
Exploiting Program Cyclic Behavior to Reduce Memory 

Latency in Embedded Processors  
Ehsan Atoofian  

Electrical and Computer Engineering Department  
University of Victoria  
Victoria BC, Canada  
eatoofia@ece.uvic.ca 

Amirali Baniasadi 
Electrical and Computer Engineering Department  

University of Victoria  
Victoria BC, Canada 
amirali@ece.uvic.ca 

 

ABSTRACT 
In this work we modify the conventional row buffer allocation 

mechanism used in DDR2 SDRAM banks to improve average 

memory latency and overall processor performance. Our method 

assigns row buffers to different banks dynamically and by taking 

into account program cyclic behavior and bank row buffer 

demand.   

As we show in this work, memory requests go through several 

phases. In each phase, programs tend to access a single bank most 

of the time. We exploit this repetitive behavior and improve the 

concurrency level for memory read and write operations. We do 

so by assigning idle row buffers to more demanding banks during 

specific program phases. This improves average memory latency 

and processor performance by 12.7% and 7.6% respectively.   

Categories and Subject Descriptors 
C.1.1 [PROCESSOR ARCHITECTURES]: Single Data Stream 

Architectures. 

General Terms 
Design, Measurement, Performance. 

Keywords 
Memory, Row Buffer, High-Speed Embedded Processors. 

1. INTRODUCTION 
The speed of embedded processors has improved significantly 

largely due to innovative techniques introduced at architectural 

and VLSI levels. Despite such advances, the main memory 

continues to serve as a bottleneck. This is the result of the fact that 

processor speed has improved at a much faster pace compared to 

memory. This increasing speed gap between memory and 

processor has made memory design a critical issue in embedded 

processors. While exploiting caches has been able to bridge the 

gap between processor and main memory performance, as some 

studies have suggested, caching is becoming less effective as the 

gap grows [1]. The growing impact of memory on the overall 

system performance motivates designers to seek performance 

optimization techniques for the memory system.  

One possible solution to this problem is to overlap memory 

accesses, servicing several memory requests in parallel. To 

increase the number of memory requests executed in parallel (also 

referred to as memory level parallelism) modern memory 

structures allow pipelining memory requests. This is facilitated by 

providing several independent banks, and caching the most 

recently accessed row in each bank. While these features improve 

memory bandwidth, the overall improvement would be highly 

dependent on memory requests patterns. Improvements are at their 

peak when the same bank row is accessed continuously or 

different banks are accessed sequentially. Unfortunately, real 

applications do not always follow such a pattern. For example, 

patterns including several consecutive accesses to different rows 

of a bank incur row conflict, effectively stalling memory access 

pipelining.   

This work aims at reducing memory latency by dynamically 

allocating memory resources (i.e., row buffers) to memory banks 

using memory accesses cyclic behavior. We refer to our technique 

as row buffer sharing (RBS). 

RBS aims at reducing latency in DDR2 SDRAMs. DDR2 

SDRAMs are composed of several banks, each equipped with one 

row buffer. The row buffers act as a cache and hold the most 

recent accessed row of the banks. Having multiple banks increases 

parallelism among memory requests and reduces memory 

response time.  

Our study shows that memory requests often access only a single 

bank consecutively and for long periods. During such periods, 

other banks are idle and their row buffers remain unused. In RBS 

we assign such idle row buffers to the active bank and increase the 

number of rows simultaneously cached in the row buffers. As 

such, we reduce memory latency for a larger number of memory 

accesses. Also, faster memory accesses improves processor overall 

performance. 

To achieve high performance improvements, it is important that 

the number of active memory rows stay relatively low and do not 

exceed the number of available buffers. Otherwise RBS cannot 

improve memory latency considerably as row buffers will be 

replaced continuously as new memory requests arrive. 

Fortunately, and as we show in this work this rarely is the case.  

The rest of the paper is organized as follows. In section 2, we 

discuss RBS. In section 3, we present our3 methodology. In 

section 4, we evaluate RBS. In section 5, we review related work. 

Finally, we conclude and offer closing remarks in section 6.  
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2. ROW BUFFER SHARING (RBS) 
In section 2.1 we discuss the organization of modern DDR2 

SDRAMs. Note that while we focus on DDR2 SDRAM in this 

work, our technique can be used for other memory structures, e.g., 

DRAM or SDR SDRAM [9]. In section 2.2 we explain our 

motivation. In section 2.3 we discuss implementation details.  

