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A. Antoniou

The roots of what we refer to today as digital signal processing are actually the roots of mod-
ern mathematics and to trace the evolution of DSP we need to go back to Newton, even to the
great Archimedes of Syracuse. This two-part article will attempt in a not-so-rigorous exposition
to outline the major historical developments that led to DSP.

Abstract



I. Introduction

T
he evolution of the mathematics that pertains to
DSP is dominated by six landmark events, namely,
the development of the foundations of geometry

during the Greek classical period from 700 to 100 B.C., the
evolution of algebra by 800 A.D. in the Arab world, the
emergence of calculus during the 1600s, the development
of sophisticated numerical methods from the 17th to 19th
century, the invention of the Fourier series during the
early 1800s, the design and construction of computing
machines, and the recent advancements in integrated-
circuit technology.

This two-part article will highlight some of these land-
mark events and will attempt to show that the human
need for discretized functions in the form of experimental
data or numerical tables of one form or another led to a
collection of mathematical principles that are very much
a part of today’s DSP. The need to mechanize the produc-
tion of numerical tables through these mathematical prin-
ciples led to the design of the difference engine by
Babbage [1] and the construction of ENIAC, the first digi-
tal computer. In other words, contrary to popular belief,
numerical methods that are akin to today’s DSP and
efforts to mechanize them gave birth to the modern digi-
tal computer and not the other way around.

II. What is DSP?

To be able to trace the roots of DSP, we need to trace the
roots of the fundamental processes that make up DSP.
Typically, we sample a continuous-time signal (or dis-
cretize some physical quantity), digitize it, process it, and
then generate a processed version of the continuous sig-
nal (or physical quantity) through some interpolation
scheme [2], as illustrated in Figure (1a) and (b). Thus, if
we want to pinpoint the origins of DSP, we must find out
when these processes began to emerge.

III. Archimedes

Everyone has heard of Archimedes of Syracuse (circa
287-212 B.C.) as the man who discovered the law per-
taining to the weight of immersed bodies, the
Archimedes principle. Apparently, he discovered this
important physical law as he was contemplating on the
best way to check the purity of a golden crown for king
Hieron of Syracuse while he was taking a bath. The king
had reason to believe that the goldsmith who made the
crown kept some of the king’s gold for himself and made
up the difference by adding an equal weight of silver.

When the solution of the puzzle dawned on Archimedes,
he ran out into the street naked shouting eurika, eurika,
a word that is understood by Greeks and non-Greeks
alike to mean I discovered.1 However, he did much more
than that. He contributed quite substantially to the the-
ory of mechanics and mathematics, and wrote books on
these subjects (see [3]–[5] for more details about
Archimedes and all the other great mathematicians
mentioned in this article). The one of his great achieve-
ments that bears an ancestral relation to DSP is his
method of calculating the perimeter (περιµετρoς in
Greek) of a circle with a diameter of one unit, which
happens to be equal to π . The connection between the
perimeter of a circle to the underlying principles of DSP
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Figure 1. Sampling, processing, and interpolation of a 
continuous-time signal.
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1The answer to the riddle turned out to be amazingly simple: weigh the crown against an equal weight of pure gold with the pans of the scales immersed
in water and watch the beam of the scales!



can be revealed by looking at Archimedes’ method from
the perspective of a DSP practitioner.

He inscribed a hexagon in a circle of diameter of one
unit and divided the hexagon into six equilateral triangles
as illustrated in Figure 2. Since the diameter is one unit
long, the sides of each triangle are half a unit long. Noting
that the shortest trajectory between two points is a
straight line, Archimedes concluded that the perimeter of

the circle, π , is larger than 3, the perimeter of the hexa-
gon, since each side of the hexagon is half a unit long. If
we denote the perimeter of the hexagon as p6, then
p6 = 3 < π .

