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Abstract—A family of adaptive-filtering algorithms that uses a
variable step size is proposed. A variable step size is obtained by
minimizing the energy of the noise-free a posteriori error signal
which is obtained by using a known - minimization formu-
lation. Based on this methodology, a shrinkage affine projection
(SHAP) algorithm, a shrinkage least-mean-squares (SHLMS)
algorithm, and a shrinkage normalized least-mean-squares
(SHNLMS) algorithm are proposed. The SHAP algorithm yields
a significantly reduced steady-state misalignment as compared to
the conventional affine projection (AP), variable-step-size AP, and
set-membership AP algorithms for the same convergence speed
although the improvement is achieved at the cost of an increase in
the average computational effort per iteration in the amount of
11% to 14%. The SHLMS algorithm yields a significantly reduced
steady-state misalignment and faster convergence as compared
to the conventional LMS and variable-step-size LMS algorithms.
Similarly, the SHNLMS algorithm yields a significantly reduced
steady-state misalignment and faster convergence as compared
to the conventional normalized least-mean-squares (NLMS) and
set-membership NLMS algorithms.

Index Terms—Adaptive-filtering algorithms, affine projec-
tion algorithms, least-mean-squares algorithms, normalized
least-mean-squares algorithms, set-membership algorithms.

I. INTRODUCTION

L EAST-MEAN-SQUARES (LMS) algorithms are widely
used due to their simplicity [1], [2]. The variable-step-size

LMS (VLMS) and normalized LMS (NLMS) algorithms re-
ported in [3] and [4], respectively, offer improved performance
compared to the conventional LMS algorithm. The non-para-
metric NLMS (NPNLMS) and the set-membership NLMS
(SMNLMS) algorithms reported in [5] and [6], respectively,
offer improved performance relative to the conventional NLMS
algorithm. Unfortunately, these algorithms do not perform well
in situations where the input signal is colored [1], [2]. In such
situations, the affine projection (AP) algorithm yields improved
performance as compared to the NLMS algorithm [7].
The AP algorithm in [7] uses the most recent input-signal

vectors, where is also known as the projection order, in up-
dating the weight vector whereas the NLMS algorithm uses only
the current input-signal vector. As a result, the AP algorithm in
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[7] offers improved performance with respect to the NLMS al-
gorithm in [4]. Several variants of the AP algorithm have been
proposed in [8]–[13]. The AP algorithms in [8] and [9], known
as the set-membership AP (SMAP) and variable-step-size AP
(VSSAP) algorithms, respectively, yield a reduced steady-state
misalignment relative to the AP algorithm in [7] for similar con-
vergence speed. On the other hand, the variable-regularization
AP algorithm in [10] offers a significantly reduced steady-state
misalignment compared to the AP algorithm for the same con-
vergence speed. The AP algorithm in [11] employs a so-called
reuse time whereby each input-signal vector is retained in the
input-signal matrix over a specified time and by using a variable
reuse time, reduced steady-state misalignment can be achieved.
An additional feature of the SMAP algorithm is that it entails a
reduced average computational complexity due to its data-se-
lective feature. Some other variants of the SMAP algorithm
are described in [12] and [13]. The algorithm in [12] yields a
slightly improved steady-state misalignment and the algorithm
in [13] yields improved convergence speed for sparse system-
identification applications as compared to the SMAP algorithm.
The binormalized data-reusing and set-membership binormal-
ized data-reusing LMS algorithms in [14] and [15], respectively,
are derived for a projection order . These algorithms are
alternative implementations of the AP and SMAP algorithms
that offer reduced computational complexity compared to the
direct implementations of the AP and SMAP algorithms with