2.1 Memory background  
A double data rate (DDR) SDRAM is composed of several 

independent memory banks. Figure 1 depicts DDR2 SDRAM 

details. Each bank is a two dimensional array of memory cells. To 

read from or write to memory, an entire row of a bank should be 

activated. An active command moves the row from a bank to the 

associated row buffer and opens the row. Once the row is opened, 

any number of read and write commands can be issued to transfer 

columns within the opened row. Row activation is a destructive 

operation, and the buffer should ultimately be written back to the 

memory array. A precharge command closes the row and restores 

it back to the memory making it ready for future operations. 

Having several banks in memory increases the number of page 

hits. A page hit occurs when the requested row has already been 

opened making an active command unnecessary. Each row has 

several columns. The column width is equal to the number of data 

pins. Data is transferred on both rising and falling edges of the 

DDR2 SDRAM clock. A more detailed overview of DDR2 

SDRAMs can be found in [3]. 

The memory controller is the interface between the on chip 

processor and caches, and the off-chip memory. The memory 

controller receives memory requests (read or write operations) and 

translates them into memory commands, e.g. row activation, 

column read/write, and row precharge. The Memory controller 

includes the memory scheduler which reorders and interleaves 

memory requests to reduce memory latency [4]. The memory 

controller must generate commands that conform to timing and 

resource constrains of the memory array. For example, in 

MT47H128M4B6-5E DDR2 SDRAM [3], the read or write 

column command should be issued at least tRCD (15ns) cycles 

after the active command. Table 2 illustrates timing characteristics 

of the MT47H128M4B6-5E memory used in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Motivation  
A memory access that results in a row buffer hit only requires a 

column access. However, a row buffer miss needs precharge and 

active commands in addition to column access. As Table 2 shows, 

the latency of active and precharge commands (tRCD and tRP 

respectively) are 15ns each. In a 4-GHz processor, this is equal to 

60 processor cycles. As a result, concurrent accesses to different 

rows of the same bank would be significantly slower compared to 

concurrent accesses to a single row of a bank or to rows of 

different banks. Therefore, average memory access time would 

depend on the state of the memory banks’ buffers and the 

program’s memory access pattern. 

No matter how well a memory scheduler distributes memory 

requests over the banks, it can not prevent row conflicts (e.g., 

those resulting from a sequence of memory requests accessing 

different rows of the same bank). Such conflicts require switching 

rows and can potentially degrade performance if such conflicts 

occur too frequently.  

In a memory system using 4 banks, e.g. MT47H128M4B6-5E, 

and assuming a uniform access distribution, each bank is accessed 

25% of the time. In other words, 75% of the time, each bank and 

its associated row buffer are idle. In RBS, we borrow such idle 

row buffers for the active bank. As a result the borrowed row 

buffers act as a cache for the active bank. We assume that this 

process is managed by the memory controller. The Memory 

controller uses the extra row buffers to avoid row conflicts and to 

reduce memory latency. 

We will benefit from RBS only if idle banks remain idle for a 

sufficient number of memory requests, and so possible benefits 

outweigh the overhead associated with precharging and activating. 

Figure 2 shows memory request distribution for the crc32 

benchmark from MiBench suites and for load/store instructions. 

The Y axis shows the bank number, and the X axis shows memory 

requests. For each memory request, we record the bank number 

corresponding to the requested memory address. In a DDR2 

SDRAM with four banks, this number can be zero, one, two, or 

three. As the figure shows, during program runtime, the program 

goes through several phases. During each phase, the processor 

usually accesses one of the banks leaving the other three banks 

idle for most of the period. For example, from memory access 

1536 to memory access 1804, bank number 1 is the only active 

one for more than 95% of the accesses. This period is equivalent 

to 6755 memory cycles or 67550 processor cycles (refer to table 1 

for relative speed of CPU and memory). 

Figure 3 shows the accumulative distribution of reusability 

distance for MiBench benchmarks studied in this work. 

Reusability distance shows the number of memory accesses 

occurring between two memory requests made to the same 

memory location. The Y-axis depicts accumulative value for 

reusability distance. The X-axis shows reusability distance in 

logarithm of 2 scale. To be precise, values from zero to ten in the 

X-axis correspond to reusability distances from zero to 1023. 

As reported, distribution of reusability distance increases sharply 

when the distance changes from zero to three. It increases steadily 

for distances from three to 1023. 8% of memory accesses have a 

reusability distance of greater than 1023. 
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Figure 1. DDR2 SDRAM organization. 
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Only 30% of accesses have zero reusability distance. This means 

that in the baseline DDR2 SDRAM which uses one buffer per 

bank, only 30% of accesses result in a row hit. 32% of other 

accesses have reusability distance of one. In other words, if the 

number of bank row buffers is increased to two, the total hit rate 

will reach 62%. Following the same line of argument, a DDR2 

SDRAM with four buffers per bank would have a 70% hit rate. In 

other words, four buffers cut the gap between a memory with one 

row buffer per bank and a memory with unlimited buffers per 

bank by half. We conclude from figure 3 that exploiting four 

buffers per bank would improve memory hit rate considerably.  