He then circumscribed the circle by another hexagon
as shown in Figure 3. This he did by drawing tangents to
the circle at vertices A, B, C, . . . of the inside hexagon by
using just a straight edge.2 Simple geometry, which was
the forte of the Greeks, gives the perimeter of the larger
hexagon as P6 = 6 × 1/

√
3 = 2

√
3 = 3.4641 and since the

outside hexagon is obviously larger than the circle, we
have π < P6 = 3.4641. What Archimedes did in terms of
today’s terminology is to find lower and upper bounds for
the perimeter of a circle, i.e., 

p6 = 3 < π < 3.4641 = P6 (1)

Most of us would have stopped at this point. However,
Archimedes’ mathematical genius pushed him on to the
next step. He doubled the sides of the inside hexagon by
bisecting each of its sides (using just a compass) to
obtain a regular 12-sided polygon (dodecagon in Greek)
shown in green in Figure 4. After that he generated a reg-
ular 12-sided polygon that circumscribed the circle
shown in purple in Figure 4 by simply drawing tangents at
the vertices of the inside 12-sided polygon. Through
geometry, he found out that the perimeter of the outside
polygon, P12, is given by the harmonic mean of p6 and P6,
which is defined as the reciprocal of the arithmetic mean
of the reciprocals of the two numbers, i.e.,
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2The ancients considered it a virtue to use the minimum number of tools for geometrical constructions!



P12 = P2×6 = 1
1
2 ( 1

p6
+ 1

P6
)

= 2p6P6

p6 + P6
(2a)

and p12 is given by the geometric mean of p6 and P12, i.e.,

p12 = p2×6 =
√

p6P12 =
√

p6P2×6 (2b)

It should be clarified here that Archimedes’ exposition
of these principles was in terms of geometry. Algebra did
not emerge as a subject of study until much later.
Although it is not known who invented it or how it
emerged, an Arab mathematician by the name of 
al-Khwarizmi (c. 780–850 A.D.) wrote a treatise on the sub-
ject, which greatly influenced European mathematics [4],
[5]. The word “algebra” originates from “al-jabr” the first
word in the title of al-Kwarizmi’s treatise and “algorithm”
is actually a Latin corruption of his name.3

Using Eqs. (2a) and (2b), we get P12 = 3.2154 and
p12 = 3.1058. Therefore, from Eq. (1) we have

3 < 3.1058 < π < 3.2154 < 3.4641

or

p6 < p12 < π < P12 < P6

Obviously, the inside and outside 12-sided polygons pro-
vide tighter bounds on the perimeter of the circle.

A man of genius as he was, Archimedes noted that the
relations in Eqs. (2a) and (2b) readily extend to 24-, 48-,
and 96-sided polygons. In fact, they hold true in general
for a 2n-sided polygon, i.e.,

P2n = 1
1
2 ( 1

pn
+ 1

Pn
)

= 2pnPn

pn + Pn
(3a)

and

p2n =
√

pnP2n (3b)

(see [5] for details). Using these relations, the numerical
values of the lower and upper bounds of π , given in
Table I can be obtained. Evidently, these bounds are, in
effect, discrete functions of n, as depicted in Figure 5,
and their averages are successive approximations for
the perimeter of the circle. In a way, Archimedes sub-
jected the perimeter of the circle to a discretization
process and interpolated the results to estimate the
perimeter of the circle.

The average value of π on the 5th iteration of what
has been referred to as the Archimedes algorithm works
out to be 3.1419 which entails an error of about 0.008%.

The usual rational approximation for π , namely, 22/7 =
3.1429, is sometimes referred to as the Archimedean π
but it is not known whether he had anything to do with
it. However, he had a great deal to do with the formula
that gives the area of a circle, i.e., πr2. Once he subdi-
vided the inside and outside polygons into isosceles tri-
angles, it was an easy matter to obtain an approximation
for the area of the circle since the ancients knew how to
handle triangles.

Whether he was calculating the perimeter or the area
of the circle, Archimedes stopped with 96-sided polygons,
i.e., on the 5th iteration of the algorithm. Continuing the
algorithm for 16 iterations (393,216-sided polygons)
yields the value of π to a precision better than 1 part in
1010 according to MATLAB®. Had he mentioned even
briefly that the perimeters of the inside and outside poly-
gons, or their average, would coincide with the perimeter
of the circle if n were increased to infinity, he would have
introduced the concept of infinity and that of the limit but
these principles had to wait for some 2000 years before
they could become part of modern European mathemat-
ics during the 1600s. This trail of events will be picked up
in the next section.
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Figure 5. Perimeters of the inside and outside polygons.