. A rigorous analysis of the AP algorithm in [7] was pre-
sented in [16]. Note that information about the variance of the
measurement noise needs to be available a priori for the suc-
cessful operation of the AP algorithms [8]–[13] and [15].
In this paper, we propose a family of so-called shrinkage

adaptive-filtering algorithms, namely, a shrinkage AP (SHAP)
algorithm, a shrinkage LMS (SHLMS) algorithm, and a
shrinkage NLMS (SHNLMS) algorithm. The proposed algo-
rithms use a variable step size which is obtained by minimizing
the energy of the noise-free a posteriori error signal. The
noise-free error signal is obtained by using an - mini-
mization method described in [17], [18]. Simulation results in
a system-identification application and an acoustic echo-can-
celation application are used to demonstrate the superior
performance of the proposed SHAP, SHLMS, and SHNLMS
algorithms in terms of reduced steady-state misalignment as
compared to the performance achieved with corresponding
state-of-the-art competing algorithms reported in [3]–[9]. Sim-
ulation results for the SHAP algorithm show that the improved
performance comes about at the cost of an increase in the av-
erage computational effort per iteration over that in the known
AP algorithm in the amount of 11 to 14%.
The paper is organized as follows. In Sections II and III,

we discuss the derivation of the proposed SHAP, SHLMS,
and SHNLMS algorithms. Issues concerning the application
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of the proposed algorithms are discussed in Section IV. The
computational complexity of the SHAP algorithm is discussed
in Section V. Simulation results are presented in Section VI
and conclusions are drawn in Section VII.

II. SHRINKAGE AFFINE-PROJECTION ALGORITHMS

In the case of system-identification adaptive-filtering appli-
cations, the desired signal samples are obtained as

(1)

where is the noise-free desired signal, is
the measurement noise signal, is the impulse
response of the unknown system, and is the input-
signal vector.
In the conventional AP algorithm [7], the weight-vector up-

date equation assumes the form

(2)

where is the step size,
is the input-signal matrix, and is
the a priori error-signal vector where and

is the a posteriori error at iteration
. Vector can also be expressed as

(3)

where

(4)

is the noise-free a priori error vector and
contains the measurement noise signal samples. Sim-

ilarly, the a posteriori error vector can be expressed as

(5)

where

(6)

is the noise-free a posteriori error vector.
In the conventional AP algorithm, is obtained by mini-

mizing the mean-square error (MSE), . On the
other hand, in the Wiener solution, which is the optimal solu-
tion [1], [2], is obtained by minimizing the energy of the
a posteriori error signal, . The two solutions
are obviously different and in order to bring the weight vector

closer to the Wiener solution, the step size in (2) can be
optimized.
The update equation in (2) yields the noise-free a posteriori

error vector as

(7)

Taking the expectation of the square of the norm of in
(7), we obtain

(8)

We can now minimize in (8) with respect to in
order to obtain a solution that is closer to the optimal Wiener
solution. The optimum value of can be obtained as

(9)

by setting the derivative of with respect to to zero.
As can be seen in (9), the optimum step size, , will lie in
the range (0,1). Since , where is the most recent
element in the a priori error vector in (4), is a measure of the
excess mean-square error (EMSE) of the AP algorithm [16], the
minimum EMSE can be obtained by using (9) in (2).
One obvious difficulty in computing the step size in (9) is to

obtain . Although the time average of the squares of
, i.e.,

(10)

where is the forgetting factor, can be used to re-
place the statistical mean in (9), the problem cannot
be solved as is unknown. An easy solution would be to re-
cover from the noisy a priori error vector in (3). Once

is known, it can be used in (10) to obtain an estimate of
. On the other hand, one can obtain ,

where is the projection order. With and
known, the step size in (9) can be evaluated. Since the norm
of is used in (10), cannot approach zero unless the adap-
tive filter reaches steady state.

A. Shrinkage Denoising Method

Vector can be recovered from the noisy a priori error
vector by using amethod described in [17], [18]. This method
involves the minimization problem

(11)

where is the norm of vector is an
orthonormal transform matrix, is an estimate of
is given by (3), and is an empirical constant known as the
threshold parameter. This type of optimization problem has
been used to solve image denoising applications in [17], [18].
Its solution can be obtained as

(12)

where is a vector whose th element is
given by , and denotes the element-wise
product. Signal essentially represents in terms of the
column vectors of . With in (12) known, an estimate of

in (3) can be obtained as . This can then be
used in (10) to obtain an estimate of which can be
used in (9).
In the next subsection, the required update equations for the

SHAP algorithm are deduced.

