Part 3: IIR Filters – Bilinear Transformation Method

Tutorial ISCAS 2007

Copyright © 2007 Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org

July 24, 2007

Frame #1 Slide #1

A. Antoniou Part3: IIR Filters – Bilinear Transformation Method

★ E → < E →</p>

э

Introduction

 A procedure for the design of IIR filters that would satisfy arbitrary prescribed specifications will be described.

回 と く ヨ と く ヨ と

Introduction

- A procedure for the design of IIR filters that would satisfy arbitrary prescribed specifications will be described.
- The method is based on the bilinear transformation and it can be used to design lowpass (LP), highpass (HP), bandpass (BP), and bandstop (BS), Butterworth, Chebyshev, Inverse-Chebyshev, and Elliptic filters.

Note: The material for this module is taken from Antoniou, *Digital Signal Processing: Signals, Systems, and Filters,* Chap. 12.) Given an analog filter with a continuous-time transfer function $H_A(s)$, a digital filter with a discrete-time transfer function $H_D(z)$ can be readily deduced by applying the bilinear transformation as follows:

A. Antoniou

$$H_D(z) = H_A(s) \Big|_{s = \frac{2}{T} \left(\frac{z-1}{z+1}\right)}$$
(A)

個人 くほん くほん 一日

Frame # 3 Slide # 4

The bilinear transformation method has the following important features:

• A stable analog filter gives a stable digital filter.

日本・モン・モン

The bilinear transformation method has the following important features:

- A stable analog filter gives a stable digital filter.
- The maxima and minima of the amplitude response in the analog filter are preserved in the digital filter.

As a consequence,

- the passband ripple, and
- the minimum stopband attenuation

of the analog filter are preserved in the digital filter.

日本・モン・モン

Frame # 5 Slide # 7

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction Cont'd

Frame # 6 Slide # 8

Part3: IIR Filters – Bilinear Transformation Method

・ロン ・回 と ・ ヨン ・ ヨン

æ

The Warping Effect

If we let ω and Ω represent the frequency variable in the analog filter and the derived digital filter, respectively, then Eq. (A), i.e.,

$$H_D(z) = H_A(s) \bigg|_{s = \frac{2}{T} \left(\frac{z-1}{z+1}\right)}$$
(A)

gives the frequency response of the digital filter as a function of the frequency response of the analog filter as

$$H_D(e^{j\Omega T}) = H_A(j\omega)$$

provided that
$$s = \frac{2}{T} \left(\frac{z-1}{z+1} \right)$$

or $j\omega = \frac{2}{T} \left(\frac{e^{j\Omega T} - 1}{e^{j\Omega T} + 1} \right)$ or $\omega = \frac{2}{T} \tan \frac{\Omega T}{2}$ (B)

The Warping Effect Cont'd

• • •

$$\omega = \frac{2}{T} \tan \frac{\Omega T}{2} \tag{B}$$

• For $\Omega < 0.3/T$

 $\omega pprox \Omega$

and, as a result, the digital filter has the same frequency response as the analog filter over this frequency range.

Frame # 8 Slide # 10

◎ ▶ < ミ ▶ < ミ ▶

The Warping Effect Cont'd

• • •

$$\omega = \frac{2}{T} \tan \frac{\Omega T}{2} \tag{B}$$

• For $\Omega < 0.3/T$

 $\omega \approx \Omega$

and, as a result, the digital filter has the same frequency response as the analog filter over this frequency range.

 For higher frequencies, however, the relation between ω and Ω becomes nonlinear, and distortion is introduced in the frequency scale of the digital filter relative to that of the analog filter.

This is known as the warping effect.

The Warping Effect Cont'd

Frame # 9 Slide # 12

▶ ★ 臣 ▶ ...