Iter. No. of sides Lower bound Upper bound
1 6 3.0000 3.4641
2 12 3.1058 3.2154
3 24 3.1326 3.1597
4 48 3.1394 3.1461
5 96 3.1410 3.1427

Table 1. 
Lower and Upper Bounds on π .

3Al-Kwarizmi also wrote a short treatise on arithmetics in which he used Hindu numerals, now commonly referred to as Arabic numerals, but that’s
another story [4], [5].



It should be mentioned that interest in approximating
the circle in terms of polygons resurfaced quite inde-
pendently in ancient China where a certain Liu Hui (c.
220–280 A.D.) calculated the bounds

3.141024 < π < 3.142904

using 384-sided polygons and deduced the approximation
3.14159 for π using 3072-sided polygons. Later on, Tsu
Chung-Chi (430–501) deduced the more precise bounds

3.1415926 < π < 3.1415927

and referred to 22/7 as an inaccurate value and 355/113 as
an accurate value of π [4], [5]. Amazingly, the latter
rational approximation entails an error of about
8 × 10−6%!

IV. The Renaissance of Mathematics

Renewed interest in mathematics, in the sciences in gen-
eral, and in the work of Archimedes in particular emerged
in Europe during the early 1600s. John Wallis (1616–1703)
and James Gregory (1638–1675), the first an Englishman
and the second a Scot mathematician, developed tech-
niques for finding the areas of various geometric figures
by extending the approach of Archimedes.

Wallis considered the area under the parabola

y = x2

to be made up of a series of rectangles [5] as depicted in
Figure 6(a), each of base ε. He noted that

Area abcfa ≈ (kε)2 · ε = k2ε3

and that

Area abdea = (nε)2 · ε = n 2ε3

Therefore, the area under the parabola, AP, is related to
the area of the rectangle ABCDA, AR, by the approximation

AP ≈ (02 + 12 + 22 + · · · + n2)ε3

(n2 + n2 + n2 + · · · + n2)ε3
· AR (4)

He then observed that

02 + 12

12 + 12
= 1

2
= 1

3
+ 1

6

02 + 12 + 22

22 + 22 + 22
= 5

12
= 1

3
+ 1

12

02 + 12 + 22 + 32

32 + 32 + 32 + 32
= 7

18
= 1

3
+ 1

18
...

and by applying the principle of induction, he concluded
that

02 + 12 + 22 + · · · + n2

n2 + n2 + n2 + · · · + n2
= 1

3
+ 1

6n
(5)

He no doubt noticed that as the number of rectangles
increased and the base of each rectangle reduced, the
sum of the areas of the rectangles tended to get closer
and closer to the area under of the parabola. He then took
a giant step forward by making the base of each rectangle
infinitesimally small and to compensate for that he made
the number of rectangles infinitely large, and by using
Eqs. (4) and (5), he concluded that
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Figure 6. Wallis’ geometrical construction.



AP = lim
n→∞

(02 + 12 + 22 + · · · + n2)ε3

(n2 + n2 + n2 + · · · + n2)ε3
· AR

= lim
n→∞

(
1
3

+ 1
6n

)
AR

= 1
3

AR

What Wallis did, in effect, was to discretize the parabola
by circumscribing it by a piecewise-constant discrete
function in the same way as Archimedes had discretized
the circle by circumscribing it by an n-sided polygon.
Wallis could also have achieved the same result by
inscribing a piecewise-constant discrete function to the
parabola as depicted in Figure 6(b) to complete the anal-
ogy with Archimedes’ approach.

In one sweeping scoop, Wallis introduce the concept of
infinity, he discovered the principle of the limit which so
eluded the ancients,4 and laid down the basics of integra-
tion as we know it today. He also proposed the symbol for
infinity (∞) and coined the word interpolation according
to the historians.

