
Exploiting Program Cyclic Behavior to Reduce Memory

Latency in Embedded Processors
Ehsan Atoofian

Electrical and Computer Engineering Department
University of Victoria
Victoria BC, Canada
eatoofia@ece.uvic.ca

Amirali Baniasadi
Electrical and Computer Engineering Department

University of Victoria
Victoria BC, Canada
amirali@ece.uvic.ca

ABSTRACT
In this work we modify the conventional row buffer allocation

mechanism used in DDR2 SDRAM banks to improve average

memory latency and overall processor performance. Our method

assigns row buffers to different banks dynamically and by taking

into account program cyclic behavior and bank row buffer

demand.

As we show in this work, memory requests go through several

phases. In each phase, programs tend to access a single bank most

of the time. We exploit this repetitive behavior and improve the

concurrency level for memory read and write operations. We do

so by assigning idle row buffers to more demanding banks during

specific program phases. This improves average memory latency

and processor performance by 12.7% and 7.6% respectively.

Categories and Subject Descriptors
C.1.1 [PROCESSOR ARCHITECTURES]: Single Data Stream

Architectures.

General Terms
Design, Measurement, Performance.

Keywords
Memory, Row Buffer, High-Speed Embedded Processors.

1. INTRODUCTION
The speed of embedded processors has improved significantly

largely due to innovative techniques introduced at architectural

and VLSI levels. Despite such advances, the main memory

continues to serve as a bottleneck. This is the result of the fact that

processor speed has improved at a much faster pace compared to

memory. This increasing speed gap between memory and

processor has made memory design a critical issue in embedded

processors. While exploiting caches has been able to bridge the

gap between processor and main memory performance, as some

studies have suggested, caching is becoming less effective as the

gap grows [1]. The growing impact of memory on the overall

system performance motivates designers to seek performance

optimization techniques for the memory system.

One possible solution to this problem is to overlap memory

accesses, servicing several memory requests in parallel. To

increase the number of memory requests executed in parallel (also

referred to as memory level parallelism) modern memory

structures allow pipelining memory requests. This is facilitated by

providing several independent banks, and caching the most

recently accessed row in each bank. While these features improve

memory bandwidth, the overall improvement would be highly

dependent on memory requests patterns. Improvements are at their

peak when the same bank row is accessed continuously or

different banks are accessed sequentially. Unfortunately, real

applications do not always follow such a pattern. For example,

patterns including several consecutive accesses to different rows

of a bank incur row conflict, effectively stalling memory access

pipelining.

This work aims at reducing memory latency by dynamically

allocating memory resources (i.e., row buffers) to memory banks

using memory accesses cyclic behavior. We refer to our technique

as row buffer sharing (RBS).

RBS aims at reducing latency in DDR2 SDRAMs. DDR2

SDRAMs are composed of several banks, each equipped with one

row buffer. The row buffers act as a cache and hold the most

recent accessed row of the banks. Having multiple banks increases

parallelism among memory requests and reduces memory

response time.

Our study shows that memory requests often access only a single

bank consecutively and for long periods. During such periods,

other banks are idle and their row buffers remain unused. In RBS

we assign such idle row buffers to the active bank and increase the

number of rows simultaneously cached in the row buffers. As

such, we reduce memory latency for a larger number of memory

accesses. Also, faster memory accesses improves processor overall

performance.

To achieve high performance improvements, it is important that

the number of active memory rows stay relatively low and do not

exceed the number of available buffers. Otherwise RBS cannot

improve memory latency considerably as row buffers will be

replaced continuously as new memory requests arrive.

Fortunately, and as we show in this work this rarely is the case.

The rest of the paper is organized as follows. In section 2, we

discuss RBS. In section 3, we present our3 methodology. In

section 4, we evaluate RBS. In section 5, we review related work.

Finally, we conclude and offer closing remarks in section 6.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.

Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

1482

2. ROW BUFFER SHARING (RBS)
In section 2.1 we discuss the organization of modern DDR2

SDRAMs. Note that while we focus on DDR2 SDRAM in this

work, our technique can be used for other memory structures, e.g.,

DRAM or SDR SDRAM [9]. In section 2.2 we explain our

motivation. In section 2.3 we discuss implementation details.

