss,
if the saturating counter is more than a threshold, the pre-
dictor speculates, and the request is only sent to the pre-
dicted node. The predicted node looks up for the
requested address, and replies. For accurate predictions
and if the valid data is found in the speculated supplier,
no additional step is needed. Consequently, instead of
accessing all switches, links, and tag arrays, only those
components that are between the requestor and the sup-
plier are accessed. This reduces power in both interconnect
and tag arrays.

In the event of mispredicting the supplier, a snoop
request is broadcasted by the requestor to all the other pro-
1 A predictor may need to predict multiple nodes for write misses [5],
since several nodes may share the missing data, and invalidation request
should be sent to all of the sharers. To keep our predictors simple, we do
not use SSR for write misses.
cessors. The cost associated with the misprediction includes
the extra access to interconnect and an increase in data
communication latency. However, as we show later, the
benefits of correct predictions outweigh the associated mis-
prediction costs.

It is important to note that SSR does not impose any
changes on the underlying cache coherence protocol. In a
MESI protocol [18], the state of a requested cache block
in the speculated supplier node is in one of the following
four states: modified, exclusive, shared, or invalid. If the
state is modified, exclusive, or shared, and speculation
turns out to be accurate, then both the supplier and reques-
ter will end up having the shared state. However, if the
state of the requested cache block is invalid, a mispredic-
tion will occur and the requester will broadcast a snoop
request. Consequently, whether the prediction is right or
wrong, SSR would not change any state transition in the
MESI protocol. Moreover, SSR does not impose any lim-
itation on software, and is completely transparent to oper-
ating system.

Note that we use sequential consistency as the memory
consistency model for our simulations. As mentioned ear-
lier, SSR is used for read operations, and is not applied
for write operations. SSR may reduce read latency if it
speculates the supplier node correctly. However, this does
not violate sequential consistency as we take a conservative
approach and assume (similar to earlier research [6]) that
the interconnect contains at most one message at any point
in time [5]. An alternative and less conservative policy
would allow multiple messages so long they have different
addresses. This would require a central unit that monitors
address of messages [18]. Prior to sending a message, each
node would have to submit the message address to the cen-
tral unit. The central unit has to compare the address to the
already existing addresses in the interconnect. The node is
permitted to send its message if its address does not match
n�1

is not trusted since the saturating counter is not greater than the threshold.
(a.7) P0 broadcasts snoop request to all nodes. (b.8) The saturating
counter is incremented as the predictor has made a correct prediction. (c.9)
For the third array element, P0 probes the predictor. (c.10) Predictor
speculates that Pn�1 is the supplier. (c.11) P0 sends the request only to Pn�1

(instead of broadcasting). Pn�1 provides the array element.

Core
L1

Processorm

Predictor

SCm-1

Am-1

,… …
SC0

A0

SCm+1

Am+1

SCn-1

An-1

Fig. 6. Processor m using (N � 1) entries: each predictor entry includes a
saturating counter and an availability bit.

512 E. Atoofian, A. Baniasadi / Journal of Systems Architecture 54 (2008) 507–518
any of the existing addresses. Exploiting a central checker
restricts system scalability and results in additional com-
plexity. Therefore, we do not use such a policy in our
simulations.

To provide better understanding, in Fig. 5, we show the
actions taken under SSR for the example discussed earlier
in Section 5.1. For simplicity, we assume SSR-1 with a pre-
diction threshold equal to 0.

6. STL

In Fig. 6, we present the typical processor used as our
STL-enhanced CMP configuration. Each processor
includes a core, a private L1 cache, and a predictor. The
predictor has (N � 1) entries where N is the number of
nodes in the CMP. The ith entry is used to speculate if a
snoop request for a missing data read2 from processor i hits
or misses in the L1 cache.

Each predictor entry has two fields: one is a saturating
counter (SC) and the other is an availability bit (A). Upon
an accurate prediction, the counter is incremented. For
mispredictions, the counter is reset to zero. The predictor
is trusted only if the value of the associated saturating
counter is more than a pre-decided threshold. Ai is set if
the most recent snoop request from processor i has resulted
in an L1 cache hit in the processor receiving the request,
otherwise Ai is reset.

