
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2007, Article ID 28782, 14 pages
doi:10.1155/2007/28782

Research Article
Flexible Triangle Search Algorithm for
Block-Based Motion Estimation

Mohamed Rehan, Pan Agathoklis, and Andreas Antoniou

Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 3055,
Victoria, Canada BC V8W 3P6

Received 5 October 2005; Revised 24 February 2006; Accepted 7 April 2006

Recommended for Publication by Liang-Gee Chen

A new fast algorithm for block-based motion estimation, the flexible triangle search (FTS) algorithm, is presented. The algorithm
is based on the simplex method of optimization adapted to an integer grid. The proposed algorithm is highly flexible due to its
ability to quickly change its search direction and to move towards the target of the search criterion. It is also capable of increasing or
decreasing its search step size to allow coarser or finer search. Unlike other fast search algorithms, the FTS can escape from inferior
local minima and thus converge to better solutions. The FTS was implemented as part of the H.264 encoder and was compared
with several other block matching algorithms. The results obtained show that the FTS can reduce the number of block matching
comparisons by around 30–60% with negligible effect on the image quality and compression ratio.

Copyright © 2007 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

Motion estimation is one of the key components in sev-
eral video compression algorithms and standards [1–7]. The
main purpose of motion estimation is to reduce temporal re-
dundancy between frames in a video sequence. Motion es-
timation (ME) algorithms can be classified as block-based,
pixel-based, or region-based. Block-based algorithms are the
most popular due to their implementation simplicity in both
software and hardware.

In block-based motion estimation, each frame is divided
into a group of equally sized blocks called macroblocks and
a single vector is used to represent motion for each mac-
roblock. This motion vector is obtained by finding the best
match between the block in the frame to be compressed,
called the current frame, and the reference frame. The main
parameters of the block-based ME process are the search
window size, the matching criterion, and the search algo-
rithm. The search window is the area in the reference frame
in which the search for the best matching block is performed.
The search window is defined by the location of its ori-
gin (its upper-left corner) and its size. The matching crite-
rion is the evaluation function that measures the degree of
matching between two blocks. Different matching criteria are
available such as the sum of absolute difference (SAD), the
cross correlation (CC), and the mean-square error (MSE).
SAD is mostly used because of the simplicity and ease of its

implementation and is given by

SAD
(
Vi
) =

M∑

x=0

N∑

y=0

∣∣Sl(x, y)− Sl−1(x + dx, y + dy)
∣∣, (1)

where M and N are the block width and height, respectively,
Sl(x, y) is the pixel value of frame l at relative position x, y
from the macroblock origin, and Vi = (dx,dy) is the dis-
placement vector.

A wide range of block matching algorithms (BMAs) have
been presented in the literature [8–30]. The minimum SAD
can be achieved by using a full (i.e., exhaustive) search which
has the drawback of high computational complexity. This
makes full search (FS) not suitable for real-time video com-
pression applications. Other available block matching algo-
rithms apply fast search techniques such as the 2D logarith-
mic search (2DS) [9], the cross search (CS) [10], the three-
step search (TSS) [11], the new three-step search (NTSS)
[12], the hierarchical BMA [13], the hexagon search (HS)
[14], the diamond search (DS) [15–17], the zonal search
[18, 19], and the simplex search (SS) algorithm [26–30]. In
these algorithms, only selected subsets of search positions
are used for evaluation leading to reduced computation but
can lead to motion vectors corresponding to inferior local
minima of the matching criterion. The more recent tech-
niques include more advanced features such as early exit
based on a certain threshold value or improved prediction



2 EURASIP Journal on Advances in Signal Processing

for the search center. These techniques include the motion
vector field adaptive search technique (MVFAST) [20], the
predictive MVFAST (PMVFAST) [21], and the unsymmetri-
cal cross multihexagon grid search (UMHexagonS) [22, 23]
which was proposed for the H.264 encoder and was accepted
by the Joint Video Team (JVT).

The group of BMAs presented in [26–30] is based on
the simplex optimization algorithm and has been found to
yield very promising results. The use of the well-known sim-
plex optimization algorithm for finding the minimum SAD
is motivated by the fact that the simplex technique has the
capacity to quickly change search direction and perform a
coarser or finer search as necessary [24, 25].

In this paper, a new fast BMA is developed by adapting
the simplex algorithm to a discrete search grid. This algo-
rithm uses predefined sets of triangles to achieve the best
match and it is thus called the flexible triangle search (FTS).
Through the use of predefined sets of triangles the search op-
erations can be carried out without floating point operations
and without having to adapt the triangle obtained at each
step of the algorithm to the discrete search grid. An early ver-
sion of this algorithm was presented in [31]. The paper is
organized as follows: in Section 2, a brief description of the
concept of the simplex search algorithm is presented and the
motivation for the development of the FTS algorithm is dis-
cussed. The proposed FTS algorithm is presented in Section 3
and its performance is evaluated and compared with that of
other fast BMAs in Section 4.

2. SIMPLEX SEARCH ALGORITHM

The simplex algorithm is a technique used in optimization
when the derivatives of the performance index are not avail-
able, or difficult to obtain [25]. In the two-dimensional sim-
plex search, a search triangle is used to locate a minimum of
the performance index or error function. This error function
is evaluated at the triangle vertices which represent possible
minimum locations. The locations of the triangle vertices are
modified in a manner that moves the triangle towards pos-
sible minimum locations by moving the triangle away from
locations of high error function values. During these move-
ments, the search triangle undergoes operations such as re-
flection, expansion, and contraction. These operations pro-
vide the necessary flexibility to efficiently move the triangle
towards the minimum location or resize the triangle. Conse-
quently, the search can quickly change direction depending
on the search results, or become coarser or finer as necessary.
The algorithm’s main operations can be briefly described as
follows.