B. Update Equations for SHAP Algorithm

An important issue associated with the SHAP algorithm in-
volves the choice of a suitable value for the threshold parameter
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. Assuming a white Gaussian noise signal and and
then choosing the threshold parameter as in (11)
would give

(13)

for all . Taking the expectation of both sides of (13) we obtain

(14)

For a white Gaussian noise signal with variance , from (3) we
obtain

(15)

Comparing (14) and (15), we can see that would be ap-
proximately equal to . In effect, the noise signal would be
eliminated and we would obtain . The above for-
mula could be used to obtain a good initial value for which
can be tuned to suit the application at hand.
The update equations for the SHAP algorithm can be sum-

marized as follows:

(16)

Using in the SHAP algorithm, we obtain the SHNLMS
algorithm as a special case.
As in (15) we can also obtain from (3) the energy relation of

the noisy and noise-free a priori error signals as

(17)

As can be seen, can be obtained directly as
and it can then be used in (9)

to obtain . However, since we have to use the time average
of , i.e., , instead of its statistical average in (9)
and the relation in (17) does not hold true for the time average,
the algorithm can become unstable as can assume values
outside the range (0,1).
The energy of the a posteriori error signal in (5) for the

shrinkage AP algorithm becomes

(18)

which is less than . Note that in (6) is not inde-
pendent of as can be seen from (1)–(3). As a result, a relation
such as that in (17) cannot be obtained by using (5). Hence, we

have even though is a posi-
tive quantity for all . For the NPNLMS algorithm in [5], the
energy of the a posteriori error signal becomes

where is the probability of update. In adaptive-filter theory,
for and, therefore, from (18) we have
. A similar statement holds true for the SHAP

algorithm with respect to the AP algorithm in [19], which was
designed for acoustic echo-cancelation applications.
In the next section, we describe the shrinkage LMS algorithm.

III. SHRINKAGE LMS ALGORITHM

The update equation for the conventional LMS algorithm [1],
[2] is

(19)

where is the step size. The noise-free a posteriori error signal
for this algorithm becomes

(20)

Taking the expectation of the square of the noise-free a poste-
riori error signal in (20), we obtain

(21)

where we assume that is an independent and identically dis-
tributed white Gaussian noise signal. In order to proceed further,
we neglect the dependence of on the input signal as the
amplitudes of become quite small at steady state. Under
these circumstances, (21) can be simplified as

(22)

Setting the derivative of in (22) with respect to to zero,
we obtain

(23)

In the derivation of the above expression, we have assumed that
(see Appendix) in order to obtain a

simple expression for and thus preserve the simplicity of
the LMS algorithm in the SHLMS algorithm. Since the a priori
error signal is a scalar quantity, can be recovered from
by using (11) as

Following the discussion in Section II.B, the threshold param-
eter should be chosen as where is the variance of
the noise signal. However, since the dependence of on the
input signal was neglected in deriving (23), the step size in
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(23) does not assure the minimization of . As a result,
fine tuning of threshold around could yield improved per-
formance. From our extensive simulation results, we found out
that with to works well. Based on these
principles, the update equations of the shrinkage LMS algorithm
become

(24)

(25)

where we have used in place of in (23) for the
step size in (25) and . In many practical applica-
tions, is known. For a white Gaussian input signal,

can easily be obtained as where is the vari-
ance of the input signal.