Note that the area and energy overhead associated with
the predictor is negligible as the predictor only includes
(N � 1) counters and (N � 1) bits. We refer to an STL sys-
tem using q-bit saturating counters as STL-q (e.g., STL-2
uses two-bit saturating counters).

Initially, none of the predictor entries in node m include
any information. Therefore, no prediction is made when
node m receives a snoop request from any of the proces-
sors. Under such circumstances, the processor follows the
conventional approach and probes the tag array with the
requested address. The availability bit (Ai) is set to one if
the requested cache block hits in node m’s L1. Otherwise,
it is reset. Upon the next snoop request from any processor,
if the associated saturating counter is more than the thresh-
old, the predictor is trusted, and the tag array is not
accessed if Ai is zero.

For accurate predictions and if any of the (N � 1) pro-
cessors provides the requested data, no additional step is
needed. Consequently, power is reduced as only tag arrays
more likely to have the requested data are accessed.

Predictors are not always accurate. Misprediction
occurs under two scenarios: (1) a requested address missing
in the L1 cache, is speculated to be available and (2) a
requested address is available in the L1 cache, but is spec-
ulated to be missing.
2 We avoid using STL during data write as it could result in violating the
cache coherence protocol in the event of mispredicting a sharer node.
Under the first scenario, and similar to the conventional
approach, STL results in unnecessary tag array access but
would not violate cache coherence protocol.

Under the second scenario, there are two possibilities:
(1) if at least one of the sharers replies to the requester
node, power is saved and the state of cache block is chan-
ged to shared. (2) If none of the nodes reply to the reques-
ter with the requested data, all those nodes that have not
accessed their tag arrays due to prediction, should probe
their tag arrays. This is necessary as a node, while having
the requested block, may have speculatively skipped tag
access. This will result in extra power dissipation and
latency. Power is increased since interconnect should be
accesses twice as the requester node should ask all the
nodes that have skipped tag access for snooping. This is
possible using a single bit of the bus, as the requester does
not need to send the address of the cache block for the sec-
ond time. As such, this power penalty is negligible. Latency
is increased as snoop requests traverse the interconnect for
the second time. In addition, some tag arrays are snooped,
and finally, the result of snooping is sent back to the
requester. We take this latency overhead into account in
our simulations.

It is important to note that STL does not impose any
changes to the underlying cache coherence protocol. The
requested address may be supplied by a cache-to-cache
transfer or by the lower memory hierarchy (L2 cache or
memory).

If the requested cache block is available in at least one of
the local caches, two cases may happen: (1) at least, one of
the sharer processors predicts correctly. (2) All the sharer
nodes mispredict. In the former case, the supplier sends
data to the requester and the state of cache block in both
requester and supplier is changed to the shared state. Note
that if more than one node holds the block, the state of
cache block is already in shared state in all of the sharer
nodes. In the latter case, the requester will not receive the
requested data and asks all of the nodes that have skipped
snooping to probe their tag arrays. Similar to the baseline
CMP, one of the sharer nodes supplies the data and the
state of cache block will be shared.

If the lower memory hierarchy turns out to be the sup-
plier, the requester will broadcast the snoop request twice,

Table 2
System parameters

Processor Interconnect Memory system

E. Atoofian, A. Baniasadi / Journal of Systems Architecture 54 (2008) 507–518 513
and none of the remote nodes reply to the requester. Sim-
ilar to the baseline approach, the requester forwards the
requested address to the lower memory hierarchy.
Frequency: 1 GHz Bus clock cycle: 7 ns Cache block size: 64 B
Branch predictor: 16k

entry
Switch latency: 1
cycle

Split I-L1, D-L1: 32 KB,
4-way

Bimodal and gshare Link latency: 1 cycle L1 latency: 2
Branch penalty: 17 Interconnect width:

64 B
L2: 512 KB/8-way

Fetch/issue/commit: L2 latency: 11
7. Evaluation

In Section 7.1, we present the methodology. In Sections
7.2 and 7.3, we report results for SSR and STL,
respectively.
6/4/4
RAS: 32 entries Memory latency: 70 ns
BTB: 2k entries, 2-way
7.1. Methodology