 Using four buffers per bank would require 16 buffers in the 

DDR2 SDRAM (which exploits four banks) studied in this work. 

This is not a reasonable choice for embedded processors as it 

would require a highly complex switching system. In addition, it 

would result in a higher number of idle row buffers during bank 

idle periods. 

As presented in figure 2, quite often, only one of the four banks is 

active. This observation indicates the possibility of achieving high 

hit rates by sharing the four existing row buffers among the four 

banks. This is the result of the fact that often three of the four 

banks are idle and can let the active bank use their row buffers.  

Note that further increases in the number of row buffers after 

sharing four rows would not result in any significant 

improvement. For example, doubling the number of buffers from 

four to eight increases the hit rate by less than 4%. 
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2.3 Implementation  
In RBS, all row buffers are shared among the banks. Therefore, 

each bank can use up to four buffers simultaneously.  

We use a crossbar interconnect to connect banks and row buffers. 

We assume one memory cycle for crossbar interconnect delay. 

The baseline DDR2 SDRAM uses a multiplexer to select one 

buffer to read or write. The crossbar switch uses four multiplexers 

to connect the four banks to the four row buffers. As such, we 

believe that the hardware overhead of the crossbar switch is 

reasonable in an embedded system. 

 The memory scheduler should select one row buffer if multiple 

row buffers are available. Also, the memory scheduler should 

evict one row, if all row buffers are in use. We use a combination 

of LRU (least recently used) [14] and unmodified policy [14] to 

select the row buffer for replacement. LRU policy selects the 

victim row buffer among unmodified ones. The reason that we 

exclude dirty row buffers from replacement is to minimize the 

latency. A dirty row buffer should be precharged, which incurs 

extra latency. If all the buffers are modified, the oldest modified 

buffer is selected for replacement. 

3. METHODOLOGY  
To simulate our technique, we use Simplescalar v3.0 [10]. We 

have modified the simulator to model a processor similar to 

Xscale [5]. Table 1 shows the XScale configuration. We used 

programs from MiBench [13] embedded benchmarks suits 

compiled by GNU’s gcc v2.9 with –O3 optimization level (Table 

2). We run each simulation for 500M instructions or up to 

completion, whichever comes first. 

Table1. Base configuration for simulated processor 

 

We used a cycle accurate model for DDR2 SDRAM memory. We 

accurately model memory controller, bank conflicts, and 

bandwidth limitation. The model includes all details for timing 

parameters, delay between commands, and refreshing intervals. 

Table 2 presents the DDR2 SDRAM parameters used in this 

study. All of these parameters are extracted directly from the 

ROB/LSQ size 8/8 

Branch Predictor Bimodal predictor-128-entry 

BTB 128-entry, 1-way 

Scheduler 8-entry, RUU-like 

Fetch Unit/ Fetch Buffer 1 instruction per cycle/2-entry  

Decode, Issue, and 

commit width 

2 instructions/ cycle 

L1 – I/D Cache 32K, 32-way SA, 32-byte 

blocks, 1 cycle hit latency 

Unified L2 N/A 

ALU 
1 int ALU, 1int mult/div 

1 FP ALU, 1FP mult/div 

Relative clock frequency 

of CPU to memory 
10 

TLB-I/D 32/32-entry, fully associative 

 

Figure 2. Cyclic access to banks in memory requests.  

. 

Figure 3. Accumulative distribution of reusability 

distance. 
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MT47H128M4B6-5E DDR2 SDRAM datasheet [3]. The memory 

controller follows all timing constrains of table 2 when it issues a 

command to the banks. 

Table 2. MT47H128M4B6-5E DDR2 SDRAM timing 

parameters [3]. 

tCK Clock Cycle 5 ns 

tRCD Activate to read 15 ns 

tCCD Read to read or write to write 10 ns 

tWTR Write to read 10 ns 

tRP Precharge to activate 15 ns 

tRAS Activate to precharge 40 ns 

tRFC Max refresh to refresh 70000 ns 

4. RESULTS  
Figure 4 reports hit rate improvement for RBS compared to the 

conventional DDR2 SDRAM. RBS improves memory access 

latency by assigning several buffers to an active bank. As such, 

several rows of a bank are opened at the same time, and this 

increases the likelihood that the row corresponding to a memory 

access has already been opened. The hit rate improvement 

changes from 18% in lame to 37% in crc32. On average, RBS 

increases row hit rate by 30%. 
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Figure 5 shows memory latency improvement for RBS compared 

to the baseline DDR2 SDRAM. Consistent with the data reported 

in figure 4, RBS improves memory latency significantly. When 

memory controller accesses an open row, it does not issue 

precharge and active commands, and this reduces the latency of 

memory. RBS reduces memory latency from 6.5% for lame to 

16% for cr32. On average, memory latency is reduced by 12.7%. 