2.1 Memory background
A double data rate (DDR) SDRAM is composed of several

independent memory banks. Figure 1 depicts DDR2 SDRAM

details. Each bank is a two dimensional array of memory cells. To

read from or write to memory, an entire row of a bank should be

activated. An active command moves the row from a bank to the

associated row buffer and opens the row. Once the row is opened,

any number of read and write commands can be issued to transfer

columns within the opened row. Row activation is a destructive

operation, and the buffer should ultimately be written back to the

memory array. A precharge command closes the row and restores

it back to the memory making it ready for future operations.

Having several banks in memory increases the number of page

hits. A page hit occurs when the requested row has already been

opened making an active command unnecessary. Each row has

several columns. The column width is equal to the number of data

pins. Data is transferred on both rising and falling edges of the

DDR2 SDRAM clock. A more detailed overview of DDR2

SDRAMs can be found in [3].

The memory controller is the interface between the on chip

processor and caches, and the off-chip memory. The memory

controller receives memory requests (read or write operations) and

translates them into memory commands, e.g. row activation,

column read/write, and row precharge. The Memory controller

includes the memory scheduler which reorders and interleaves

memory requests to reduce memory latency [4]. The memory

controller must generate commands that conform to timing and

resource constrains of the memory array. For example, in

MT47H128M4B6-5E DDR2 SDRAM [3], the read or write

column command should be issued at least tRCD (15ns) cycles

after the active command. Table 2 illustrates timing characteristics

of the MT47H128M4B6-5E memory used in this work.

2.2 Motivation
A memory access that results in a row buffer hit only requires a

column access. However, a row buffer miss needs precharge and

active commands in addition to column access. As Table 2 shows,

the latency of active and precharge commands (tRCD and tRP

respectively) are 15ns each. In a 4-GHz processor, this is equal to

60 processor cycles. As a result, concurrent accesses to different

rows of the same bank would be significantly slower compared to

concurrent accesses to a single row of a bank or to rows of

different banks. Therefore, average memory access time would

depend on the state of the memory banks’ buffers and the

program’s memory access pattern.

No matter how well a memory scheduler distributes memory

requests over the banks, it can not prevent row conflicts (e.g.,

those resulting from a sequence of memory requests accessing

different rows of the same bank). Such conflicts require switching

rows and can potentially degrade performance if such conflicts

occur too frequently.

In a memory system using 4 banks, e.g. MT47H128M4B6-5E,

and assuming a uniform access distribution, each bank is accessed

25% of the time. In other words, 75% of the time, each bank and

its associated row buffer are idle. In RBS, we borrow such idle

row buffers for the active bank. As a result the borrowed row

buffers act as a cache for the active bank. We assume that this

process is managed by the memory controller. The Memory

controller uses the extra row buffers to avoid row conflicts and to

reduce memory latency.

We will benefit from RBS only if idle banks remain idle for a

sufficient number of memory requests, and so possible benefits

outweigh the overhead associated with precharging and activating.

Figure 2 shows memory request distribution for the crc32

benchmark from MiBench suites and for load/store instructions.

The Y axis shows the bank number, and the X axis shows memory

requests. For each memory request, we record the bank number

corresponding to the requested memory address. In a DDR2

SDRAM with four banks, this number can be zero, one, two, or

three. As the figure shows, during program runtime, the program

goes through several phases. During each phase, the processor

usually accesses one of the banks leaving the other three banks

idle for most of the period. For example, from memory access

1536 to memory access 1804, bank number 1 is the only active

one for more than 95% of the accesses. This period is equivalent

to 6755 memory cycles or 67550 processor cycles (refer to table 1

for relative speed of CPU and memory).

Figure 3 shows the accumulative distribution of reusability

distance for MiBench benchmarks studied in this work.

Reusability distance shows the number of memory accesses

occurring between two memory requests made to the same

memory location. The Y-axis depicts accumulative value for

reusability distance. The X-axis shows reusability distance in

logarithm of 2 scale. To be precise, values from zero to ten in the

X-axis correspond to reusability distances from zero to 1023.

As reported, distribution of reusability distance increases sharply

when the distance changes from zero to three. It increases steadily

for distances from three to 1023. 8% of memory accesses have a

reusability distance of greater than 1023.

Row Decoder

Bank N-1

Bank 1

Bank 0 Memory
Array

. . .

. . .

Row Decoder

Mux

Demux

Data

Column
Decoder

Address

Figure 1. DDR2 SDRAM organization.