We use SPLASH-2 [4] benchmarks (details reported in
Table 1) to evaluate our scheme. Note that some of the
benchmarks could not run under SESC as system calls are
not completely implemented in this simulator. The cache-
to-cache column in Table 1 shows how often L1 misses are
provided by cache to cache transfers. For our simulations,
we use Sesc’s execution driven mode [7], modeling the out
of order processors and the memory subsystem presented
in Table 2. We used Orion [21] to estimate interconnects
power. Orion uses architectural parameters of intercon-
nects, e.g. length of wire, to estimate dynamic power dissipa-
tion. We assume a 1 mm link length and a 180 nm feature
size. We use Orion to estimate power in datapath of the
switches. We used CACTI [8] to measure tag arrays’
dynamic power dissipation. We use the 180 nm technology
and one read-write port. CACTI takes as input cache
parameters, e.g. cache capacity, cache block size, and the
number of read/write ports. It uses analytical models to
compute cache latency and energy consumption for different
configurations and picks the configuration that has the best
latency and energy consumption. Both Orion and CACTI
measure dynamic power and do not consider leakage.

We used MESI protocol to maintain cache coherence in
L1 caches [18]. In a typical CMP, both the processor and
the bus access the L1 cache. With only one tag array, if
both processor and bus need to access tag array simulta-
neously, one side has to stall which will degrade the overall
performance. To address this problem, and similar to pre-
vious work, we use two tag arrays, one for the processor
side and one for the bus side [18].
7.2. SSR: Results

In Section 7.2.1, we report SSR accuracy and coverage.
In Sections 7.2.2 and 7.2.3, we report how SSR impacts
Table 1
SPLASH-2 benchmarks and input parameters

Benchmarks Input parameters Cache-to-cache

Barnes 16k particles 46.1

Cholesky tk29.O 0.3
Lu (contiguous, non-

contiguous)
512 � 512 matrix,
B = 16

22.1

Ocean (contiguous) 258 � 258 grid 1.4
performance and interconnect power. We compare SSR
to the conventional baseline cache coherence where snoop
requests are broadcasted to all nodes upon any local cache
miss. To make better evaluation possible, we also compare
SSR to serial snooping [6]. In serial snooping, a snoop
request is initially sent only to the neighbor node. The
neighbor node looks up its local cache and replies to the
requestor if the requested data is found, otherwise, it sends
the snoop request to the next node. In both SSR and serial
snooping, at any moment, at most one message exists in
interconnect. As such, memory consistency is maintained
accurately [20]. To the best of our knowledge, serial snoop-
ing is the only power-aware snoop-based cache coherence
in binary tree interconnects.
7.2.1. Coverage and accuracy

In Fig. 7, we report coverage and accuracy for SSR.
Note that in a four-way multiprocessor there are four pre-
dictors, one predictor for each processor. We report aver-
age data for the four predictors.

We define coverage as the percentage of all supplier
nodes in cache to cache transfers that are accurately iden-
tified by predictors. Fig. 7a shows coverage for predictors
with different sizes. We report for SSR-1, SSR-2, SSR-3
and SSR-4. We use thresholds values equal to zero, two,
six, and 14, for SSR-1, SSR-2, SSR-3 and SSR-4, respec-
tively. We picked these thresholds after testing different
alternatives. In general, coverage reduces as the counter
size increases. On average, coverage varies from 36% to
67% for different counter sizes.