Reflection

In this operation, the triangle is reflected away from the ver-
tex with the maximum error value. The vertex with the max-
imum error value is identified and its new location is calcu-
lated by reflecting it with respect to the remaining two ver-
tices. If the value of the error function at the vertex after

reflection is less than the value of the error function at
the location before reflection, then the reflection operation
is considered to be successful and a new triangle with the
new vertex instead of the maximum-error vertex is obtained.
Thus, the triangle is moved in the direction of the minimum
error.

Expansion

After a successful reflection, the possibility of finding a vertex
with lower error function value can be further investigated by
moving the reflection vertex further in the same direction,
a process referred to as expansion. If the value of the error
function at the vertex obtained after expansion is lower than
the error function value at the vertex after reflection, the ver-
tex obtained after expansion is used as the vertex of the search
triangle. Thus expansion increases the size of the triangle al-
lowing it to move faster towards the minimum point using a
coarser search.

Contraction

The contraction operation is the opposite of expansion. It
is used when both reflection and expansion operations fail.
In such a case, the search triangle is close to the minimum
point and the size of the triangle is reduced to conduct a finer
search and find the minimum point. If the algorithm has al-
ready reached a sufficiently small triangle size and no more
contraction can be achieved, then the algorithm stops.

The ability of the simplex algorithm to change the search
direction and to switch between coarse and fine searches
makes it a good candidate to be used for BMA and this has
been done in [26–30]. However, during implementation of
the simplex algorithm for ME, several possibilities for im-
provement were observed. Most of these are related to the
fact that the original simplex algorithm was intended for
continuous variables while BMAs are required to use a dis-
crete grid for the variables. The movement of the triangle is
therefore not completely controllable. This sometimes results
in the collapse of the triangle into a single vertex due to the
integer grid approximation, or search locations may be re-
peatedly evaluated. Further, the simplex algorithm requires
many floating-point calculations which slow down the search
relative to the searches in other integer-based algorithms.

3. THE FLEXIBLE TRIANGLE SEARCH ALGORITHM

The FTS was developed based on the simplex method and
several modifications are introduced to make it more suitable
for the discrete grid required for BMAs.

The FTS is based on using sets of triangles of different
sizes to perform the search. The FTS algorithm is switch-
ing between levels through expansion and contraction opera-
tions. The vertices of these triangles are always on the integer
grid and the triangles have different sizes to perform coarse
or fine searches. A triangle is defined by its identification ID
and its level, that is, T21 stands for triangle T, level 2, and



Mohamed Rehan et al. 3

y

x
Level 0

T02 T03

T01 T00

Level 1

T12
T11

T10
T15

T14

T13

Level 2

T25
T20

T21
T22

T23

T24

E
xp

an
si

on

C
on

tr
ac

ti
on

Figure 1: Triangle sets for levels 0 to 2.

ID 1. Figure 1 displays the triangles for levels 0 to 2. The IDs
for the three levels are

(i) Level 0 = {T00,T01,T02,T03};
(ii) Level 1 = {T10,T11,T12,T13,T14,T15};

(iii) Level 2 = {T20,T21,T22,T23,T24,T25}.

The vertices of these triangles are denoted as V0, VA, VB,
where V0 is the center point, and VA and VB are the vertices
in counterclockwise sense from V0. Thus, the coordinates of
the three vertices of a triangle can be obtained from the tri-
angle name and the coordinates of V0.

More than 3 levels could be used. However, experimental
results have shown that 3 to 4 levels are entirely satisfactory
for the commonly used window sizes.

Like most other algorithms, the FTS is easily integrated
with early termination and motion vector prediction tech-
niques to improve its computational performance. When
motion prediction is used, the predictive motion vector is
used as the center of the starting triangle group. In addi-
tion, an early termination condition based on the SAD value
is added to the algorithm.

Based on the above definition of the triangles, the basic
operations of the FTS, namely, reflection, expansion, con-
traction, and translation, can be easily described using look-
up tables and can be computed without floating-point oper-
ations.

Such a look-up table for reflections and expansions for
level 0 triangles is given in Table 1 using the triangle defini-
tions and the origin V0. The possible reflections and the pos-
sible expansions for a level 0 triangle are illustrated in Figures
2 and 3, respectively.

Similar tables can be constructed for reflection and ex-
pansion for the other two levels and they are given in the
appendix. Through these tables, the FTS algorithm can be
implemented using look-up tables and thus its computa-
tional efficiency can be greatly increased.

Contraction from level 2 to 1 is straightforward since the
triangle orientation does not change. However, contraction
from level 1 to level 0 requires some modifications since the
number of triangles in level 0 is less than the number of
triangles in level 1. Table 2 presents contraction from level
1 to 0.

The FTS algorithm can be described as in Algorithm 1.
The choice of termination condition parameters K max

and ExitSAD depends on the application and often involves
tradeoffs. The value for K max, for example, limits the num-
ber of search steps, and thus the amount of computation, but
should be higher than the average number of search steps
per macroblock to obtain good quality of the reconstructed
frames. ExitSAD is the minimum SAD value at which the
search stops.

The relationship between the FTS operations and trian-
gle levels is illustrated in Figure 4 and the complete flowchart
of the algorithm is shown in Figure A.2 in the appendix. The
FTS can also be combined with variable block-size mode se-
lection algorithms such as that discussed in [32] to facilitate
its use for variable block size motion estimation.

4. ILLUSTRATIVE EXAMPLE

An example of the search pattern using FTS is illustrated in
Figure 5. The search starts at the center of the search window
and concludes with finding Vmin the location with the mini-
mum SAD. The steps involved are as follows.

(1) Start

The triangle search starts at level 0; the current triangle is
T00 with initial vertices V1, V3, and V2. In this case SAD(V1)
is the maximum and SAD(V3) is the minimum. Thus, V1 is
set to Vh, V3 to Vl, and Vmin to V3.

(2) Reflection

The triangle vertex V1 is reflected to V4. Since SAD(V4) <
SAD(V1), reflection is successful and should be followed by
expansion. The new triangle becomes T02.