1483

0

1

2

3

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001

Only 30% of accesses have zero reusability distance. This means

that in the baseline DDR2 SDRAM which uses one buffer per

bank, only 30% of accesses result in a row hit. 32% of other

accesses have reusability distance of one. In other words, if the

number of bank row buffers is increased to two, the total hit rate

will reach 62%. Following the same line of argument, a DDR2

SDRAM with four buffers per bank would have a 70% hit rate. In

other words, four buffers cut the gap between a memory with one

row buffer per bank and a memory with unlimited buffers per

bank by half. We conclude from figure 3 that exploiting four

buffers per bank would improve memory hit rate considerably.

 Using four buffers per bank would require 16 buffers in the

DDR2 SDRAM (which exploits four banks) studied in this work.

This is not a reasonable choice for embedded processors as it

would require a highly complex switching system. In addition, it

would result in a higher number of idle row buffers during bank

idle periods.

As presented in figure 2, quite often, only one of the four banks is

active. This observation indicates the possibility of achieving high

hit rates by sharing the four existing row buffers among the four

banks. This is the result of the fact that often three of the four

banks are idle and can let the active bank use their row buffers.

Note that further increases in the number of row buffers after

sharing four rows would not result in any significant

improvement. For example, doubling the number of buffers from

four to eight increases the hit rate by less than 4%.

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

2.3 Implementation
In RBS, all row buffers are shared among the banks. Therefore,

each bank can use up to four buffers simultaneously.

We use a crossbar interconnect to connect banks and row buffers.

We assume one memory cycle for crossbar interconnect delay.

The baseline DDR2 SDRAM uses a multiplexer to select one

buffer to read or write. The crossbar switch uses four multiplexers

to connect the four banks to the four row buffers. As such, we

believe that the hardware overhead of the crossbar switch is

reasonable in an embedded system.

 The memory scheduler should select one row buffer if multiple

row buffers are available. Also, the memory scheduler should

evict one row, if all row buffers are in use. We use a combination

of LRU (least recently used) [14] and unmodified policy [14] to

select the row buffer for replacement. LRU policy selects the

victim row buffer among unmodified ones. The reason that we

exclude dirty row buffers from replacement is to minimize the

latency. A dirty row buffer should be precharged, which incurs

extra latency. If all the buffers are modified, the oldest modified

buffer is selected for replacement.

3. METHODOLOGY
To simulate our technique, we use Simplescalar v3.0 [10]. We

have modified the simulator to model a processor similar to

Xscale [5]. Table 1 shows the XScale configuration. We used

programs from MiBench [13] embedded benchmarks suits

compiled by GNU’s gcc v2.9 with –O3 optimization level (Table

2). We run each simulation for 500M instructions or up to

completion, whichever comes first.

Table1. Base configuration for simulated processor

We used a cycle accurate model for DDR2 SDRAM memory. We

accurately model memory controller, bank conflicts, and

bandwidth limitation. The model includes all details for timing

parameters, delay between commands, and refreshing intervals.

Table 2 presents the DDR2 SDRAM parameters used in this

study. All of these parameters are extracted directly from the

ROB/LSQ size 8/8

Branch Predictor Bimodal predictor-128-entry

BTB 128-entry, 1-way

Scheduler 8-entry, RUU-like

Fetch Unit/ Fetch Buffer 1 instruction per cycle/2-entry

Decode, Issue, and

commit width

2 instructions/ cycle

L1 – I/D Cache 32K, 32-way SA, 32-byte

blocks, 1 cycle hit latency

Unified L2 N/A

ALU
1 int ALU, 1int mult/div

1 FP ALU, 1FP mult/div

Relative clock frequency

of CPU to memory
10

TLB-I/D 32/32-entry, fully associative

Figure 2. Cyclic access to banks in memory requests.

.

Figure 3. Accumulative distribution of reusability

distance.

1484

MT47H128M4B6-5E DDR2 SDRAM datasheet [3]. The memory

controller follows all timing constrains of table 2 when it issues a

command to the banks.