From the perspective of the DSP practitioner, by dis-
cretizing the parabola Wallis introduced the principle of
sampling and, in fact, the representation in Figure 6(b) is
what we commonly refer to in the DSP literature as a
‘sample-and-hold’ operation. If the function in Figure 6(b)
were a signal, then the rectangles in Figure 6(a) or (b)
would be pulses which would become impulses as ε → 0.
In other words, Wallis’ representation is analogous to
sampling a signal by means of impulse modulation, as
illustrated in Figure 7 (see Chap. 6 in [2]).

Expert in finding areas as he was, Wallis tabulate the
values of the areas

∫ 1

0
(1 − t 2)n dt (6)

(in today’s notation) for certain integer values of n and
showed that [4], [5]

∫ 1

0
(1 − t 2)

1
2 dt = π

2

= lim
N→∞

22 · 42 · 62 · · · (N − 1)2

12 · 32 · 52 · 72 · · · N

= lim
N→∞

22 · 42 · 62 · 82 · · · N
12 · 32 · 52 · 72 · · · (N − 1)2

which is known as Wallis’ formula for π . The formula is
largely of historical interest since its convergence is
rather slow, as can be easily verified by using MATLAB®.5

Gregory extended Archimedes’ algorithm for the eval-
uation of the area of a circle to the evaluation of the area
of an ellipse. He inscribed a triangle of area a0 in the
ellipse and circumscribed the ellipse by a quadrilateral
(4-sided polygon) of area A0, as illustrated in Figure 8. By
successively doubling the numbers of sides in the
inscribed and circumscribing polygons, he generated the
sequence a0, A0, a1, A1 . . . an, An, . . . and showed that
an is the geometric mean of an−1 and An−1 whereas An is
the harmonic mean of An−1 and an , i.e.,
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Figure 7. Decomposition of y = x2 into an infinite series of
impulse functions.

4Not knowing the principle of the limit, Zeno of Elea (c. 490–425 B.C.) described a number of paradoxes that contradicted observation [4], [5]; for
example, that an arrow would never reach its target because it would have to cross the midpoint of its flight path, and having done so, it would have
to cross the midpoint of the remaining distance, and so on; since a small distance would always remain, the arrow would never reach its target!
5Wallis had many talents in addition to mathematics. During the Civil War in England between the Royalists and the Parliamentarians, he used his skills
in cryptography to decode Royalist messages for the Parliamentarians and, surprisingly, when the monarchy was restored some years later on, he was
appointed a royal chaplain for Charles II [3].
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Figure 8. Gregory’s approach to the area of an ellipse.



an =
√

an−1 An−1 and An = 2An−1an

An−1 + an

as in Eqs. (3a) and (3b).6 He then constructed two
sequences, namely,

a0, a1, . . . an, . . . and A0, A1 . . . An, . . .

which, in his terminology, would converge to the area of
the ellipse if n were made infinitely large. According to
historians, Gregory is the first man to have used the word
“converge” in a mathematical sense.

Gregory is also known for his work on infinite series
and, in fact, the series

∫ x

0

1
1 + x2

dx = tan−1 x = x − x3

3
+ x5

5
− x7

7
+ · · ·

is known as Gregory’s series. He also discovered the Tay-
lor series some 44 years before it was first published by
Brook Taylor (1685–1731) [3], [4]. Apparently, according
to some fairly recent findings, Gregory wrote the series
on the back side of a letter he received but for some rea-
son he never published that great formula.7

The work of Wallis was continued by Newton (1642–
1727) who replaced the fixed upper limit of unity in Eq.
(6) by x and following Wallis’ methodology, he was able to
obtained the results

∫ x

0
(1 − t 2) dt = x − 1

3
x 3

∫ x

0
(1 − t 2)2 dt = x − 2

3
x 3 + 1

5
x 5

∫ x

0
(1 − t 2)3 dt = x − 3

3
x 3 + 3

5
x 5 − 1

7
x7

etc. Then, through laborious interpolation, he also found
out that

∫ x

0
(1 − t 2)

1
2 dt = x −

1
2
3

x3 −
1
8
5

x5 − · · ·

The amazing regularity of his solutions led him to con-
clude that

∫ x

0
(1 − t 2)k dt = x − 1

3

(
k
1

)
x 3 + 1

5

(
k
2

)
x 5 − · · ·

+ 1
2n + 1

(
k
n

)
x 2n+1 − · · ·

where

(
k
n

)
= k(k − 1) · · · (k − n + 1)

n!