IV. DISCUSSION

A key requirement of the proposed SHAP and SHLMS algo-
rithms is that the variance of the noise should be available.
Some recent applications of adaptive filtering, which include

adaptive mobile networks, source localization, environment
monitoring, etc., [20]–[24], require a set of sensors distributed
over a region and each sensor requires an adaptive filter. Two
topologies, namely, fusion and network topologies, are used for
distributed computing. In the fusion topology, the central sensor
can be used to obtain the noise variance and then transmit the
information to all the other sensors. In the network topology,
each sensor can be used to estimate the noise variance during
the communication interval with the neighboring sensors. In
acoustic echo-cancelation applications, on the other hand, the
noise variance can be estimated during off periods in the speech
signal. With the noise variance known, we can use the threshold
parameter as discussed in Section II.B.
In situations where the variance of the noise is not available,

an optimal value of parameter in (11) can be estimated by using
a technique based on the dichotomous search described in ([25],
p. 82), as detailed below:
1. Let and be sufficiently small and sufficiently large
values, respectively, such that the optimal value of ,
lies in the range to .

2. Obtain threshold .
3. Find the solutions of the problem in (11) at thresholds

and where is a small positive
number, say, .

4. Compute the residual errors and for the solutions
obtained in step 3.

5. If , use and . Otherwise, use
and .

6. If , obtain . Otherwise, repeat from
step 2.

7. Obtain the optimal values of for , where
is the number of samples in the input signal; then com-

pute the average optimal value of .

The number of samples in the input signal would tend to de-
pend on the application but a value of would be typ-
ical. The technique would be applied once at the time of the
deployment of the adaptive filter.
Since the proposed shrinkage algorithms are actually variants

of the basic LMS, NLMS, and AP algorithms, they are very
reliable.

V. COMPUTATIONAL COMPLEXITY

The numbers of additions and multiplications for the AP al-
gorithm can be obtained from the update equation

as and ,
respectively, (see ([2], p. 244)) and, similarly, for the SMAP
algorithm using the update equation

(26)

where we obtain
and additions and

multiplications, respectively. On the other hand, using (16) with
it can be shown that

additions and multiplications
are required for the SHAP algorithm.
From the above formulas for the arithmetic operations, it can

be readily shown that the proposed SHAP algorithm requires
more additions and more multiplications

than the AP algorithm or more additions and
more multiplications than the SMAP

algorithm. In effect, the proposed SHAP algorithm entails an
increased computational complexity of the order of relative
to the AP and SMAP algorithms.

VI. SIMULATION RESULTS

In this section, we present simulation results for the pro-
posed algorithms as well as corresponding state-of-the-art
competing algorithms in two adaptive-filtering applications,
namely, a system-identification application and an acoustic
echo-cancelation application. The proposed SHAP algorithm
is compared with the NLMS, AP, VSSAP [9], and SMAP
[8] algorithms. The proposed SHLMS algorithm is compared
with the conventional LMS and VLMS [3] algorithms. The
proposed SHNLMS algorithm is compared with the NLMS,
SMNLMS [6], and NPNLMS [5] algorithms. A regularization
matrix with was added to matrix in (2) in
all experiments to assure its invertibility for all . The initial
weight vector was set to the zero vector in all algorithms
and experiments. The error bound for the SM algorithms was
set to [5], [8] in all experiments. Unless otherwise
stated, the orthonormal matrix , forgetting factor , and
for the SHAP algorithm were chosen as the discrete cosine
transform matrix, 0.90, and 0, respectively, in all experiments.
The learning curves were obtained by averaging the MSE or
the mean-square deviation (MSD), defined as
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Fig. 1. Learning curves for SHAP, SMAP, AP, and NLMS algorithmswith
, and dB (Experiment 1).

, over 1000 trials in
each experiment.