Fig. 7b shows accuracy for predictors with different
counter sizes. Accuracy shows how often the predicted sup-
plier turns out to be the correct one. In general, accuracy
(%) Benchmarks Input parameters Cache-to-cache (%)

Ocean (non-
contiguous)

258 � 258 grid 64.6

Radiosity -batch-room 64.1
Radix 8M keys 56.6

Raytrace Balls4.env 35.7

514 E. Atoofian, A. Baniasadi / Journal of Systems Architecture 54 (2008) 507–518
improves as counter size increases. On average, accuracy
changes from 89% to 93% for different counter sizes.
7.2.2. Performance
In this Section, we report performance for SSR and

serial snooping [6] compared to the baseline cache
coherence protocol. Fig. 8 reports performance for dif-
0%

20%

40%

60%

80%

100%

ba
rn

es

ch
ole

sk
y

lu_
co

nt

lu_
nc

on
t

oc
ea

n_
co

nt

oc
ea

n

0%

20%

40%

60%

80%

100%

ba
rn

es

ch
ole

sk
y

lu_
co

nt

lu_
nc

on
t

oc
ea

n_
co

nt

oc
ea

n

SSR-1 SSR-2

SSR-1 SSR-2

(a) Cover

(b) Accur

Fig. 7. SSR: coverage and accuracy for predictor

0.0

0.1
0.2

0.3

0.4

0.5
0.6

0.7

0.8

0.9
1.0

1.1

Barn
es

Cho
les

ky

Lu_
co

nt

Lu_
nc

on
t

Oce
an

_c
on

t

Oce
an

_n

SSR-1 SSR-2 SSR-3

Fig. 8. SSR: performance for different SSR-enhanced processors and serial sno
ferent benchmarks. Numbers less than 1 indicate
slowdown.

SSR has negligible impact on performance. For most
benchmarks, the impact is less than 0.5%. Note that for
some benchmarks (e.g., ocean_ncontinious) SSR improves
performance. This could be explained by the following:
(a) for these benchmarks, often the missing data is pro-
_n
co

nt

rad
ios

ity
rad

ix

ray
tra

ce
AVG.

_n
co

nt

rad
ios

ity
rad

ix

ray
tra

ce
AVG.

SSR-3 SSR-4

SSR-3 SSR-4

age

acy

s equipped with 1-, 2-, 3- and 4-bit counters.

co
nt

Rad
ios

ity
Rad

ix

Ray
tra

ce
AVG.

SSR-4 Serial Snoop

oping compared with baseline scheme. Numbers below 1 show slowdown.

E. Atoofian, A. Baniasadi / Journal of Systems Architecture 54 (2008) 507–518 515
vided by on-chip caches rather than the memory and (b)
SSR can speculate the supplier caches with high accuracy.

Serial snooping degrades average performance by 9%.
In some benchmarks, e.g., raytrace, serial snooping
0%

10%

20%

30%

40%

50%

60%

Barn
es

Cho
les

ky

Lu_
co

nt

Lu_
nc

on
t

Oce
an

_c
on

t

Oce
an

_

SSR-1 SSR-2 SSR-3

0%

10%

20%

30%

40%

50%

60%

Barn
es

Cho
les

ky

Lu_
co

nt

Lu_
nc

on
t

Oce
an

_c
on

t

Oce
an

_

SSR-1 SSR-2 SSR-3

0%

10%

20%

30%

40%

50%

Barn
es

Cho
les

ky

Lu_
co

nt

Lu_
nc

on
t

Oce
an

_c
on

t

Oce
an

_

SSR-1 SSR-2 SSR-3

(a) SSR: Link pow

(b) SSR: switch po

(c) SSR: tag array p

Fig. 9. Power reduction in link
degrades performance considerably. In these bench-
marks, quite often the supplier is not close to the
requestor, and serial snooping increases cache to cache
transfer latency.
nc
on

t

Rad
ios

ity

Rad
ix

Ray
tra

ce
AVG.

SSR-4 Serial Snoop

nc
on

t

Rad
ios

ity

Rad
ix

Ray
tra

ce
AVG.

SSR-4 Serial Snoop

nc
on

t

Rad
ios

ity

Rad
ix

Ray
tra

ce
AVG.

SSR-4 Serial Snoop

er reduction.

wer reduction.

ower reduction

s, switches, and tag arrays.

516 E. Atoofian, A. Baniasadi / Journal of Systems Architecture 54 (2008) 507–518
7.2.3. Power reduction

In Fig. 9, we report power reduction in links, switches,
and tag arrays for SSR and serial snoop compared to the
baseline cache coherence scenario. Generally, power reduc-
tion improves as counter size decreases. This is intuitive as
bigger counters have lower coverage.