and by applying the method of tangents to both sides of
the equation, i.e., by differentiating the two sides, he dis-
covered the series

(1 − x 2)k = 1 −
(

k
1

)
x 2 +

(
k
2

)
x 4 − · · ·

+
(

k
n

)
x 2n − · · ·

If we let, −x 2 → x, the binomial theorem in its standard
form is revealed, i.e.,

(1 + x)k = 1 +
(

k
1

)
x +

(
k
2

)
x 2 + · · ·

+
(

k
n

)
xn + · · · (7)

It should be mentioned that the expansion in Eq. (7)
for positive integers was known long before the times
of Newton in terms of the so-called Pascal triangle,
shown in Table II, which, in turn, was known long
before the times of Pascal according to the historians.
Apparently, it first appeared in a treatise written by a
Chinese mathematician by the name of Chu Shih-chieh
(c. 1260–1320) and first showed up in print in Europe
on the title page of a book on arithmetic written by
Peter Apian (1495–1552). The triangle is named after
Pascal (1623–1662) largely on the basis of his system-
atic investigation of the triangle’s inherent relations,
not because he discovered it [5].

The binomial theorem was investigated by many oth-
ers after Newton including the great Gauss (1777–1855)
who generalized its application to arbitrary rational

14

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
...

...
...

Table 2. 
Pascal Triangle.
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6The similarity of these formulas to those in Eqs. (3a) and (3b) should not be surprising! After all, a circle is a particular ellipse.
7Unfortunately for mathematics, Gregory had a stroke at the age of 36 and died a few days later [3] leaving much of his work unpublished.



values of n.8 On the other hand, work by Euler
(1707–1783), Gauss, Cauchy (1789–1857), and Laurent
(1813–1854) on complex numbers, complex variables,
and functions of a complex variable has shown that the
binomial theorem is also applicable to the case where x
is a complex variable.

If we let x = z−1 in the binomial series of Eq. (7),
where z is a complex variable, we get

(1 + z−1)k = 1 +
(

k
1

)
z−1 +

(
k
2

)
z−2 + · · ·

+
(

k
n

)
z−n + · · ·

which is referred to in DSP literature as the z transform of
right-sided signal

x(nT ) = u(nT )

(
k
n

)

where u(nT ) is the discrete-time unit-step function.
The inverse z transform can often be deduced by sim-

ply finding the coefficient of z−n in a binomial series
expansion of the function, as will now be demonstrated.
Consider the z transform

X (z) = Kzm

(z − w)k

where m and k are integers, and K and w are real or 
complex constants (see Example 3.4 in [2]). According to
Eq. (7), we can write

X (z) = Kzm−k[1 + (−wz−1)]−k

= Kzm−k

[

1 +
(−k

1

)
(−wz−1)

+
(−k

2

)
(−wz−1)2 + · · ·

+
(−k

n

)
(−wz−1)n + · · ·

]

If we let n = n ′ + m − k and then replace n ′ by n, we have

X (z) =
∞∑

n =−∞

{
Ku[(n + m − k)T ]

· (−k)(−k − 1) · · · (−n − m + 1)(−w)n+m−k

(n + m − k)!

}
· z−n

Now noting that

(−k)(−k − 1) · · · (−n − m + 1) = (−n − m + 1)!
(k − 1)!

× (−1)n+m−k

the inverse z transform, which is the coefficient of z−n,
can be obtained as

x(nT ) = Z−1
[

Kzm

(z − w)k

]

= Ku[(n + m − k)T ]
(n + m − 1)!wn+m−k

(k − 1)!(n + m − k)!

By assigning specific values to constants k, K, and m,
an entire table of z transforms can be constructed, as
shown in Table III, by using nothing more than Newton’s
binomial theorem.