A. System-Identification Application
A series of experiments were carried out in a system-identifi-

cation application where the unknown system was an FIR filter
whose impulse response was obtained as

using MATLAB™, where is the filter order and
is the normalized cut-off frequency which was set to 0.3. The
elements of the unknown were normalized to ensure that

has unit norm. Nine experiments were performed as de-
tailed below.
In Experiment 1, the order of the unknown system was set to

27 and the input signal was a white Gaussian noise signal with
unity variance. The input signal was colored by using an IIR
filter with transfer function [8]

The measurement noise added to the desired signal was also a
white Gaussian noise signal with variance which
corresponds to an SNR of 20 dB. The projection order was
set to 2 in all AP-type algorithms. The learning curves obtained
with the SHAP, SMAP,AP, andNLMS algorithms are illustrated
in Fig. 1. As can be seen, the proposed SHAP algorithm yields
a significantly reduced steady-state misalignment for the same
convergence speed as compare to the competing algorithms.
In Experiment 2, the order of the unknown system and pro-

jection order were changed to 37 and 4, respectively. In ad-
dition, the variance of the measurement noise was changed to

( dB). The learning curves obtained are illus-
trated in Fig. 2. As can be seen, the proposed SHAP algorithm
yields a significantly reduced steady-state misalignment as com-
pared to the competing algorithms. The NLMS algorithm yields
a reduced steady-state misalignment as compared to the AP and
SMAP algorithms due to the increased projection order but the
speed of convergence is also reduced.
In Experiment 3, we reduced the degree of correlation of the

input signal of the adaptive filter by using an IIR filter with a
single pole at 0.95 to filter the unity-variance white Gaussian
signal. The order of the unknown system was set to 111 and the

Fig. 2. Learning curves for SHAP, SMAP, AP, and NLMS algorithmswith
, and dB (Experiment 2).

Fig. 3. Learning curves for SHAP, SMAP, AP, and NLMS algorithmswith
, and dB (Experiment 3).

variance of the measurement noise was set to (
dB). The projection order was set to in all algorithms.
The learning curves obtained are illustrated in Fig. 3. As can be
seen, the SHAP algorithm yields a much reduced steady-state
misalignment for the same convergence speed as compared to
the other AP algorithms.
In Experiment 4, we repeated Experiment 3 with

and and we set the variance of the measurement noise
to 0.0316 ( dB). The learning curves obtained are
illustrated in Fig. 4. As can be seen, the SHAP algorithm yields
a reduced steady-state misalignment for the same convergence
speed as compared to the other AP algorithms.
In the above four experiments, we computed the average CPU

time using the formula

for where denotes the required CPU
time for the th iteration in the th trial where is the total
number of iterations and is the total number of trials. The
CPU time was measured by using command cputime of
MATLAB™ 2011b. The simulations were carried out using an
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Fig. 4. Learning curves for SHAP, SMAP, AP, and NLMS algorithmswith
, and dB (Experiment 4).

TABLE I
AVERAGE CPU TIME PER ITERATION (MICROSECONDS)

Intel(R) Core(TM)2 CPU 6400 @2.13 GHz processor. The av-
erage value of , i.e., , referred to
hereafter as the average CPU time per iteration, for the NLMS,
AP, SMAP and SHAP algorithms in Experiments 1 to 4 are
given in Table I. As can be seen, the reduced steady-state mis-
alignment of the proposed SHAP algorithm comes at the cost of
an increased average CPU time per iteration, of the order of 11
to 14%, relative to that of the AP algorithm. The average CPU
time per iteration for the NLMS algorithm is approximately 39
to 56% that of the SHAP algorithm but the required computa-
tional effort to achieve convergence is significantly larger than
those required by the competing algorithms as the NLMS algo-
rithm is very slow to converge. Furthermore, the NLMS algo-
rithm leads to a large steady-state misalignment. The number
of updates in the SMAP algorithm in Experiments 1 to 4 were
4236, 6208, 4177, and 2642, respectively. The number of up-
dates in the AP, NLMS, and SHAP algorithms was equal to the
number of iterations, i.e., 8000 in Experiments 1 and 2, 10,000
in Experiment 3, and 4000 in Experiment 4. As can be seen in
Table I, the SMAP algorithm yields the lowest . How-
ever, a lower in the SMAP algorithm only indicates that
it entails a low computational load compared to the other algo-
rithms. In other words, if we were to increase from 8000 to
12000 in Experiment 1, the number of updates in the SMAP al-
gorithm would stay approximately the same, i.e., around 4236,
and, therefore, would be lower than
that given in Table I but it would remain the same for the other
algorithms.
The SHAP algorithm entails an increased average CPU time

per iteration as compared to the AP algorithm due to the in-
creased computational complexity associated with the SHAP al-
gorithm as discussed in Section V. The average CPU time per
iteration for the SMAP algorithm is lower as most of the time