-

æ

The warping effect changes the band edges of the digital filter relative to those of the analog filter in a nonlinear way, as illustrated for the case of a BS filter:

Frame # 10 Slide # 13

A. Antoniou Part3: IIR Filters – Bilinear Transformation Method

Prewarping

• From Eq. (B), i.e.,

$$\omega = \frac{2}{T} \tan \frac{\Omega T}{2} \tag{B}$$

a frequency ω in the analog filter corresponds to a frequency Ω in the digital filter and hence

$$\Omega = \frac{2}{T} \tan^{-1} \frac{\omega T}{2}$$

Frame # 11 Slide # 14

回 と く ヨ と く ヨ と

From Eq. (B), i.e.,

$$\omega = \frac{2}{T} \tan \frac{\Omega T}{2} \tag{B}$$

a frequency ω in the analog filter corresponds to a frequency Ω in the digital filter and hence

$$\Omega = \frac{2}{T} \tan^{-1} \frac{\omega T}{2}$$

 If ω₁, ω₂,..., ω_i,... are the passband and stopband edges in the analog filter, then the corresponding passband and stopband edges in the derived digital filter are given by

$$\Omega_i = \frac{2}{T} \tan^{-1} \frac{\omega_i T}{2} \quad i = 1, 2, \dots$$

<回と < 回と < 回と -

Prewarping Cont'd

If prescribed passband and stopband edges Ω₁,
 Ω₂,..., Ω_i,... are to be achieved, the analog filter must be prewarped before the application of the bilinear transformation to ensure that its band edges are given by

$$\omega_i = \frac{2}{T} \tan \frac{\tilde{\Omega}_i T}{2}$$

◆□ → ◆ □ → ◆ □ → □ □

Prewarping Cont'd

If prescribed passband and stopband edges Ω₁,
 Ω₂,..., Ω_i,... are to be achieved, the analog filter must be prewarped before the application of the bilinear transformation to ensure that its band edges are given by

$$\omega_i = \frac{2}{T} \tan \frac{\tilde{\Omega}_i T}{2}$$

 Then the band edges of the digital filter would assume their prescribed values Ω_i since

$$\begin{split} \Omega_i &= \frac{2}{T} \tan^{-1} \frac{\omega_i T}{2} \\ &= \frac{2}{T} \tan^{-1} \left(\frac{T}{2} \cdot \frac{2}{T} \tan \frac{\tilde{\Omega}_i T}{2} \right) \\ &= \tilde{\Omega}_i \quad \text{for } i = 1, 2, \dots \end{split}$$

個 とく きとく きとう

Consider a normalized analog LP filter characterized by $H_N(s)$ with an attenuation

$$A_N(\omega) = 20 \log \frac{1}{|H_N(j\omega)|}$$

(also known as loss) and assume that

$$0 \le A_N(\omega) \le A_p \quad \text{for } 0 \le |\omega| \le \omega_p$$
$$A_N(\omega) \ge A_a \quad \text{for } \omega_a \le |\omega| \le \infty$$

Note: The transfer functions of analog LP filters are reported in the literature in normalized form whereby the passband edge is typically of the order of unity.

A B K A B K

Frame # 14 Slide # 19

A. Antoniou Part3: IIR Filters – Bilinear Transformation Method

Design Procedure

A denormalized LP, HP, BP, or BS filter that has the same passband ripple and minimum stopband attenuation as a given normalized LP filter can be derived from the normalized LP filter through the following steps:

1. Apply the transformation $s = f_X(\bar{s})$

$$H_X(\bar{s}) = H_N(s)\Big|_{s = f_X(\bar{s})}$$

where $f_X(\bar{s})$ is one of the four standard analog-filters transformations, given by the next slide.

ロマ・ キョン キョン

Design Procedure

A denormalized LP, HP, BP, or BS filter that has the same passband ripple and minimum stopband attenuation as a given normalized LP filter can be derived from the normalized LP filter through the following steps:

1. Apply the transformation $s = f_X(\bar{s})$

$$H_X(\bar{s}) = H_N(s)\Big|_{s=f_X(\bar{s})}$$

where $f_X(\bar{s})$ is one of the four standard analog-filters transformations, given by the next slide.