While Wallis and Gregory were developing methods
for finding the areas of geometrical figures, others were
investigating methods for finding the slopes of curves.
These were known as the methods quadrature and the
methods of tangents, respectively, in those days, i.e.,
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x(nT) X(z)

u(nT) z
z−1

u(nT − kT)K Kz−(k−1)

z−1

u(nT)Kwn Kz
z−w

u(nT − kT)Kwn−1 K(z/w)−(k−1)

z−w

u(nT)e−αnT z
z−e−αT

u(nT)nT Tz
(z−1)2

u(nT)nTe−αnT Te−αTz
(z−e−αT)2

Table 3. 
Standard z Transforms.

8Some say that Gauss ‘discovered’ the binomial theorem without knowledge of Newton’s work at the age of 15.

Renewed interest in mathematics, in the sciences in general, and in the work of Archimedes
in particular emerged in Europe during the early 1600s.



integration and differentiation, in modern language. It
was also known that there was a relation between the
two types of methods and, in fact, Gregory actually
proved that there was an inverse relation between them.
However, it took people like Newton and Leibniz during
the late 1600s to rationalize all these principles into the
unified field of study we know today as calculus.

Newton, as is very well known, made numerous other
contributions to science, e.g., he formulated his laws of
motion, proposed a theory of gravitation that explained
the dynamical interactions among heavenly bodies,
hypothesized for the first time that white light is a mix-
ture of many different types of rays, constructed a reflect-
ing telescope, etc. What is less well known is that he also
served as the Master of the British Mint by royal appoint-
ment during his later years. In this capacity, he super-
vised the production of new coins which were much more
difficult to counterfeit, and was also in charge of prose-
cuting counterfeiters!

Interest in the movement of the planets and other
celestial bodies grew very strong in those days after the
discoveries of Galileo during the early 1600s, and the
astronomers of the time needed to fit curves to their
measured data. If Archimedes and Wallis had nothing to
do with sampling, then the astronomers of the middle
ages had a great deal to do with it because their meas-
urements were discrete-time functions in today’s DSP ter-
minology. And to convert their measured data into
formulas that described the continuous trajectories of
the celestial bodies, powerful interpolation methods were
required. This problem was explored by James Stirling
(1692–1770), Joseph-Louis Lagrange (1736–1813), and Wil-
helm Bessel (1784–1846), to name just three, who pro-
posed numerical interpolation formulas that could be
applied to functions in tabular form.

V. Stirling’s Interpolation Formula

Among the many interpolation formulas, that of Stirling is
of particular interest because, as will be demonstrated
below, it can be used to design digital filters that can per-
form interpolation, differentiation, and integration.

If the values of x(nT ) are known for n = 0, 1, 2, . . . ,
then the value of x(nT + pT ) for some fraction p in the
range 0 < p < 1 can be determined by using Stirling’s
interpolation formula

x(nT + pT )

=
[

1 + p2

2!
δ2 + p2(p2 − 1)

4!
δ4 + · · ·

]

x(nT )

+ p
2

[
δx

(
nT − 1

2
T

)
+ δx

(
nT + 1

2
T

)]

+ p(p2 − 1)

2(3!)

[
δ3x

(
nT − 1

2
T

)
+ δ3x

(
nT + 1

2
T

)]

+ p(p2 − 1)(p2 − 22)

2(5!)

[
δ5x

(
nT − 1

2
T

)

+ δ5x
(

nT + 1
2

T
)]

+ · · · (8)

where

x(nT)

x(nT)

x(t)

y(nT)

y(nT)

nT

nT

Interpolation
System

(a)

(b)

(c)

1 20 3

x (t)

1 20 3

Figure 9. Interpolation process: (a) Interpolating system, 
(b) excitation, (c) response.
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Interest in the movement of the planets and
other celestial bodies grew very strong in
those days after the discoveries of Galileo
during the early 1600s, and the
astronomers of the time needed to fit
curves to their measured data. 



δx
(

nT + 1
2

T
)

= x(nT + T ) − x(nT ) (9)

denotes the central difference of x(nT + 1
2 T ).

By differentiating or integrating Eq. (8), formulas for
numerical differentiation or integration can be deduced
(see [2] for further details).

Neglecting differences of order 6 or higher and letting
p = 1/2 in Eq. (8), and then eliminating the central differ-
ences using Eq. (9), we get

y(nT ) = x
(

nT + 1
2

T
)

=
3∑

i=−3

h(iT )x(nT − iT )

where coefficients h(iT ) are given in Table IV. This is rec-
ognized as the difference equation of a nonrecursive (also
known as an FIR) discrete-time system as illustrated in
Figure 9.