On average, as reported in Fig. 9a, SSR-1, SSR-2, SSR-3
and SSR-4 reduce link power by 25%, 24%, 21%, and 19%,
respectively. Serial snooping reduces link power by 33%.
However, this comes with significant increase in run time.

On average, as reported in Fig. 9b, SSR-1, SSR-2, SSR-
3 and SSR-4 reduce interconnect switch power by 29%,
29%, 27% and 27%, respectively. Serial snooping reduces
switch power by 19%. In four benchmarks, SSR reduces
switch power twice that achieved by serial snooping. This
is due to the fact that in serial snooping, whenever a cache
lookup fails, the request is forwarded to the next node.
Consequently, the closest switch to the processor is
accessed at least twice. For example, in Fig. 1, if P1 receives
a snoop request from P0, and the requested address misses
in P1, the request is forwarded to P2 through S1, and S1 is
accessed twice: once, when P0 sends snoop request to P1,
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Barn
es

Cho
les

ky

Lu_
co

nt

Lu_
nc

on
t

Oce
an

_c
on

t

Oce
an

STL-1 STL-2

Barn
es

Cho
les

ky

Lu_
co

nt

Lu_
nc

on
t

Oce
an

_c
on

t

Oce
an

STL-1 STL-2

(a) STL:

75%

80%

85%

90%

95%

100%

(b) STL:

Fig. 10. Predictor coverage and accuracy
and once when P1 forwards snoop request to P2. This is
not the case under SSR.

The two methods improve tag array power competitively
(see Fig. 9c). SSR-1, SSR-2, SSR-3 and SSR-4 improve tag
array accesses by 16%, 14%, 11% and 9%, respectively. Serial
snooping improves tag array power by 15%.

Note that tag array power reduction is zero for Cholesky

and Ocean_cont. Our study shows that cache to cache
transfers occur rarely in these benchmarks (see Table 1).
As such, despite high accuracy, SSR does not improve
tag array power. However, Cholesky and Ocean_cont show
power reduction in links and switches as the result of the
cache coherence step reduction explained in Section 5.2.

Overall, SSR-1 provides substantial power savings with
negligible performance degradation, and minimal hard-
ware overhead.

7.3. STL: Results

In Section 7.3.1, we report STL accuracy and coverage.
In Section 7.3.2, we report how STL impacts performance.
We report power saving in tag arrays in Section 7.3.3.
_n
co

nt

Rad
ios

ity
Rad

ix

Ray
tra

ce
AVG.

STL-3 STL-4

_n
co

nt

Rad
ios

ity
Rad

ix

Ray
tra

ce
AVG.

STL-3 STL-4

Coverage

Accuracy

for STL-1, STL-2, STL-3, and STL-4.

E. Atoofian, A. Baniasadi / Journal of Systems Architecture 54 (2008) 507–518 517
7.3.1. Coverage and accuracy

In Fig. 10, we report coverage and accuracy for STL-1,
STL-2, STL-3, and STL-4. We use thresholds values equal
to zero, two, six, and 14, for the four configurations, respec-
tively. Note that in a four-way multiprocessor there are four
predictors. We report average data for the four predictors.

We define coverage as the percentage of missed cache
snoops that are accurately identified by predictors.
Fig. 10a shows that coverage reduces as the counter size
increases. On average, coverage varies from 69% to 90%
for different counter sizes.

Fig. 10b shows accuracy for predictors with different
counter sizes. Accuracy shows how often the predictors
speculate correctly. In general, accuracy improves as coun-
ter size increases. On average, accuracy changes from 96%
to 99% for different counter sizes.

7.3.2. Performance

In Fig. 11, we report performance for STL compared to
the baseline cache snoop scheme. Numbers less than one
show performance slowdown.
0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Barn
es

Cho
les

ky

Lu_
co

nt

Lu_
nc

on
t

Oce
an

_c
on

t

Oce
a

STL-1 STL-2

Fig. 11. STL: relative performance for

0%

5%

10%

15%

20%

25%

30%

35%

Barn
es

Cho
les

ky

Lu_
co

nt

Lu_
nc

on
t

Oce
an

_c
on

t

Oce
an

_n

STL-1 STL-2

Fig. 12. STL: tag array
STL has negligible impact on performance. On average,
performance changes from 0.33% to 0.36% for different
counter sizes.