2. Apply the bilinear transformation to $H_X(\bar{s})$, i.e.,

$$H_D(z) = H_X(\bar{s})\Big|_{\bar{s}=\frac{2}{T}\left(\frac{z-1}{z+1}\right)}$$

Frame # 15 Slide # 21

Standard forms of $f_X(\bar{s})$

Х	$f_X(\bar{s})$		
LP	$\lambda ar{s}$		
HP	$\lambda/ar{m{s}}$		
BP	$\frac{1}{B}\left(\bar{s}+\frac{\omega_0^2}{\bar{s}}\right)$		
BS	$\frac{B\bar{s}}{\bar{s}^2+\omega_0^2}$		

Frame # 16 Slide # 22

A. Antoniou Part3: IIR Filters – Bilinear Transformation Method

・ロン ・回 と ・ ヨン ・ ヨン

æ

• The digital filter designed by this method will have the required passband and stopband edges only if the parameters λ , ω_0 , and *B* of the analog-filter transformations and the order of the continuous-time normalized LP transfer function, $H_N(s)$, are chosen appropriately.

回 とくほ とくほ とう

- The digital filter designed by this method will have the required passband and stopband edges only if the parameters λ , ω_0 , and *B* of the analog-filter transformations and the order of the continuous-time normalized LP transfer function, $H_N(s)$, are chosen appropriately.
- This is obviously a difficult problem but general solutions are available for LP, HP, BP, and BS, Butterworth, Chebyshev, inverse-Chebyshev, and Elliptic filters.

回 とうほ とうせい

General Design Procedure for LP Filters

An outline of the methodology for the derivation of general solutions for LP filters is as follows:

1. Assume that a continuous-time normalized LP transfer function, $H_N(s)$, is available that would give the required passband ripple, A_p , and minimum stopband attenuation (loss), A_a .

Let the passband and stopband edges of the analog filter be ω_p and ω_a , respectively.

回 とくほ とくほ とう

Attenuation characteristic of continuous-time normalized LP filter

E

2. Apply the LP-to-LP analog-filter transformation to $H_N(s)$ to obtain a denormalized discrete-time transfer function $H_{LP}(\bar{s})$.

個 とく きとく きとう

2

- 2. Apply the LP-to-LP analog-filter transformation to $H_N(s)$ to obtain a denormalized discrete-time transfer function $H_{LP}(\bar{s})$.
- 3. Apply the bilinear transformation to $H_{LP}(\bar{s})$ to obtain a discrete-time transfer function $H_D(z)$.

回 とくほ とくほ とう

- 2. Apply the LP-to-LP analog-filter transformation to $H_N(s)$ to obtain a denormalized discrete-time transfer function $H_{LP}(\bar{s})$.
- 3. Apply the bilinear transformation to $H_{LP}(\bar{s})$ to obtain a discrete-time transfer function $H_D(z)$.
- 4. At this point, assume that the derived discrete-time transfer function has passband and stopband edges that satisfy the relations

$$ilde{\Omega}_p \leq \Omega_p$$
 and $\Omega_a \leq ilde{\Omega}_a$

where $\tilde{\Omega}_{\rho}$ and $\tilde{\Omega}_{a}$ are the *prescribed* passband and stopband edges, respectively.

In effect, we assume that the digital filter has passband and stopband edges that *satisfy* or *oversatisfy* the required specifications.

・ 回 ト ・ ヨ ト ・ ヨ ト …

Frame # 21 Slide # 30

A. Antoniou Part3: IIR Filters – Bilinear Transformation Method

5. Solve for λ , the parameter of the LP-to-LP analog-filter transformation.

Frame # 22 Slide # 31

A. Antoniou Part3: IIR Filters – Bilinear Transformation Metho

日本・モン・モン

- 5. Solve for λ , the parameter of the LP-to-LP analog-filter transformation.
- 6. Find the minimum value of the ratio ω_p/ω_a for the continuous-time normalized LP transfer function.

The ratio ω_p/ω_a is a fraction less than unity and it is a measure of the steepness of the transition characteristic. It is often referred to as the *selectivity* of the filter.

The selectivity of a filter *dictates the minimum order* to achieve the required specifications.

Note: As the selectivity approaches unity, the filter-order tends to infinity!

<回> < 回> < 回> < 回>

7. The same methodology is applicable for HP filters, except that the LP-HP analog-filter transformation is used in Step 2.