(3) Expansion

A test for expansion is performed at vertex V5 and since
SAD(V5) < SAD(V4), expansion is successful. The current
triangle is then expanded to T14 (based on Table 1) with ver-
tices V2, V5, and V6. Vd is set to Ve−Vr = (1, 1). Since in this
case, SAD(V5) > SAD(Vmin), Vmin will not be updated.

(4) Translation

Since the last operation was a successful expansion, transla-
tion is attempted. Using the translation vector Vd = (1, 1)
from the expansion step, a translation of the current triangle
is attempted to V7, V8, and V9. In this triangle, SAD(V9) is



4 EURASIP Journal on Advances in Signal Processing

Table 1: Possible reflections and expansions for Level 0 triangles.

Results of
reflection of V0

around VA, VB

Expansion of V0

reflection-vertex

Results of
reflection of VA

around V0, VB

Expansion of VA

reflection-vertex

Results of
reflection of VB

around V0, VA

Expansion of VB

reflection-vertex

Current
triangle,
level 0

New
triangle,
level 0

Origin
shift V0

Test
point Ve

New
triangle,
level 1

New
triangle,
level 0

Origin
shift V0

Test
point Ve

New
triangle,
level 1

New
triangle,
level 0

Origin
shift V0

Test
point Ve

New
triangle,
level 1

T00 ��
VBV0

VA

T02 (1,1) (2,2) T14 T03 (0,0) (0,−2) T12 T01 (0,0) (−2, 0) T11

T01 ��
V0VA

VB

T03 (−1, 1) (−2, 2) T10 T00 (0,0) (2,0) T13 T02 (0,0) (0,−2) T12

T02 ��
VB V0

VA

T00 (−1,−1) (−2,−2) T11 T01 (0,0) (0,2) T15 T03 (0,0) (2,0) T14

T03 ��
VB

V0 VA

T01 (1,−1) (2,−2) T13 T02 (0,0) (−2, 0) T10 T00 (0,0) (0,2) T15

y

x

Level 0 triangles

T02 T03

T01 T00

Reflections of level 0 triangles

VB

VAV0

T03

VA

VB
V0

T02

T03
V0

VB

T02T01
VA
T00

VA
V0

VB
T01

Figure 2: Possible reflections for level 0 triangles. The original tri-
angle is the dark one.

the maximum error, SAD(V8) is the minimum error and this
error is less then SAD(Vmin). As a result Vmin is updated to
V8. The triangle ID remains T14.

(5) Reflection

Since the last operation was a successful translation, another
translation is attempted which does not lead to a vertex with
a lower error than SAD(V8). Thus, reflection is attempted by
reflecting V9 to V10. Since SAD(V10) < SAD(V9), this is a

y

x

V0

Ve

V0
VB

VA

Ve

T12

T11

T00

T14

Figure 3: Result of reflection followed by expansion of triangle T00
as outlined in Table 1. The original triangle T00 is shown using a
solid line and the resulting level 1 triangles are shown using dotted
lines.

Table 2: Contraction from level 1 to level 0 triangles.

Level 1, Level 0,

original triangle new triangle

T10 T03

T11 T00

T12 T00

T13 T01

T14 T02

T15 T02



Mohamed Rehan et al. 5

Given a reference frame Sl−1(x, y), an M ×N macroblock in the current frame Sl(x, y) finds the displacement vector Vmin so that
SAD(Vmin) in (1) is minimized in the search window. The details of the algorithm are as follows.

Step 1 (initialization). (i) Initialize the current triangle level, current triangle within that set, and initial triangle vertices V0, VA, and
VB in the search area. Choose V0 as the origin of the search window. If motion vector prediction is used, shift V0 by the predictive
motion vector. Initialize the iteration counter K = 0 and set translation vector Vd to 0, TranslationFlag to False, and displacement
vector Vmin to V0.

Step 2. (i) Check the termination conditions. If any condition is satisfied, then terminate the search.
(ii) Determine the SAD for each new vertex in the current triangle. Identify the vertex with the highest SAD value as Vh, the vertex
with the lowest SAD value as Vl , and the vertex with the middle SAD value as Vmid.
(iii) If the previous step was a successful expansion or translation operation, go to Step 6, otherwise continue to Step 3.

Step 3 (reflection). (i) Get a new vertex Vr , by reflecting Vh of the current triangle using the table corresponding to the current level,
and calculate SAD(Vr).
(ii) If SAD(Vr) < SAD(Vh), go to Step 4, otherwise go to Step 5.

Step 4 (expansion). (i) Locate the expansion vertex Ve for the current triangle using the appropriate triangle level table.
(ii) If SAD(Ve) < SAD(Vr), then expansion was successful; increase the triangle level and update the current triangle. Calculate the
translation vector between the reflection and expansion vertices as Vd = Ve −Vr and set TranslationFlag to True. If
SAD(Ve) < SAD(Vmin), set Vmin = Ve. Go back to Step 2 with K = K + 1.
(iii) If SAD(Ve) ≥ SAD(Vr), then expansion was not successful. Update the current triangle by replacing Vh by Vr . If
SAD(Vr) < SAD(Vmin), set Vmin = Vr . Go back to Step 2 with K = K + 1.

Step 5 (contraction). (i) If the current level is 0, then no more contractions can be done. In this case, terminate the search. Otherwise,
contract the triangle by reducing the triangle level. Update the current triangle, set K = K + 1, and go to Step 2.

Step 6 (translation). (i) Find a new vertex, Vt , by translating Vl using Vt = Vl + Vd and calculate SAD(Vt).
(ii) If SAD(Vt) < SAD(Vl), then translation was successful; replace Vl by Vt , set K = K + 1, and go back to Step 6 if the termination
conditions are not met; otherwise stop the search. If SAD(Vl) < SAD(Vmin), set Vmin = Vl .
(iii) If SAD(Vt) ≥ SAD(Vl), then translation was not successful; set Vl as the origin of the next search triangle, TranslationFlag to
False, and K = K + 1. Continue from Step 2.