In figure 6, we report processor overall performance 

improvement. As reported, we improve average processor 

performance by 7.6%. For some benchmarks, memory latency and 

processor performance react differently to RBS. For example, 

some benchmarks with lower memory latency reduction show 

better performance improvement. This could be explained by the 

variations in benchmarks performance sensitivity to memory 

latency. For some benchmarks, memory instructions have a higher 

impact on overall performance. Therefore, despite their lower 

memory latency reduction, the overall processor performance 

improvement is higher. 
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In all results reported so far, we have assumed a CPU with a clock 

frequency 10 times faster than the memory clock frequency (refer 

to Table 1). In figure 7 we report how RBS reacts to alternative 

relative CPU and memory speeds. We report RBS sensitivity to 

relative CPU and memory clock frequencies changing from four 

to 20. As the figure shows, performance improvements achieved 

by RBS increase as the gap between CPU and memory speed 

increases. This is due to the fact that the memory latency gap 

between RBS and the baseline scheme increases as CPU becomes 

increasingly faster than memory. On average, performance 

improves from 3.7% to 11.2% when relative speed varies between 

four and 20. 
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Figure 4. Row buffer hit rate improvement by RBS.  

. 

Figure 5. Average memory latency reduction by RBS.  

. 

Figure 6. Processor performance improvement by RBS.  

. 

Figure 7. Processor performance improvement when 

relative speed of CPU and memory changes. 
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5. RELATED WORK  
Rixner et al. [4] proposed a scheduling method that exploits 

locality of memory requests to reduce memory latency. They 

reordered memory references to increase the number of requests 

that access the same row of a bank. They do so by increasing the 

priority of requests that refer to the current open row. As such, 

they reduce row buffer replacement frequency and improve 

memory latency.  

Moyer [11] developed and analyzed algorithms to perform access 

reordering statically at compile time. Moyer used loop unrolling 

and instructions reordering to improve memory locality. Moyer’s 

technique applies specifically to stream-oriented workloads in 

cacheless systems. McKee et al. [12] used a runtime approach to 

order the accesses to streams in a stream memory controller. In 

this approach the memory controller considers each stream buffer 

in a round-robin fashion, streaming as much data as possible to 

the current buffer before going to the next buffer. This approach 

may reduce conflicts among streams, but it does not reorder 

references within a single stream. 

Valero et al. [2] proposed a hardware-based mechanism to avoid 

bank conflicts in vector processors by accessing vector elements 

out of order. The Impulse memory system introduced by Carter et 

al. [6] improves memory system performance by dynamically 

remapping physical addresses. This approach requires 

modifications to the applications and operating system. 

Alexander and Kedem [8] proposed a memory-based prefetching 

scheme to improve performance. They use a prediction table to 

store up to four possible predictions for any given memory 

address. All four predictions are prefetched into SRAM buffers. 

The size of their prediction table is kept small by using a large 

prefetch block size. 

Our work is different from above as we increase the number of 

simultaneously opened rows to improve concurrency in main 

memory. 

Researchers from NEC proposed exploiting virtual channels to 

reduce performance gap between processor and main memory [7]. 

Virtual channel memory (VCM) uses several channels between 

the memory cells and the memory I/O to store data temporarily. 

VCM increases the level of parallelism as memory data requests 

are prepared in separate channels while reading or writing the 

current data. Rixner [14] proposed different scheduling algorithm 

to exploit virtual channels for reducing memory latency. RBS is 

different from VCM as we exploit row buffers in phases that their 

corresponding banks are idle. In addition, we do not incur extra 

channels to cache bank rows which is critical to keep complexity 

and power affordable in embedded processors. 

6. CONCLUSION 
In this work we used periodic behavior in memory accesses to 

improve memory latency in embedded processors. We were 

motivated by the need for low memory latency and took 

advantage of application behavior and dynamic allocation 

opportunities available in the internal structure of modern DDR2 

SDRAMs. 

The cyclic and clustered nature of memory bank accesses provides 

an opportunity to borrow idle row buffers for active banks. We 

reduce resource conflicts for row buffers and decrease the number 

of precharge and active commands issued by the memory 

scheduler. Accordingly, we reduce average memory latency and 

improve performance by 12.7% and 7.6% respectively. In 

addition, we show that under possible future gap increasing 

between memory and CPU speed, RBS could achieve higher 

performance improvement. 
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