回 と く ヨ と く ヨ と

臣

- The same methodology is applicable for HP filters, except that the LP-HP analog-filter transformation is used in Step 2.
- 8. The application of this methodology yields the formulas summarized by the table shown in the next slide.

ロマ・ キョン キョン

Formulas for LP and HP Filters

$$LP \qquad \qquad \frac{\frac{\omega_{p}}{\omega_{a}} \ge K_{0}}{\lambda = \frac{\omega_{p}T}{2\tan(\tilde{\Omega}_{p}T/2)}}$$
$$HP \qquad \qquad \frac{\frac{\omega_{p}}{\omega_{a}} \ge \frac{1}{K_{0}}}{\lambda = \frac{2\omega_{p}\tan(\tilde{\Omega}_{p}T/2)}{T}}$$
$$where \qquad K_{0} = \frac{\tan(\tilde{\Omega}_{p}T/2)}{\tan(\tilde{\Omega}_{a}T/2)}$$

Frame # 24 Slide # 35

A. Antoniou Part3: IIR Filters – Bilinear Transformation Method

イロン イヨン イヨン イヨン

∃ < n < 0</p>

- The table of formulas presented is applicable to all the classical types of analog filters, namely,
 - Butterworth
 - Chebyshev
 - Inverse-Chebyshev
 - Elliptic

日本・モン・モン

- The table of formulas presented is applicable to all the classical types of analog filters, namely,
 - Butterworth
 - Chebyshev
 - Inverse-Chebyshev
 - Elliptic
- Formulas that can be used to design digital versions of these filters will be presented later.

回 と く ヨ と く ヨ と

General Design Procedure for BP Filters

An outline of the methodology for the derivation of general solutions for BP filters is as follows:

1. Assume that a continuous-time normalized LP transfer function, $H_N(s)$, is available that would give the required passband ripple, A_p , and minimum stopband attenuation, A_a .

Let the passband and stopband edges of the analog filter be ω_p and ω_a , respectively.

ロマ・ キョン キョン

2. Apply the LP-to-BP analog-filter transformation to $H_N(s)$ to obtain a denormalized discrete-time transfer function $H_{BP}(\bar{s})$.

個人 くほん くほん 一日

- 2. Apply the LP-to-BP analog-filter transformation to $H_N(s)$ to obtain a denormalized discrete-time transfer function $H_{BP}(\bar{s})$.
- 3. Apply the bilinear transformation to $H_{BP}(\bar{s})$ to obtain a discrete-time transfer function $H_D(z)$.

 At this point, assume that the derived discrete-time transfer function has passband and stopband edges that satisfy the relations

$$\Omega_{p1} \leq \tilde{\Omega}_{p1} \quad \Omega_{p2} \geq \tilde{\Omega}_{p2}$$

and

$$\Omega_{a1} \ge \tilde{\Omega}_{a1} \quad \Omega_{a2} \le \tilde{\Omega}_{a2}$$

where

- Ω_{p1} and Ω_{p2} are the actual lower and upper passband edges,
- $\tilde{\Omega}_{p1}$ and $\tilde{\Omega}_{p2}$ are the *prescribed* lower and upper passband edges,
- Ω_{a1} and Ω_{a2} are the actual lower and upper stopband edges,
- $\tilde{\Omega}_{p1}$ and $\tilde{\Omega}_{p2}$ are the *prescribed* lower and upper stopband edges, respectively.

→ 御 → ★ 理 → ★ 理 → … 理

Frame # 29 Slide # 42

A. Antoniou

5. Solve for *B* and ω_0 , the parameters of the LP-to-BP analog-filter transformation.

Frame # 30 Slide # 43

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- 5. Solve for *B* and ω_0 , the parameters of the LP-to-BP analog-filter transformation.
- 6. Find the minimum value for the selectivity, i.e., the ratio ω_p/ω_a , for the continuous-time normalized LP transfer function.

回 と く ヨ と く ヨ と

- 5. Solve for *B* and ω_0 , the parameters of the LP-to-BP analog-filter transformation.
- 6. Find the minimum value for the selectivity, i.e., the ratio ω_p/ω_a , for the continuous-time normalized LP transfer function.
- 7. The same methodology can be used for the design of BS filters except that the LP-to-BS transformation is used in Step 2.