Table 2. MT47H128M4B6-5E DDR2 SDRAM timing

parameters [3].

tCK Clock Cycle 5 ns

tRCD Activate to read 15 ns

tCCD Read to read or write to write 10 ns

tWTR Write to read 10 ns

tRP Precharge to activate 15 ns

tRAS Activate to precharge 40 ns

tRFC Max refresh to refresh 70000 ns

4. RESULTS
Figure 4 reports hit rate improvement for RBS compared to the

conventional DDR2 SDRAM. RBS improves memory access

latency by assigning several buffers to an active bank. As such,

several rows of a bank are opened at the same time, and this

increases the likelihood that the row corresponding to a memory

access has already been opened. The hit rate improvement

changes from 18% in lame to 37% in crc32. On average, RBS

increases row hit rate by 30%.

0%

5%

10%

15%

20%

25%

30%

35%

40%

ba
si
cm
at
h

cr
c3
2

di
jk
st
ra

ff
t

gs
m
_e
nc
od
e

la
m
e

pa
tri
ci
a

rij
nd
ae
l_
de
co
de

A
V
G
.

Figure 5 shows memory latency improvement for RBS compared

to the baseline DDR2 SDRAM. Consistent with the data reported

in figure 4, RBS improves memory latency significantly. When

memory controller accesses an open row, it does not issue

precharge and active commands, and this reduces the latency of

memory. RBS reduces memory latency from 6.5% for lame to

16% for cr32. On average, memory latency is reduced by 12.7%.

In figure 6, we report processor overall performance

improvement. As reported, we improve average processor

performance by 7.6%. For some benchmarks, memory latency and

processor performance react differently to RBS. For example,

some benchmarks with lower memory latency reduction show

better performance improvement. This could be explained by the

variations in benchmarks performance sensitivity to memory

latency. For some benchmarks, memory instructions have a higher

impact on overall performance. Therefore, despite their lower

memory latency reduction, the overall processor performance

improvement is higher.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

ba
si
cm
at
h

cr
c3
2

di
jk
st
ra

ff
t

gs
m
_e
nc
od
e

la
m
e

pa
tri
ci
a

rij
nd
ae
l_
de
co
de

A
V
G
.

0%

2%

4%

6%

8%

10%

12%

14%

16%

ba
si
cm
at
h

cr
c3
2

di
jk
st
ra

ff
t

gs
m
_e
nc
od
e

la
m
e

pa
tri
ci
a

rij
nd
ae
l_
de
co
de

A
V
G
.

In all results reported so far, we have assumed a CPU with a clock

frequency 10 times faster than the memory clock frequency (refer

to Table 1). In figure 7 we report how RBS reacts to alternative

relative CPU and memory speeds. We report RBS sensitivity to

relative CPU and memory clock frequencies changing from four

to 20. As the figure shows, performance improvements achieved

by RBS increase as the gap between CPU and memory speed

increases. This is due to the fact that the memory latency gap

between RBS and the baseline scheme increases as CPU becomes

increasingly faster than memory. On average, performance

improves from 3.7% to 11.2% when relative speed varies between

four and 20.

0%

2%

4%

6%

8%

10%

12%

14%

16%

ba
si
cm
at
h

cr
c3
2

di
jk
st
ra

fft

gs
m
_e
nc

la
m
e

pa
tri
ci
a

rij
nd
ae
l_
de
c

A
VG
.

4 8 10 16 20

Figure 4. Row buffer hit rate improvement by RBS.

.

Figure 5. Average memory latency reduction by RBS.

.

Figure 6. Processor performance improvement by RBS.

.

Figure 7. Processor performance improvement when

relative speed of CPU and memory changes.

1485

5. RELATED WORK
Rixner et al. [4] proposed a scheduling method that exploits

locality of memory requests to reduce memory latency. They

reordered memory references to increase the number of requests

that access the same row of a bank. They do so by increasing the

priority of requests that refer to the current open row. As such,

they reduce row buffer replacement frequency and improve

memory latency.

Moyer [11] developed and analyzed algorithms to perform access

reordering statically at compile time. Moyer used loop unrolling

and instructions reordering to improve memory locality. Moyer’s

technique applies specifically to stream-oriented workloads in

cacheless systems. McKee et al. [12] used a runtime approach to

order the accesses to streams in a stream memory controller. In

this approach the memory controller considers each stream buffer

in a round-robin fashion, streaming as much data as possible to

the current buffer before going to the next buffer. This approach

may reduce conflicts among streams, but it does not reorder

references within a single stream.

Valero et al. [2] proposed a hardware-based mechanism to avoid

bank conflicts in vector processors by accessing vector elements

out of order. The Impulse memory system introduced by Carter et

al. [6] improves memory system performance by dynamically

remapping physical addresses. This approach requires

modifications to the applications and operating system.