Termination conditions

The search is terminated if

(i) no more successful contraction operations are possible;
(ii) the number of search iterations reaches a prespecified limit K max;
(iii) the value of SAD becomes less than a prespecified threshold ExitSAD.

Algorithm 1

successful reflection. In the reflected triangle SAD(V7) is the
maximum error. Further, SAD(V10) > SAD(V8) so V8 re-
mains the minimum point and Vmin is not updated. The new
triangle becomes T15.

(6) Reflection

Expansion is not successful, so reflection is attempted by re-
flecting V7 to V11. Since SAD(V11) < SAD(V8) < SAD(V7),
the reflection was successful and also Vmin is updated to V11.
The new triangle becomes T12.

(7) Contraction

Expansion and reflection are not successful and thus contrac-
tion is attempted. Based on Table 2, T12 is contacted to T00.
In the new triangle, SAD(V12) is the lowest and is also lower
than SAD(Vmin). Thus Vmin is updated to V12.

(8) Exit

An additional reflection does not lead to lower values for
SAD. In addition, it is not possible to contract to a lower
level. The algorithm will exit with the location of the min-
imum SAD value in Vmin.

5. PERFORMANCE ANALYSIS

The FTS was integrated as part of the JVT/H.264 reference
encoder. The technique was compared with the NTSS [12],
FS, DS [16], and HS [14] algorithms. NTSS is well known for
its simplicity while DS and HS are well known for their low
computation requirements.

For purposes of comparison, scenes with different kinds
of movement have been used. The QCIF (176 × 144 pix-
els) and CIF (352 × 288 pixels) sequences were used. Except



6 EURASIP Journal on Advances in Signal Processing

Start Exit

Level 0

Level 1

Level 2

Translation

Expansion

Translation

Expansion

Translation

Reflection

Contraction

Reflection

Contraction

Reflection

Figure 4: Relation between the FTS operations: reflection, expan-
sion, translation, contraction, and triangle levels.

y

x

Exit 8

v1 v2

v4v3

1
2

3

v6 v5
4

Vmin

v11

v12

v13
7

6

5

v10v8

v7v9

Figure 5: Example of a search pattern using FTS.

for the search algorithm, all other encoding parameters were
kept fixed. These parameters include

(i) macroblock size (16× 16);
(ii) same search area size (16× 16);

(iii) same rate control algorithm;
(iv) motion vector prediction;
(v) early exit condition parameters K max and ExitSAD.

In all the simulations, these parameters were chosen to
be K max = 25 and ExitSAD = 0;

(vi) same number of I and P frames.

The comparison criteria were chosen to be the average
number of block matching evaluations to evaluate compu-
tational complexity, the compression ratio to evaluate effi-
ciency, and the peak signal-to-noise ratio (PSNR) between
the original frames and the reconstructed frames to evaluate
quality.

Table 3 lists the average number of block matching com-
parisons per frame obtained. As can be seen, the average

number of block matching comparisons required by the FTS
is less than that of the NTSS, FS, DS, or HS. As the aver-
age number of block matching comparisons is an indica-
tion of the computation complexity, and thus the speed of
the algorithm, the results obtained confirmed that the FTS is
faster than any of the other three techniques.

The compression ratio results in Table 4 indicate that
the FTS produced slightly less compression ratio than the
FS and comparable results with those obtained with the
DS, HS, and NTSS. In all cases, the difference in com-
pression ratio was within ±1%, which is almost negligible
given the reduction achieved in the amount of computa-
tion.

The average PSNR results are presented in Tables 5 and 6.
As expected, with rate control off all algorithms give similar
PSNR values in Table 5. The PSNR values are also very close
for all algorithms in Table 6. Figure 6 shows the changes of
PSNR at different bit rates while Figure 7 displays the PSNR
values for each frame.

From Figure 6, it can be seen that the performance of
the FTS is comparable with that of the other algorithms
except for the FS. For a qualitative comparison, Figure A.1
shows frames reconstructed from compressed ones using the
different BMAs. The visual difference is hardly noticeable. It
can be inferred from Tables 5 and 6 and Figures 6 and 7 that
the PSNR values obtained using the FTS are comparable with
those of the NTSS, DS, and HS and are very close to those of
the FS.

From the above comparison, it is clear that the compres-
sion ratios, as well as the average PSNR and visual qual-
ity of the reconstructed frames using the FTS, NTSS, DS,
HS, and FS, are not significantly different. This indicates
that the significant reduction in the computational com-
plexity obtained using the FTS did not come at the ex-
pense of deterioration in visual quality or compression ef-
ficiency.

6. DISCUSSION

The simulation results showed that the FTS is capable of
producing almost the same compression ratio and PSNR
results as other fast block matching algorithms while re-
ducing the number of block matching computations by
around 30–60% depending on the video sequence (Table 7).
Further, results indicate that the FTS works well for
both slow and fast sequences (see Figure 8). This promis-
ing performance of the FTS motivated the implemen-
tation of FTS using FPGAs which will be presented in
[33].

The performance improvements of the FTS over existing
algorithms are related to the following features of the algo-
rithm.

(i) Each reflection operation moves the triangle away
from positions of large error using only one SAD cal-
culation while most other fast algorithms require sev-
eral SAD calculations for each search iteration.



Mohamed Rehan et al. 7

Table 3: Average number of block matching per macroblock.