回り くほり くほう

- 5. Solve for *B* and ω_0 , the parameters of the LP-to-BP analog-filter transformation.
- 6. Find the minimum value for the selectivity, i.e., the ratio ω_p/ω_a , for the continuous-time normalized LP transfer function.
- 7. The same methodology can be used for the design of BS filters except that the LP-to-BS transformation is used in Step 2.
- 8. The application of this methodology yields the formulas summarized in the next two slides.

・ 回 > ・ ヨ > ・ モ > ・

Formulas for the design of BP Filters

Frame # 31 Slide # 47

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

Formulas for the Design of BS Filters

$$BS \qquad \frac{\omega_{0} = \frac{2\sqrt{K_{B}}}{T}}{\frac{\omega_{p}}{\omega_{a}} \ge \begin{cases} \frac{1}{K_{2}} & \text{if } K_{C} \ge K_{B} \\ \frac{1}{K_{1}} & \text{if } K_{C} < K_{B} \end{cases}}{B = \frac{2K_{A}\omega_{p}}{T}}$$
where
$$K_{A} = \tan\frac{\tilde{\Omega}_{p2}T}{2} - \tan\frac{\tilde{\Omega}_{p1}T}{2} & K_{B} = \tan\frac{\tilde{\Omega}_{p1}T}{2}\tan\frac{\tilde{\Omega}_{p2}T}{2} \\ K_{C} = \tan\frac{\tilde{\Omega}_{a1}T}{2}\tan\frac{\tilde{\Omega}_{a2}T}{2} & K_{1} = \frac{K_{A}\tan(\tilde{\Omega}_{a1}T/2)}{K_{B} - \tan^{2}(\tilde{\Omega}_{a1}T/2)} \\ K_{2} = \frac{K_{A}\tan(\tilde{\Omega}_{a2}T/2) - K_{B}}{\tan^{2}(\tilde{\Omega}_{a2}T/2) - K_{B}}$$

Frame # 32 Slide # 48

A. Antoniou

Formulas for ω_p and *n*

 The formulas presented apply to any type of normalized analog LP filter with an attenuation that would satisfy the following conditions:

$$0 \le A_N(\omega) \le A_\rho \quad \text{for } 0 \le |\omega| \le \omega_\rho$$
$$A_N(\omega) \ge A_a \quad \text{for } \omega_a \le |\omega| \le \infty$$

æ

Formulas for ω_p and *n*

 The formulas presented apply to any type of normalized analog LP filter with an attenuation that would satisfy the following conditions:

$$0 \le A_N(\omega) \le A_p \quad \text{for } 0 \le |\omega| \le \omega_p$$
$$A_N(\omega) \ge A_a \quad \text{for } \omega_a \le |\omega| \le \infty$$

 However, the values of the normalized passband edge, ω_p, and the required filter order, n, depend on the type of filter.

回 と く ヨ と く ヨ と …

Formulas for ω_p and *n*

 The formulas presented apply to any type of normalized analog LP filter with an attenuation that would satisfy the following conditions:

$$0 \le A_N(\omega) \le A_p \quad \text{for } 0 \le |\omega| \le \omega_p$$
$$A_N(\omega) \ge A_a \quad \text{for } \omega_a \le |\omega| \le \infty$$

- However, the values of the normalized passband edge, ω_p, and the required filter order, n, depend on the type of filter.
- Formulas for these parameters for Butterworth, Chebyshev, and Elliptic filters are presented in the next three slides.