Alexander and Kedem [8] proposed a memory-based prefetching

scheme to improve performance. They use a prediction table to

store up to four possible predictions for any given memory

address. All four predictions are prefetched into SRAM buffers.

The size of their prediction table is kept small by using a large

prefetch block size.

Our work is different from above as we increase the number of

simultaneously opened rows to improve concurrency in main

memory.

Researchers from NEC proposed exploiting virtual channels to

reduce performance gap between processor and main memory [7].

Virtual channel memory (VCM) uses several channels between

the memory cells and the memory I/O to store data temporarily.

VCM increases the level of parallelism as memory data requests

are prepared in separate channels while reading or writing the

current data. Rixner [14] proposed different scheduling algorithm

to exploit virtual channels for reducing memory latency. RBS is

different from VCM as we exploit row buffers in phases that their

corresponding banks are idle. In addition, we do not incur extra

channels to cache bank rows which is critical to keep complexity

and power affordable in embedded processors.

6. CONCLUSION
In this work we used periodic behavior in memory accesses to

improve memory latency in embedded processors. We were

motivated by the need for low memory latency and took

advantage of application behavior and dynamic allocation

opportunities available in the internal structure of modern DDR2

SDRAMs.

The cyclic and clustered nature of memory bank accesses provides

an opportunity to borrow idle row buffers for active banks. We

reduce resource conflicts for row buffers and decrease the number

of precharge and active commands issued by the memory

scheduler. Accordingly, we reduce average memory latency and

improve performance by 12.7% and 7.6% respectively. In

addition, we show that under possible future gap increasing

between memory and CPU speed, RBS could achieve higher

performance improvement.

7. REFERENCES
[1] W.A. Wulf and S.A. McKee, "Hitting the Wall: Implications

of the Obvious", Computer Architecture News, vol. 23, no. 1, pp.

20-24, Mar. 1995.

[2] M. Valero, T. Lang, M. Peiron, and E. Ayguade, "Conflict-

Free Access for Streams in Multi-Module Memories", Technical

Report UPC-DAC-93-11, Universitat Politecnica de Catalunya,

Barcelona, Spain, 1993.

[3] Micron. 1Gb DDR2 SDRAM memory: MT47H128M4B6-5E,

June 2006.

[4] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.

Owens, “Memory access scheduling”, In Proceedings of the

International Symposium on Computer Architecture, 2000.

[5] Liao, S. Strazdus, M.Morrow, K.E. Velarde, and M.A. Yarch,

"An Embedded 32-bit Microprocessor Core for Low-Power and

High-Performance Applications", IEEE Journal of Solid-State

Circuits, Vol. 36, No. 11 (November 2001), pp. 1599-1608.

[6] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E.

Brunvand, A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker, L.

Schaelicke, and T. Tateyama, ”Impulse: Building a smarter

memory controller”, HPCA, 1999.

[7] NEC. 64M-bit Virtual Channel SDRAMdata sheet, October

1998.

[8] T. Alexander and G. Kedem, “Distributed prefetch

buffer/cache design for high performance memory systems”, In

Proc. of the Second High Performance Computer Architecture

Symposium, pp. 254-263, Feb. 1996.

[9] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, "A Performance

Comparison of Contemporary DRAM Architectures", ISCA,

1999.

 [10] D. Burger, T. M. Austin, and S. Bennett, “Evaluating Future

Microprocessors: The SimpleScalar Tool Set”, Technical Report

CS-TR-96-1308, University of Wisconsin-Madison, July 1996.

[11] S. A. Moyer, "Access Ordering and Effective Memory

Bandwidth", Ph.D. Dissertation, Department of Computer

Science, University of Virginia, Technical Report CS-93-18,

April 1993.

[12] S. A. McKee et al., “Dynamic access ordering for streamed

computations”, IEEE Trans. Comput., 49(11):1255-1271, 2000.

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.

Mudge, and R. B. Brown, 2001, “MiBench: A Free,

Commercially Representative Embedded Benchmark Suite”,

Available at http://www.eecs.umich.edu/mibench/.

[14] Rixner, S. Memory Controller Optimizations for Web

Servers. In Proc. of the 37th Intl. Symp. on Microarchitecture

(Portland, Oregon, Dec. 04 - 08, 2004). Micro ’04. 355-366.

1486