Sequence FS NTSS DS HS FTS

QCIF resolution (176× 144)

Miss America 1089 20.00 14.76 12.65 9.04
Akyio 1089 17.34 12.24 11.26 6.51
News 1089 17.49 12.42 11.35 6.83
Silent 1089 17.67 12.59 11.46 7.23
Coastguard 1089 18.15 12.70 11.73 7.37
Foreman 1089 19.11 13.62 12.26 8.20
Carphone 1089 19.33 14.11 12.60 8.44
Stefan 1089 19.03 13.6 12.36 8.33

CIF resolution (352× 288)

Coastguard 1089 18.38 12.9 11.86 7.37
Container 1089 18.69 13.55 12.02 7.32
Foreman 1089 20.37 15.09 13.36 9.32
Paris 1089 17.73 12.59 11.52 7.06
Stefan 1089 21.07 15.60 13.69 9.30

Table 4: Compression ratio (no rate control).

Sequence FS NTSS DS HS FTS

QCIF resolution (176× 144)

Miss America 279.67 279.19 276.33 278.67 280.37
Akyio 312.43 312.50 312.91 313.16 313.00
News 105.21 105.14 105.17 105.34 104.85
Silent 91.64 91.39 91.60 91.40 91.38
Coastguard 38.54 38.50 38.50 38.51 38.42
Foreman 54.42 54.82 54.60 54.49 54.70
Carphone 49.90 49.91 49.86 49.75 49.89
Stefan 13.84 13.80 13.80 13.77 13.70

CIF resolution (352× 288)

Coastguard 413.36 413.69 414.13 413.40 413.63
Container 31.94 31.97 31.96 31.97 31.96
Foreman 174.38 173.47 173.88 173.54 173.34
Paris 68.61 68.20 67.95 67.03 67.32
Stefan 64.37 64.24 64.22 64.15 64.04

Table 5: Average PSNR (no rate control).

Sequence FS NTSS DS HS FTS

QCIF resolution (176× 144)

Miss America 39.62 39.63 39.63 39.64 39.61
Akyio 37.80 37.79 37.77 37.77 37.77
News 36.26 36.26 36.23 36.24 36.25
Silent 35.45 35.46 35.47 35.47 35.47
Coastguard 33.85 33.86 33.86 33.85 33.86
Foreman 34.93 34.91 34.90 34.90 34.90
Carphone 36.03 36.02 36.01 35.99 35.98
Stefan 33.76 33.76 33.76 33.75 33.76

CIF resolution (352× 288)

Coastguard 39.31 39.30 39.31 39.31 39.32
Container 34.32 34.30 34.3 34.30 34.29
Foreman 35.54 35.53 35.53 35.53 35.52
Paris 35.89 35.89 35.87 35.86 35.87
Stefan 35.11 35.12 35.11 35.12 35.12



8 EURASIP Journal on Advances in Signal Processing

Table 6: Average PSNR (with rate control enabled).

Sequence FS NTSS DS HS FTS

QCIF resolution (176× 144)

Miss America 44.16 44.14 44.12 44.14 44.15

Akyio 45.39 45.40 45.41 45.38 45.44

News 39.14 39.14 39.13 39.14 39.21

Silent 37.96 37.98 37.95 37.96 37.94

Coastguard 31.51 31.49 31.48 31.49 31.47

Foreman 36.84 36.85 36.84 36.83 36.85

Carphone 38.16 38.13 38.14 38.13 38.13

Stefan 28.55 28.50 28.51 28.50 28.46

CIF resolution (352× 288)

Coastguard 43.36 43.35 43.36 43.35 43.33

Container 32.61 32.61 32.60 32.60 32.59

Foreman 36.46 36.46 36.45 36.46 36.44

Paris 35.82 35.77 35.74 35.68 35.72

Stefan 35.07 35.08 35.01 35.04 34.97

108 110 112 114 116 118 120 122 124 126

Bit rate (Kb/s)

43.7

43.75

43.8

43.85

43.9

43.95

44

44.05

44.1

P
SN

R

FS
NTSS
DS

HS
FTS

(a) Miss America

105 110 115 120 125

Bit rate (Kb/s)

37.6

37.8

38

38.2

38.4

38.6

38.8

39

39.2

39.4

P
SN

R

FS
NTSS
DS

HS

FTS

(b) News

86 88 90 92 94 96 98 100 102

Bit rate (Kb/s)

32.3

32.4

32.5

32.6

32.7

32.8

P
SN

R

FS
NTSS
DS

HS
FTS

(c) Foreman

70 75 80 85 90 95 100

Bit rate (Kb/s)

23.2

23.4

23.6

23.8

24

24.2

P
SN

R

FS
NTSS
DS

HS
FTS

(d) Stefan

Figure 6: PSNR versus bit rate.



Mohamed Rehan et al. 9

60 65 70 75 80 85 90 95 100 105

Frame

37.2

37.3

37.4

37.5

37.6

37.7

37.8

37.9

38

38.1
P

SN
R

FS
NTSS

DS

HS
FTS

(a) Foreman

198 200 202 204 206 208 210 212 214 216

Frame

29.6

29.8

30

30.2

30.4

30.6

P
SN

R

FS
NTSS
DS

HS
FTS

(b) Stefan

Figure 7: PSNR value per frame.

Table 7: FTS computational improvement percentage.

Sequence
Number of Percentage improvement with

block matching respect to other algorithms

FTS NTSS DS HS

Miss America 9.04 54.80% 38.75% 28.54%

Akyio 6.51 62.46% 46.81% 42.18%

News 6.83 60.95% 45.01% 39.82%

Silent 7.23 59.08% 42.57% 36.91%

Coastguard 7.37 59.39% 41.97% 37.17%

Foreman 8.20 57.09% 39.79% 33.12%

Carphone 8.44 56.34% 40.18% 33.02%

Stefan 8.33 56.23% 38.75% 32.61%

A
ky

io

N
ew

s

Si
le

n
t

C
oa

st
gu

ar
d

Fo
re

m
an

St
ef

an

C
ar

ph
on

e

M
is

s
A

m
er

ic
a

Sequence

0

5

10

15

20

25

A
ve

ra
ge

bl
oc

k
m

at
ch

in
g

/m
ac

ro
bl

oc
k

FTS

Hexagon

Dimond

NTSS

Figure 8: Average number of block matching per macroblock for
each algorithm.

