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Abstract—Two new improved recursive least-squares adap-
tive-filtering algorithms, one with a variable forgetting factor
and the other with a variable convergence factor are proposed.
Optimal forgetting and convergence factors are obtained by mini-
mizing the mean square of the noise-free a posteriori error signal.
The determination of the optimal forgetting and convergence fac-
tors requires information about the noise-free a priori error which
is obtained by solving a known minimization problem.
Simulation results in system-identification and channel-equaliza-
tion applications are presented which demonstrate that improved
steady-state misalignment, tracking capability, and readaptation
can be achieved relative to those in some state-of-the-art com-
peting algorithms.

Index Terms—Adaptive filters, adaptive-filtering algorithms,
recursive least-squares algorithms, forgetting factor, convergence
factor.

I. INTRODUCTION

A S IN classical optimization algorithms, the convergence
characteristics of adaptive-filtering algorithms depend on

the search directions used. Two well known search directions,
namely, steepest-descent and Newton search directions, have
their merits and demerits. Steepest-descent search directions
are computationally simple, numerically robust, but offer a
convergence speed that is highly dependent on the eigenvalue
spread ratio of the Hessian matrix [1]. Newton search direc-
tions, on the other hand, offer fast convergence although a large
amount of computation is required to achieve convergence.
Least-mean-squares and normalized-least-mean-squares (LMS
and NLMS, respectively), and affine-projection (AP) algo-
rithms employ steepest-descent search directions and hence
their convergence speed is often unsatisfactory particularly
when the input signal is highly correlated [2], [3]. On the other
hand, recursive-least-squares (RLS) algorithms employ Newton
search directions and hence they offer faster convergence and
reduced steady-state misalignment relative to algorithms that
employ steepest-descent directions.
With a large forgetting factor, RLS algorithms yield a reduced

steady-state misalignment at the expense of a poor readapta-
tion capability and with a small forgetting factor they offer an
improved readaptation capability at the cost of an increased
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steady-state misalignment [2]. In order to achieve a reduced
steady-state misalignment and good readaptation capability si-
multaneously, RLS algorithms with a variable forgetting factor
(VFF) have been proposed in [4]–[7]. Like other RLS algo-
rithms, the algorithms in [6], [7] involve an increased computa-
tional complexity of order where is the length
of the adaptive filter. The computational complexity of the VFF
fast RLS (FRLS) algorithms in [4], [5], on the other hand, is
of . Some other FRLS algorithms can be found in [2],
[3], [8]. In [4], the variable forgetting factor varies in propor-
tion to the inverse of the squared error and it can become neg-
ative [4] but the problem can be prevented by using a prespeci-
fied threshold (see [4] for details). In [5], the variable forgetting
factor is obtained by minimizing the excess mean-squared error
(EMSE) which varies in proportion to the inverse of the auto-
correlation of the error signal (see (62) in [5]). The variable for-
getting factor in [5] decreases gradually as time advances and,
consequently, it does not yield a significant improvement in the
steady-state misalignment in nonstationary environments over
those achieved with other FRLS algorithms.
The known VFF RLS algorithm reported in [6], referred to

hereafter as the KVFF-RLS algorithm, uses a forgetting factor
which is controlled by the step size and its evolution is con-
strained to be bounded by two levels. In the case of system-
identification applications, this algorithm works with the lower
bound of the forgetting factor whenever a change in the un-
known system occurs. Otherwise, it works with the larger bound
of the forgetting factor. The VFF RLS algorithm reported in [7],
referred to hereafter as the switching RLS (SRLS) algorithm,
operates with a prespecified forgetting factor and whenever a
change in the unknown system occurs it uses a much smaller
forgetting factor that is obtained by using the power of the a
priori error signal. Since prespecified forgetting factors are re-
quired in the VFF-RLS algorithms in [6], [7] they do not track
Markov-type nonstationarities well.
A variable convergence factor (VCF) has been used before

in an LMS-Newton algorithm described in [9]. This algorithm
performs better than the conventional RLS (CRLS) algorithm
described in [3, p. 199] in terms of steady-state misalignment in
Markov-type nonstationary environments but its speed of con-
vergence is not as good as that of the CRLS algorithm.
In this paper, we propose a new RLS algorithm that uses a