7.3.3. Power reduction

In Fig. 12, we report power reduction in tag arrays for
STL-1, STL-2, STL-3, and STL-4 compared to the baseline
cache snoop scenario.

On average, STL-1, STL-2, STL-3, and STL-4 reduce
power in tag arrays by 14.1%, 12.6%, 11.5%, and 11%,
respectively.

Generally, power reductions depend on how often
the missing data is provided by cache to cache
transfers. In Cholesky and Ocean_cont, L2 and
memory often provide the missing data
(see Table 1). For these benchmarks, power saving
is negligible.

In Radiosity, power savings decrease rapidly as the size
of counters increases. This is consistent with the rapid cov-
erage reduction observed for this benchmark when counter
size varies (Fig. 10a).
n_
nc

on
t

Rad
ios

ity

Rad
ix

Ray
tra

ce
AVG.

STL-3 STL-4

STL-1, STL-2, STL-3, and STL-4.

co
nt

Rad
ios

ity
Rad

ix

Ray
tra

ce

AVG.

STL-3 STL-4

power reduction.

518 E. Atoofian, A. Baniasadi / Journal of Systems Architecture 54 (2008) 507–518
Overall, STL-1 provides substantial power savings with
negligible performance degradation, and minimal hard-
ware overhead.

8. Conclusion

In this work, we used supplier locality to reduce power
dissipation induced by snoopy cache coherence protocol
in interconnects and tag arrays. In contrast to previous
studies [1,3,12–14,17] that used cache block address for
prediction, our scheme comes with low hardware overhead
for prediction. We used our findings and proposed two
power aware techniques for CMPs.

First, we introduced SSR as a prediction-based cache
coherence protocol to speculate the supplier processor at
the requester end. By using a low overhead predictor,
requests are sent directly to the predicted supplier. We save
power as we avoid broadcasting whenever there is high
confidence in the prediction outcome. We showed that sim-
ple predictors can effectively identify a considerable share
of suppliers with high accuracy. Our method results in con-
siderable power reduction. SSR reduces power of links,
switches, and tag arrays by 25%, 29%, 16%, respectively.

Second, we used supplier locality at the supplier end and
introduced STL to skip unnecessary snoop induced tag
lookups. STL uses small yet accurate predictors. These pre-
dictors are located on the interconnect side of the L1 cache.
On average, STL reduces tag array power by 14.1% in a
four-way CMP.

References

[1] J. Nilsson, A. Landin, P. Stenström, Coherence predictor cache: a
resource efficient coherence message prediction infrastructure, in:
Proceedings of the Sixth IEEE International Symposium on Parallel
and Distributed Processing Symposium, 2003.

[2] Alan E. Charlesworth, The sun fireplane system interconnect, in:
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing,
2001.

[3] M.E. Acacio, J. Gonzalez, J.M. Garcia, J. Duato, The use of
prediction for accelerating upgrade misses in CCNUMA multipro-
cessors, in: Proceedings of the PACT-11, 2002.

[4] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, The SPLASH-
2 programs: characterization and methodological considerations, in:
International Symposium on Computer Architecture, June 1995.

[5] Robert C. Steinke, Gary J. Nutt, A unified theory of shared memory
consistency, Journal of the ACM 51 (5) (2004) 800–849.

[6] C. Saldanha, M.H. Lipasti, Power Efficient Cache Coherence, High
Performance Memory Systems, Springer-Verlag, 2003.

[7] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, K.
Strauss, S. Sarangi, P. Sack, P. Montesinos. SESC Simulator, January
2005. http://sesc.sourceforge.net.

[8] P. Shivakumar, N. Jouppi, CACTI 3.0: an integrated cache timing,
power and area model, Technical Report 2001/2, Compaq Computer
Corporation, August 2001.

[9] Shubhendu S. Mukherjee, Mark D. Hill, Using prediction to accelerate
coherence protocols, in: Proceedings of the ISCA-25, June 1998.