(ii) Expansion operations speed up the search by increas-
ing the search step and thus avoiding unnecessary in-
termediate SAD calculations. The contraction opera-
tion reduces the search step to achieve a higher resolu-
tion.

(iii) The translation operation is useful when a change
of location is detected during the search. The FTS
uses the translation operation if a successful expansion
follows a successful reflection in which case the chosen
direction of expansion may yield a better minimum
point.

These operations provide the FTS with excellent search
flexibility. Further, the reflection operation can help to avoid
local minima.

The use of predefined triangle sets, as shown in Figure 1,
leads to the following important features of the FTS.

(i) FTS is optimized for an integer grid and for perform-
ing all operations using integer calculations.



10 EURASIP Journal on Advances in Signal Processing

Table A.1: Possible reflections and expansions of level 1 triangles.

Results of V0

reflection
around VA, VB

Expansion of V0

reflection-vertex

Results of VA

reflection
around V0, VB

Expansion of VA

reflection-vertex

Results of VB

reflection
around V0, VA

Expansion of VB

reflection-vertex

Current
triangle,
level 1

New
triangle,
level 1

Origin
shift V0

Test
point Ve

New
triangle,
level 2

New
triangle,
level 1

Origin
shift V0

Test
point Ve

New
triangle,
level 2

New
triangle,
level 1

Origin
shift V0

Test
point Ve

New
triangle,
level 2

T10
VB

V0�VA T13 (3,−2) (5,−3) T23 T15 (0,0) (−3,−3) T25 T11 (0,0) (1,4) T21

T11 V0�VB

VA

T14 (3,2) (5,3) T24 T10 (0,0) (1,−4) T20 T12 (0,0) (−3, 3) T22

T12
V0

VA�VB T15 (0,4) (0,6) T25 T11 (0,0) (4,−1) T21 T13 (0,0) (−4,−1) T23

T13 VA�V0

VB

T10 (−3, 2) (−5, 3) T20 T12 (0,0) (3,3) T22 T14 (0,0) (−1,−4) T24

T14
VB

V0�VA T11 (−3,−2) (−5,−3) T21 T13 (0,0) (−1, 4) T23 T15 (0,0) (3,−3) T25

T15 VB�VA

V0
T12 (0,−4) (0,−6) T22 T14 (0,0) (−4, 1) T24 T10 (0,0) (4,1) T20

(ii) Most of the calculations are predefined in look-
up tables, which can easily be accessed during the
search process. This comes at a price of having to
store approximately 200 8-bit numbers, which is very
insignificant given current advances in memory sizes
and the total memory needed by the encoder.

(iii) Search triangles are predefined and, consequently, it is
not possible for two or three vertices to coincide and
thus, the triangle cannot collapse to a line or point.

(iv) The flow control and exit conditions of the FTS are ro-
bust.

7. CONCLUSIONS

A new block matching technique referred to as the FTS
has been introduced. This new technique is based on
the simplex optimization technique and is adapted for
a discrete grid. The FTS uses a set of triangles of dif-
ferent sizes to perform the operations of reflection, ex-

pansion, contraction, and translation. These operations
enable the FTS to quickly change the search direction,
switch between coarser and finer searches, and quickly
move towards a minimum point. The proposed tech-
nique has been implemented as part of an H.264 en-
coder and compared with some other popular BMA al-
gorithms. Results indicate that the proposed technique
requires significantly fewer block matches than other fast
BMA algorithms without any reduction in the compression
ratio or deterioration of the visual quality of the recon-
structed frames.

APPENDIX

Tables A.1 and A.2 present all posible reflections and expan-
sions for level 1 and 2 triangles, respectively.

In Figure A.1, the original frame 255 of the ‘Foreman’
sequence and the reconstructed frames using different algo-
rithms are presented for comparison. A flowgraph of the FTS
algorithm is illustrated in Figure A.2.



Mohamed Rehan et al. 11

Table A.2: Possible reflections and expansions of level 2 triangles.

Results of V0

reflection
around VA, VB

Expansion of V0

reflection-vertex

Results of VA

reflection
around V0, VB

Expansion of VA

reflection-vertex

Results of VB

reflection
around V0, VA

Expansion of VB

reflection-vertex

Current
triangle,
level 2

New
triangle,
level 2

Origin
shift V0

Test
point Ve

New
triangle,
level 3

New
triangle,
level 2

Origin
shift V0

Test
point Ve

New
triangle,
level 3

New
triangle,
level 2

Origin
shift V0

Test
point Ve

New
triangle,
level 3

T20
VB

V0�VA T23 (6,−4) (8,−5) T33 T25 (0,0) (−4,−4) T35 T21 (0,0) (2,5) T31

T21 V0�VB

VA

T24 (6,4) (8,5) T34 T20 (0,0) (2,−5) T30 T22 (0,0) (−4, 4) T32

T22
V0

VA�VB T25 (0,8) (0,9) T35 T21 (0,0) (6,2) T31 T23 (0,0) (−6,−2) T33

T23 VA�V0

VB

T20 (−6, 4) (−8, 5) T30 T22 (0,0) (4,4) T32 T24 (0,0) (−2,−5) T34

T24
VB

V0�VA T21 (−6,−4) (−8,−5) T31 T23 (0,0) (−2, 5) T33 T25 (0,0) (4,−4) T35

T25 VB�VA

V0
T22 (0,−8) (−8, 5) T32 T24 (0,0) (−6, 2) T34 T20 (0,0) (6,−2) T30

Original NTSS DS

Full search FTS HS

Figure A.1: Reconstructed frame number 255 for Foreman QCIF.



12 EURASIP Journal on Advances in Signal Processing

Start

Set triangle level = 0;
set current triangle, T current = T (level, triangle id);

calculate V0,VA,VB ;
set Vd = 0;

set Vmin = V0;
set TranslationFlag = False.