回 と く ヨ と く ヨ と

Formulas for Butterworth Filters

$$\begin{array}{ccc} \mathsf{LP} & \mathcal{K} = \mathcal{K}_{0} \\ \\ \mathsf{HP} & \mathcal{K} = \frac{1}{\mathcal{K}_{0}} \\ \\ \mathsf{BP} & \mathcal{K} = \begin{cases} \mathcal{K}_{1} & \text{if } \mathcal{K}_{C} \geq \mathcal{K}_{B} \\ \mathcal{K}_{2} & \text{if } \mathcal{K}_{C} < \mathcal{K}_{B} \end{cases} \\ \\ \\ \mathsf{BS} & \mathcal{K} = \begin{cases} \frac{1}{\mathcal{K}_{2}} & \text{if } \mathcal{K}_{C} \geq \mathcal{K}_{B} \\ \frac{1}{\mathcal{K}_{1}} & \text{if } \mathcal{K}_{C} < \mathcal{K}_{B} \end{cases} \\ \\ \\ \\ n \geq \frac{\log D}{2\log(1/\mathcal{K})}, \quad D = \frac{10^{0.1\mathcal{A}_{a}} - 1}{10^{0.1\mathcal{A}_{p}} - 1} \\ \\ \\ \\ \omega_{p} = (10^{0.1\mathcal{A}_{p}} - 1)^{1/2n} \end{cases} \end{array}$$

Frame # 34 Slide # 52

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

∃ < n < 0</p>

Formulas for Chebyshev Filters

$$\begin{array}{ccc} LP & \mathcal{K} = \mathcal{K}_{0} \\ HP & \mathcal{K} = \frac{1}{\mathcal{K}_{0}} \\ BP & \mathcal{K} = \begin{cases} \mathcal{K}_{1} & \text{if } \mathcal{K}_{C} \geq \mathcal{K}_{B} \\ \mathcal{K}_{2} & \text{if } \mathcal{K}_{C} < \mathcal{K}_{B} \end{cases} \\ BS & \mathcal{K} = \begin{cases} \frac{1}{\mathcal{K}_{2}} & \text{if } \mathcal{K}_{C} \geq \mathcal{K}_{B} \\ \frac{1}{\mathcal{K}_{1}} & \text{if } \mathcal{K}_{C} < \mathcal{K}_{B} \end{cases} \\ n \geq \frac{\cosh^{-1}\sqrt{D}}{\cosh^{-1}(1/\mathcal{K})}, \quad D = \frac{10^{0.1\mathcal{A}_{a}} - 1}{10^{0.1\mathcal{A}_{p}} - 1} \\ \omega_{p} = 1 \end{cases}$$

Frame # 35 Slide # 53

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Formulas for Elliptic Filters

	k	ω_{p}	
LP	$K = K_0$	$\sqrt{K_0}$	
HP	$K = \frac{1}{K_0}$	$\frac{1}{\sqrt{K_0}}$	
BP	$\mathcal{K} = egin{cases} \mathcal{K}_1 & ext{if } \mathcal{K}_C \geq \mathcal{K}_B \ \mathcal{K}_2 & ext{if } \mathcal{K}_C < \mathcal{K}_B \end{cases}$	$\frac{\sqrt{K_1}}{\sqrt{K_2}}$	
BS	$\mathcal{K} = egin{cases} rac{1}{\mathcal{K}_2} & ext{if } \mathcal{K}_C \geq \mathcal{K}_B \ rac{1}{\mathcal{K}_1} & ext{if } \mathcal{K}_C < \mathcal{K}_B \end{cases}$	$\frac{1}{\sqrt{K_2}} \\ \frac{1}{\sqrt{K_1}}$	
$n \ge rac{\cosh^{-1}\sqrt{D}}{\cosh^{-1}(1/K)}, D = rac{10^{0.1A_a} - 1}{10^{0.1A_p} - 1}$			

Frame # 36 Slide # 54

A. Antoniou Part3: IIR Filters – Bilinear Transformation Method

イロン イヨン イヨン イヨン

∃ 990

Example – HP Filter

An HP filter that would satisfy the following specifications is required:

$$A_p = 1$$
 dB, $A_a = 45$ dB, $\tilde{\Omega}_p = 3.5$ rad/s,
 $\tilde{\Omega}_a = 1.5$ rad/s, $\omega_s = 10$ rad/s.

Design a Butterworth, a Chebyshev, and then an Elliptic digital filter.