[10] Tse-Yuh Yeh, Yale Patt, Alternative implementations of two-level
adaptive branch prediction, in: Proceedings of the ISCA-19, May
1992.
[11] A.-C. Lai, B. Falsafi, Memory sharing predictor: the key to a
speculative coherent DSM, in: Proceedings of the ISCA- 26, 1999, pp.
172–183.

[12] M.E. Acacio, J. González, J.M. Garcı́a, J. Duato, Owner prediction
for accelerating cache-to-cache transfers in a cc-NUMA architecture,
in: Proceedings of the SC2002, November 2002.

[13] A. Moshovos, B. Falsafi, A. Choudhary, JETTY: filtering snoops for
reduced energy consumption in SMP servers, in: Proceedings of the
HPCA-7, January 2001.

[14] J. Cantin, A. Moshovos, M. Lipasti, J. Smith, B. Falsafi, Coarse-grain
coherence tracking: regionscout and region coherence arrays, IEEE
Micro 26 (1) (2006) 70–79.

[15] M. Ekman, F. Dahlgren, P. Stenström, TLB and snoop energy-
reduction using virtual caches for low-power chip-multiprocessors, in:
Proceedings of the ACM International Symposium on Low Power
Electronics and Design, 2002.

[16] M. Ekman, F. Dahlgren, P. Stenström, Evaluation of snoop-energy
reduction techniques for chip-multiprocessors, in: Proceedings of the
First Workshop on Duplicating, Deconstructing, and Debunking,
May 2002.

[17] Milo M.K. Martin, Pacia J. Harper, Daniel J. Sorin, Mark D. Hill,
David A. Wood, Using destination-set prediction to improve the
latency/bandwidth tradeoff in shared-memory multiprocessors, in:
Proceedings of the ISCA-30, 2003, pp. 206–217.

[18] D.E. Culler, J. Singh, A. Gupta, Parallel Computer Architecture: A
Hardware/Software Approach, Morgan Kaufman Publishers, San
Francisco, CA, 1999.

[19] M. Bjorkman, F. Dahlgren, P. Stenstrom, Using hints to reduce the
read miss penalty for flat COMA protocols, in: Proceedings of the
28th Annual Hawaii International Conference of System Sciences,
January 1995.

[20] A. Landin, E. Hagersten, S. Haridi, Race-free interconnection
networks and multiprocessor consistency, in: Proceedings of the
18th International Symposium on Comp. Architecture, 1991.

[21] H.S. Wang, X.P. Zhu, L.S. Peh, S. Malik, Orion: a power-
performance simulator for interconnection networks, in: Interna-
tional Symposium on Microarchitecture, 2002.

Ehsan Atoofian is a Ph.D. candidate in electrical
and computer engineering at the University of
Victoria. His research interests include computer
architecture with emphasis on multiprocessors,
high speed memory systems, and embedded sys-
tems. He received B.S. and M.S. degrees in com-
puter engineering from the University of Tehran,
Tehran, Iran, in 2000 and 2003, respectively.
Amirali Baniasadi received his B.S. degree in
electronics and electrical engineering from Tehran
University, Tehran, Iran, in 1993. He received his
M.S. degree in digital electronics from Sharif
University of Technology, Tehran, Iran in 1995.
He received his Ph.D. degree in computer engi-
neering from Northwestern University, Evanston,
IL, USA in 2002. He is currently an assistant
professor at the ECE department of University of
Victoria, Victoria, BC. His major research interest
is finding new ways to design modern processors.

In particular, he has been working on developing microarchitectural

techniques to reduce power dissipation in modern processors.

http://sesc.sourceforge.net

	Using supplier locality in power-aware interconnects and caches in chip multiprocessors
	Introduction
	Related work
	Background
	Write-invalidate snoop protocol
	Tree-based interconnect structure

	Supplier locality
	SSR
	Motivation
	Implementation

	STL
	Evaluation
	Methodology
	SSR: Results
	Coverage and accuracy
	Performance
	Power reduction

	STL: Results
	Coverage and accuracy
	Performance
	Power reduction

	Conclusion
	References