Fig. 5. Learning curves for AP algorithm and SHAP algorithm for three dif-
ferent matrices with , and dB (Experiment
5).

Fig. 6. Learning curves for AP algorithm and SHAP algorithm for three dif-
ferent matrices with , and dB (Experiment
6).

the inequality in (26) is satisfied and hence the update
in (26) does not need to be carried out.
In Experiment 5, we investigated the effect of using different

orthonormal matrices on the convergence characteristics of
the SHAP algorithm. We repeated Experiment 1 with the AP
algorithm and the SHAP algorithm using the identity matrix
(SHAP-I), DCT matrix (SHAP-DCT) [26], and Daubechies
wavelet matrix (SHAP-WT) [27] as with ,
and dB. The MSD curves obtained are illustrated
in Fig. 5. As can be seen, the SHAP-DCT and SHAP-WT
algorithms perform better than the AP algorithm and slightly
better than the SHAP-I algorithm. The threshold parameter
in this experiment was small and hence similar noise removal
would be achieved using different . Consequently, different
would result in similar values of and similar steady-state

misalignment during steady state.
In Experiment 6, we repeated Experiment 5, i.e., Experiment

1 with , except that we used and . The
MSD curves obtained are illustrated in Fig. 6. As can be seen,
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Fig. 7. Learning curves for SHNLMS, NPNLMS, SMNLMS, and NLMS al-
gorithms with , and dB (Experiment 7).

the SHAP-DCT and SHAP-WT algorithms performed signifi-
cantly better than the SHAP-I algorithm. This is due to the fact
that with an increased , an increased threshold
was obtained and, consequently, different resulted in different
amounts of noise removal.
In Experiment 7, we examined the performance of the SHAP

algorithm with , namely, the SHNLMS algorithm, and
that of the NLMS, SMNLMS [6], and NPNLMS [5] algorithms.
The order of the unknown system was set to 63. The input signal
was obtained by filtering a white Gaussian noise signal with
variance 1 by an IIR filter with a pole at 0.9. The variance of
the measurement noise was set to ( dB). The
parameters for the NPNLMS algorithm were set to

, and . Parameter in (24) was
set to 0.99. The MSD curves obtained are illustrated in Fig. 7.
As can be seen, the NPNLMS and SHNLMS algorithms offer
improved performance compared to the competing algorithms.
Next we carried out two experiments to examine the perfor-

mance of the SHLMS algorithm.
In Experiment 8, we used and to obtain

the unknown system and the input signal was a white Gaussian
noise signal with variance 1. The measurement noise was a
white Gaussian noise signal with variance (
dB). The learning curves obtained by using the LMS and the
SHLMS algorithms are illustrated in Fig. 8. As can be seen,
the proposed SHLMS algorithm yields a reduced misalignment
compared to the LMS algorithm when the speed of convergence
of the two algorithms is constant. On the other hand, the SHLMS
algorithm yields a faster convergence compared to the LMS al-
gorithm when the steady-state misalignments of the two algo-
rithms are approximately the same.
In Experiment 9, we used and to obtain the

unknown system. We used the same input signal as in Experi-
ment 8 except that it was correlated by using an IIR filter with a
single pole at 0.9. The measurement noise was a white Gaussian
noise signal with variance ( dB). The MSD
curves obtained by using the LMS, SHLMS, and the variable
step size LMS (VLMS) algorithm reported in [3] are illustrated
in Fig. 9. The parameters for the VLMS algorithm were set to

Fig. 8. Learning curves for SHLMS and LMS algorithms with
, and dB (Experiment 8).