TranlationFlag = true ?

Reflection:
calculate Vh,Vl , SAD(Vh), and SAD(Vl);
find Vr = reflection-vertex (Vh, Tcurrent);

calculate SAD(Vr).

N Y

Translation:
Vt = Vl + Vd ;

calculate SAD(Vt).

Y N
SAD(Vr) < SAD(Vh)?

Is contraction possible ?
SAD(Vt) < SAD(Vl)?

N

TranlationFlag = False
Y

Update V0,Vl ,Vmin

K = K + 1

ExpansionLevel <
maxLevel ?

ExpansionLevel > 0 ?
N

Y N
Y

Expansion:
find Ve = expansion-

vertex (Vmax, Tcurrent);
calculate SAD(Ve).

Accept reflection;
update Tcurrent,V0,

Vmin.

Contraction:
decrease level;

update Tcurrent,V0.

SAD(Ve) < SAD(Vr)?
N

Y N

Accepted expansion:
TranslationFlag = True,

increase level;
update Tcurrent,V0,Vmin

K > Kmax or
SAD(Vmin) < ExitSAD

Y

Stop

Figure A.2: Flowgraph of the FTS algorithm.



Mohamed Rehan et al. 13

REFERENCES

[1] ISO/IEC 11172, “Coding of Moving Pictures and Associated
Audio for Digital Storage Media at up to about 1.5 Mbits/s,”
International Organization for Standardization, 1992.

[2] ISO/IEC CD 13818, “Generic Coding of Moving Pictures and
Associated Audio,” International Organization for Standard-
ization, 1994.

[3] D. E. Le Gall, “MPEG: a video compression standard for mul-
timedia applications,” Communications of the ACM, vol. 34,
no. 4, pp. 46–58, 1991.

[4] D. J. Le Gall, “The MPEG video compression algorithm,” Sig-
nal Processing: Image Communication, vol. 4, no. 2, pp. 129–
140, 1992.

[5] G. Morrison, “Video coding standards for multimedia: JPEG,
H.261, MPEG,” in IEE Colloquium on Technology Support of
Multimedia, Digest no. 088, pp. 2.1–2.4, London, UK, April
1992.

[6] V. Bhaskaran and K. Konstantinides, Image and Video Com-
pression Standards Algorithms and Architectures, Kluwer Aca-
demic, Boston, Mass, USA, 1995.

[7] P. Kuhn, Algorithms, Complexity Analysis and VLSI Archi-
tectures for MPEG-4 Motion Estimation, Kluwer Academic,
Boston, Mass, USA, 1999.

[8] H. G. Musmann, P. Pirsch, and H.-J. Grallert, “Advances in
picture coding,” Proceedings of the IEEE, vol. 73, no. 4, pp. 523–
548, 1985.

[9] J. R. Jain and A. K. Jain, “Displacement measurement and its
application in interframe image coding,” IEEE Transactions on
Communications, vol. 29, no. 12, pp. 1799–1808, 1981.

[10] M. Ghanbari, “The cross-search algorithm for motion estima-
tion,” IEEE Transactions on Communications, vol. 38, no. 7, pp.
950–953, 1990.

[11] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro,
“Motion compensated interframe coding for video conferenc-
ing,” in Proceedings of National Telecommunications Conference
(NTC ’81), vol. 4, pp. G5.3.1–G5.3.5, New Orleans, La, USA,
November 1981.

[12] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algo-
rithm for block motion estimation,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 4, no. 4, pp. 438–
442, 1994.

[13] B. Paul and E. Viscito, “Hierarchical motion estimation with
2-scale tilings,” in Proceedings of the IEEE International Confer-
ence on Image Processing (ICIP ’94), vol. 3, pp. 260–264, Austin,
Tex, USA, November 1994.

[14] C. Zhu, X. Lin, and L.-P. Chau, “Hexagon-based search pat-
tern for fast block motion estimation,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 12, no. 5, pp.
349–355, 2002.

[15] C.-H. Cheung and L.-M. Po, “A novel cross-diamond search
algorithm for fast block motion estimation,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 12, no. 12,
pp. 1168–1177, 2002.

[16] S. Zhu and K.-K. Ma, “A new diamond search algorithm for
fast block-matching motion estimation,” IEEE Transactions on
Image Processing, vol. 9, no. 2, pp. 287–290, 2000.

[17] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim,
“A novel unrestricted center-biased diamond search algorithm
for block motion estimation,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 8, no. 4, pp. 369–377,
1998.

[18] A. M. Tourapis, Q. C. Au, M. L. Liou, and G. Shen, “Fast
and efficient motion estimation using diamond zonal-based

algorithms,” Journal of Circuits, Systems, and Signal Processing,
vol. 20, no. 2, pp. 233–251, 2001.

[19] A. M. Tourapis, O. C. Au, and M. L. Liou, “Highly efficient pre-
dictive zonal algorithms for fast block-matching motion esti-
mation,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 12, no. 10, pp. 934–947, 2002.

[20] P. I. Hosur and K. K. Ma, “Motion vector field adaptive fast
motion estimation,” in Proceedings of the 2nd International
Conference on Information, Communications and Signal Pro-
cessing (ICICS ’99), Singapore, Republic of Singapore, Decem-
ber 1999.

[21] A. M. Tourapis, O. C. Au, and M. L. Liou, “Predictive motion
vector field adaptive search technique (PMVFAST): enhanc-
ing block-based motion estimation,” in Visual Communica-
tions and Image Processing (VCIP ’01), vol. 4310 of Proceedings
of SPIE, pp. 883–892, San Jose, Calif, USA, January 2001.

[22] Z. Chen, P. Zhou, and Y. He, “Fast integer pel and fractional
pel motion estimation for JVT,” in JVT-F017r1.doc, Joint Video
Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, 6th Meeting,
Awaji Island, Japan, December 2002.