Frame # 37 Slide # 55

・ 回 ト ・ ヨ ト ・ ヨ ト

2

Example – HP Filter Cont'd

Solution

n	ω_{p}	λ
5	0.873610	5.457600
4	1.0	6.247183
3	0.509526	3.183099
	n 5 4 3	n ω _p 5 0.873610 4 1.0 3 0.509526

Frame # 38 Slide # 56

Frame # 39 Slide # 57

A. Antoniou Part3: IIR Filters – Bilinear Transformation Method

・ロト ・回ト ・ヨト ・ヨト

æ

Example – BP Filter

Design an Elliptic BP filter that would satisfy the following specifications:

 $\begin{array}{ll} A_p = 1 \text{ dB}, \quad A_a = 45 \text{ dB}, \quad \tilde{\Omega}_{p1} = 900 \text{ rad/s}, \quad \tilde{\Omega}_{p2} = 1100 \text{ rad/s}, \\ \tilde{\Omega}_{a1} = 800 \text{ rad/s}, \quad \tilde{\Omega}_{a2} = 1200 \text{ rad/s}, \quad \omega_s = 6000 \text{ rad/s}. \end{array}$

Solution

k = 0.515957 $\omega_p = 0.718302$ n = 4 $\omega_0 = 1,098.609$ B = 371.9263

<□> < E> < E> = - のへで

Example – BP Filter Contd

Frame # 41 Slide # 59

A. Antoniou Part3: IIR Filters – Bilinear Transformation Method

▲ロ → ▲圖 → ▲ 国 → ▲ 国 → 一

æ

Example – BS Filter

Design a Chebyshev BS filter that would satisfy the following specifications:

$$A_p = 0.5 \,\mathrm{dB}, \quad A_a = 40 \,\mathrm{dB}, \quad \tilde{\Omega}_{p1} = 350 \,\mathrm{rad/s}, \quad \tilde{\Omega}_{p2} = 700 \,\mathrm{rad/s},$$

 $\tilde{\Omega}_{a1} = 430 \,\mathrm{rad/s}, \quad \tilde{\Omega}_{a2} = 600 \,\mathrm{rad/s}, \quad \omega_s = 3000 \,\mathrm{rad/s}.$
Solution

$$\omega_p = 1.0$$

 $n = 5$
 $\omega_0 = 561,4083$
 $B = 493,2594$

Frame # 42 Slide # 60

< 日 > < 同 > < 回 > < 回 > < 回 > <

3

Frame # 43 Slide # 61

D-Filter

A DSP software package that incorporates the design techniques described in this presentation is *D-Filter*. Please see

http://www.d-filter.ece.uvic.ca

for more information.

Frame # 44 Slide # 62

回 と く ヨ と く ヨ と

э

 A design method for IIR filters that leads to a complete description of the transfer function *in closed form* either in terms of its zeros and poles or its coefficients has been described.

回 とくほとくほとう

크

- A design method for IIR filters that leads to a complete description of the transfer function *in closed form* either in terms of its zeros and poles or its coefficients has been described.
- The method requires *very little computation* and leads to very precise *optimal* designs.

回 と く ヨ と く ヨ と …

- A design method for IIR filters that leads to a complete description of the transfer function *in closed form* either in terms of its zeros and poles or its coefficients has been described.
- The method requires *very little computation* and leads to very precise *optimal* designs.
- It can be used to design LP, HP, BP, and BS filters of the Butterworth, Chebyshev, Inverse-Chebyshev, Elliptic types.

回 と く ヨ と く ヨ と …

- A design method for IIR filters that leads to a complete description of the transfer function *in closed form* either in terms of its zeros and poles or its coefficients has been described.
- The method requires *very little computation* and leads to very precise *optimal* designs.
- It can be used to design LP, HP, BP, and BS filters of the Butterworth, Chebyshev, Inverse-Chebyshev, Elliptic types.
- All these designs can be carried out by using DSP software package D-Filter.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

References

- A. Antoniou, *Digital Signal Processing: Signals, Systems, and Filters*, Chap. 15, McGraw-Hill, 2005.
- A. Antoniou, *Digital Signal Processing: Signals, Systems, and Filters*, Chap. 15, McGraw-Hill, 2005.

白 と く ヨ と く ヨ と …

3

This slide concludes the presentation. Thank you for your attention.

Frame # 47 Slide # 68