Fig. 9. Learning curves for SHLMS, VLMS, and LMS algorithms with
, and dB (Experiment 9).

,
and and for the SHLMS algorithm was
set to 1/300. As can be seen, the proposed SHLMS algorithm
yields a reduced steady-state misalignment and, in addition, it
converges slightly faster than the competing algorithms.

B. Acoustic Echo-Cancelation Application

In Experiment 10, the performance of the various algorithms
in an acoustic echo-cancelation application was investigated.
The length of the acoustic channel was set to 1024. The im-
pulse response of the acoustic channel is illustrated in Fig. 10.
The input to the loudspeaker was assumed to be amplified by a
factor of . The signal was contaminated by a white Gaussian
noise signal with variance . The input signal in the 36th
trial is illustrated in Fig. 11. The variance of the measurement
noise added to the desired signal was set ( dB).
The projection order of the AP algorithms was set to 10. The
MSD curves obtained by using the LMS, SHLMS, SHNLMS,
NLMS, AP, VSSAP, and SHAP algorithms are illustrated in
Fig. 12. As can be seen, the SHAP algorithm offers a reduced
steady-state misalignment for the same convergence speed as
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Fig. 10. Impulse response of the acoustic echo path (Experiment 10).

Fig. 11. Input signal for the 36th trial for the acoustic echo-cancelation appli-
cation (Experiment 10).

Fig. 12. Learning curves for SHAP, VSSAP, AP, LMS, SHLMS, SHNLMS,
and NLMS algorithms with and for the SHAP algorithm
( dB); and for the SHLMS and SHNLMS
algorithms (Experiment 10).

compared to the VSSAP algorithm, and a faster convergence
as well as a somewhat improved steady-state misalignment as
compared to the AP algorithm. The SHNLMS algorithm offers a
reduced steady-state misalignment and converges slightly faster
than the NLMS algorithm. The SHNLMS algorithm also per-
forms slightly better than the AP algorithm due to the large pro-
jection order used in the AP algorithm. The SHLMS algorithm,
on the other hand, converges slowly due to the high power of
the input signal and large .

VII. CONCLUSION

A family of adaptive-filtering algorithms, namely, the
shrinkage AP, shrinkage NLMS, and shrinkage LMS algorithms
have been proposed based on a known - minimization
scheme described in [17], [18]. Simulation results obtained in
system-identification and echo-cancelation applications have
shown that the SHAP algorithm performs much better than the
conventional AP, SMAP, and VSSAP algorithms in terms of
steady-state misalignment and convergence speed. However,
the improved performance comes about at the cost of an in-
creased average computational effort per iteration of the order
of 11 to 14%. The SHLMS algorithm, on the other hand, offers
faster convergence and a reduced steady-state misalignment as
compared to the LMS and the VLMS algorithms. Similarly, the
SHNLMS algorithm offers a reduced steady-state misalignment
as compared to the NLMS and SMNLMS algorithms.
In view of their advantages, the proposed shrinkage adaptive-

filtering algorithms can provide improved solutions in many re-
cent adaptive-filtering applications, for example, adaptive mo-
bile networks, source localization, and environment monitoring.

APPENDIX

The computation of in
(22) requires information about the fourth-order moment of the
input signal . For a white Gaussian input signal, the fourth-
order moment can be obtained by using its second-order mo-
ment as

(27)

(see ([1], p. 87) and ([28], p. 991) for details). Now taking the
trace on both sides of (27) and using the properties

and where is a scalar, we
obtain

(28)

When the dimension, , of signal becomes large, the first
term on the right-hand side of (28) becomes insignificant rel-
ative to the second term. For example, for a white Gaussian
signal we obtain for which the first term on
the right-hand side of (28) would be of the order of while the
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second term would be of the order of . Therefore, for a large
, the first term would be negligible and this would also be the

case for a correlated input signal [28]. In effect, for a large
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