[23] Z. Chen, P. Zhou, and Y. He, “Fast motion estimation for JVT,”
in JVT-G016.doc, Joint Video Team (JVT) of ISO/IEC MPEG &
ITU-T VCEG, 7th Meeting, Pattya II, Thailand, March 2003.

[24] D. Himmelblau, Applied Nonlinear Programming, McGraw-
Hill, New York, NY, USA, 1972.

[25] B. Bunday, Basic Optimization Methods, Edward Arnold, Lon-
don, UK, 1984.

[26] M. Rehan, A. Antoniou, and P. Agathoklis, “A new fast block
matching algorithm using the simplex technique,” in Proceed-
ings of the IEEE Symposium on Advances in Digital Filtering and
Signal Processing, pp. 30–33, Victoria, BC, Canada, June 1998.

[27] M. E. Al-Mualla, C. N. Canagarajah, and D. R. Bull, “A simplex
minimization for single- and multiple-reference motion esti-
mation,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 11, no. 12, pp. 1209–1220, 2001.

[28] M. E. Al-Mualla, C. N. Canagarajah, and D. R. Bull, “Sim-
plex minimisation for multiple-reference motion estimation,”
in Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS ’00), vol. 4, pp. 733–736, Geneva, Switzer-
land, May 2000.

[29] M. E. Al-Mualla, C. N. Canagarajah, and D. R. Bull, “Simplex
minimisation for fast long-term memory motion estimation,”
Electronics Letters, vol. 37, no. 5, pp. 290–292, 2001.

[30] M. E. Al-Mualla, N. Canagarajah, and D. R. Bull, “Simplex
minimisation for fast block matching motion estimation,”
Electronics Letters, vol. 34, no. 4, pp. 351–352, 1998.

[31] M. Rehan, P. Agathoklis, and A. Antoniou, “Flexible triangle
search algorithm for block based motion estimation,” in Pro-
ceedings of the IEEE Pacific RIM Conference on Communica-
tions, Computers, and Signal Processing (PACRIM ’03), vol. 1,
pp. 233–236, Victoria, BC, Canada, August 2003.

[32] L. Yang, K. Yu, J. Li, and S. Li, “An effective variable block-
size early termination algorithm for H.264 video coding,”
IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 15, no. 6, pp. 784–788, 2005.

[33] M. Rehan, M. W. El-Kharashi, P. Agathoklis, and F. Gebali, “An
FPGA implementation of block based motion estimation us-
ing the flexible triangle search algorithm,” in Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS
’06), pp. 521–524, Island of Kos, Greece, May 2006.



14 EURASIP Journal on Advances in Signal Processing

Mohamed Rehan received his B.S. degree
with honor in communications and his
M.S. degree in computer graphics in 1991
and 1994, respectively, from the Depart-
ment of Electronics and Communications
Engineering, Cairo University, Cairo, Egypt.
He is currently working towards his Ph.D.
degree. He has been actively involved in
the research and development of several
projects related to video compression stan-
dards including H.263, H.263p, MPEG 1, 2, 4, and H.264.

Pan Agathoklis received the Dipl. Ing.
degree in electrical engineering and the
Dr.Sc.Tech. degree from the Swiss Federal
Institute of Technology, Zurich, Switzer-
land, in 1975 and 1980, respectively. From
1981 until 1983, he was with the Univer-
sity of Calgary as a Post-Doctoral Fellow
and part- time Instructor. Since 1983, he has
been with the Department of Electrical and
Computer Engineering, University of Victo-
ria, BC, Canada, where he is currently a Professor. He has received
a NSERC University Research Fellowship and Visiting Fellowships
from the Swiss Federal Institute of Technology, from the Australian
National University and the University of Perth, Australia. He has
been member of the Technical Program Committee in many in-
ternational conferences and has served as the Technical Program
Chair of the 1991 IEEE Pacific Rim Conference on Communica-
tions, Computers, and Signal Processing and the 1998 IEEE Sym-
posium on Advances in Digital Filtering and Signal processing. His
fields of interest are in digital signal processing and its applications
in control systems and communications.

Andreas Antoniou received his Ph.D. de-
gree in Electrical Engineering from the Uni-
versity of London, UK, in 1966 and is a
Fellow of the IEE and IEEE. He served
as the founding Chair of the Department
of Electrical and Computer Engineering
at the University of Victoria, BC, Canada,
and is now Professor Emeritus in the same
department. He is the author of Digital
Filters: Analysis, Design, and Applications
(McGraw-Hill, 1993) and Digital Signal Processing: Signals, Sys-
tems, and Filters (McGraw-Hill, 2005). He served as Associate Edi-
tor/Editor of IEEE Transactions on Circuits and Systems from June
1983 to May 1987, as a Distinguished Lecturer of the IEEE Signal
Processing Society in 2003, as General Chair of the 2004 Interna-
tional Symposium on Circuits and Systems, and is currently serv-
ing as a Distinguished Lecturer of the IEEE Circuits and Systems
Society. He received the Ambrose Fleming Premium for 1964 from
the IEE (best paper award), the CAS Golden Jubilee Medal from the
IEEE Circuits and Systems Society, the BC Science Council Chair-
man’s Award for Career Achievement for 2000, the Doctor Honoris
Causa degree from the Metsovio National Technical University of
Athens, Greece, in 2002, and the IEEE Circuits and Systems Society
2005 Technical Achievement Award.


	Introduction
	Simplex Search Algorithm
	Reflection
	Expansion
	Contraction


	The Flexible Triangle Search Algorithm
	Illustrative Example
	(1) Start
	(2) Reflection
	(3) Expansion
	(4) Translation
	(5) Reflection
	Termination conditions
	(6) Reflection
	(7) Contraction
	(8) Exit


	performance analysis
	Discussion
	Conclusions
	Appendix
	REFERENCES