Interpolation is a process that would fit a smooth
curve through a number of sample points as illustrated
in Figure 9(b) and, consequently, one would expect inter-
polation to be akin to lowpass filtering. To check this out,
we can represent the interpolation system of Figure 9(a)
by the transfer function

H(z) = Y(z)

X (z)
=

3∑

k=−3

h(iT)z−k

Hence its frequency response, amplitude response,
and phase response can be deduced as

H(e jωT ) =
3∑

i=−3

h(iT )e− jkωT

M(ω) =
∣∣∣∣∣

3∑

i=−3

h(iT )e− jkωT

∣∣∣∣∣

and

i h(iT)

−3 −5.859375E−3

−2 4.687500E−2

−1 −1.855469E−1

0 7.031250E−1

1 4.980469E−1

2 −6.250000E−2

3 5.859375E−3

Table 4. 
Coefficients h(iT ).
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Figure 10. Frequency response of interpolating system:
(a) Amplitude response, (b) phase response, (c) delay
characteristic.
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With the invention of the printing press by
Johann Gutenberg in 1450, numerical
tables of all forms began to be published
and interest in generating numerical
tables, i.e., discretized functions, became
very important for business, science,
navigation, and so on. 



θ(ω) = arg
3∑

i=−3

h(iT )e− jkωT

respectively. Using the numerical values of h(iT ) given in
Table IV, the amplitude response of the interpolation sys-
tem shown in Figure 10(a) can be obtained which is hard-
ly different from the response of a lowpass filter.

The use of Stirling’s formula for the design of nonre-
cursive filters, just like the Fourier series method, yields
noncausal filters (see Chap. 9 of [2]) but by delaying the
impulse response by a period (N − 1)T/2, where N is the
filter length, a causal filter can be obtained. Applying this
correction to the interpolator design yields a modified
phase response θc(ω) = −3ω + θ(ω). The phase response
of the causal interpolator and the corresponding delay
characteristic, τc(ω) = −dθc(ω)/dω, are depicted in Figure
10(b) and (c), respectively. As can be seen the phase
response is linear and the delay characteristic is approx-
imately flat with respect to the passband of the interpola-
tor. And most importantly, the interpolator was designed
using concepts proposed some 250 years ago.

VI. Discretization of Functions

With the invention of the printing press by Johann 
Gutenberg in 1450, numerical tables of all forms began
to be published and interest in generating numerical
tables, i.e., discretized functions, became very impor-
tant for business, science, navigation, and so on. Just
like today, the necessary computations were carried
out by computers except that in those days the com-
puters were all human! Apparently, the word computer
did not acquired its modern inanimate meaning until
fairly recently, after the invention of the modern digital
computer, according to Swade [1]. Consequently, pub-
lished tables were full of erroneous entries. To circum-
vent this problem, inventors of all types from Pascal to
Babbage were trying to built calculating machines. Part
II of this article, to be published in another issue of the
CAS magazine, will deal with some of the efforts to
mechanize computing and the relation of these efforts
to DSP. The second part will also examine the contri-
butions of a group of French mathematicians, namely,
Laplace, Fourier, Poisson, and Laurent, whose break-
throughs during the late 1700s and early 1800s
became the backbone of spectral analysis. Part II will
also deal with the evolution of DSP during the first
half of the twentieth century and conclude with the
beginnings of modern DSP during the late sixties and
early seventies.

VII. Conclusions

It has been demonstrated that the basic processes of
DSP, namely, discretization (or sampling) and interpo-

lation have been a part of mathematics in one form or
another since classical times, and mathematical dis-
coveries made since the early 1600s are very much a
part of the toolbox of a modern DSP practitioner. Part
II of this article will demonstrate that the need to con-
struct accurate discretized functions in the form of
numerical tables efficiently led to the difference engine
of Babbage during the 1800s and, in due course, to the
modern digital computer during the late 1940s. The
application of the early digital computers for the analy-
sis of signals and systems marked the beginnings of the
modern era of DSP.
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