VFF, referred to hereafter as the VFF-RLS algorithm that does
not require a prespecified forgetting factor. The forgetting factor
is obtained by minimizing the mean square of the noise-free a
posteriori error. In doing so, an optimal convergence factor is
obtained. Based on this approach, an RLS algorithm can also be
developed that uses a fixed forgetting factor along with a vari-
able convergence factor (VCF); this will be referred to here-
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after as the VCF-RLS algorithm. Simulation results show that
the new VFF-RLS algorithm offers improved steady-state mis-
alignment, readaptation, and tracking capability compared to
those achieved with the CRLS algorithm [3], KVFF-RLS algo-
rithm [6], and SRLS algorithm [7] for the same initial speed of
convergence. On the other hand, the proposed VCF-RLS algo-
rithm offers improved steady-state misalignment compared to
that achieved with the CRLS and LMS-Newton algorithms for
the same fixed forgetting factor.

II. RECURSIVE LEAST-SQUARES ALGORITHMS

The weight-vector update formula in RLS adaptive-filtering
algorithms, referred to hereafter as RLS adaptation algorithms,
is obtained by solving the minimization problem [2], [3]

(1)

where is the forgetting factor, and
are the desired signal and input signal vector at iteration , re-
spectively, and is the required weight vector at
iteration . The solution of the minimization problem in (1) can
be obtained as

(2)

where and are
approximations of the autocorrelation matrix and crosscorre-
lation vector of the Wiener filter [10], respectively. The auto-
correlation matrix and crosscorrelation vector can be expressed
as

(3)

and

(4)

respectively.
With , the errors and become small

and, therefore, the difference between the Wiener solution (see
[10]) and (2) is also small. The initial autocorrelation matrix and
crosscorrelation vector and should be chosen as and ,
respectively, where is the identity matrix and is a small pos-
itive constant of the order of . With this choice, the effects
of and on the update formulas in (3) and (4), respectively,
would quickly diminish and, therefore, the initial values of
and would not contribute significantly to the steady-state
values of and . On the other hand, if the entries of
and are large with a the misalignment between the
Wiener solution and (2) would be large and the convergence
of in (2) to the Wiener solution would be slow. Situations
where the entries of and become quite large can arise in
system-identification applications when sudden system changes
occur during the learning stage. For example, if a change occurs
in the system to be identified at iteration , an RLS algo-
rithm has to reconverge to the new state of the system. In such a
situation, the entries of are much larger than the
entries of and . As a result, with , the

effect of and on (3) and (4) would persist and, therefore, a
large error would be introduced in the steady-state values of
and . Hence, the difference between the Wiener solution (i.e.,
the Wiener solution that were to be obtained if the new state of
the systemwere to exist from to ) and (2) would be
large and the reconvergence of to the optimal weight vector
for the new state of the system would be very slow. For the same
reason, an RLS algorithm with a could fail to reconverge
in the presence of an outlier in or ; furthermore, the RLS
algorithm could lose its tracking capability in nonstationary en-
vironments. Some Newton-type algorithms that are robust with
respect to outliers can be found in [11]–[14].
Improved readaptation capability has been achieved in the

KVFF-RLS and SRLS algorithms reported in [6], [7] by re-
ducing the value of , to ensure that the values of the elements of

and are reduced, and then rapidly
returning to its previous value which is close to unity. An alter-
native approach for achieving improved readaptation capability
reported in [15] involves using a convex combination of the out-
puts of two RLS adaptive filters, one with a small value of and
the other with a value of close to unity. A sigmoid function is
used to assign more weight on the output of the adaptive filter
with a small during transience and more weight on the output
of the adaptive filter with a close to unity during steady state.
Since is the optimal forgetting factor for the CRLS al-
groithm [2] in the sense that it yields the minimum mean-square
error, the performance of the CRLS algorithm would be iden-
tical with that of the algorithms in [6], [7], [15] in stationary
environments.

III. IMPROVED RECURSIVE LEAST-SQUARES ALGORITHMS

In this section, we develop VFF-RLS and VCF-RLS algo-
rithms that offer improved performance in tracking Markov-
type nonstationarities and sudden system changes and also offer
reduced steady-state misalignment relative to those achieved
with the CRLS, KVFF-RLS, and SRLS algorithms.

A. VFF-RLS Algorithm

The inverse of the autocorrelation matrix in (3) can be ob-
tained by using the matrix inversion formula [2], [3] as

(5)

where is a positive-definite matrix for all and
. Using (5) in (2), the weight-vector

update formula for the CRLS algorithm can be expressed as

(6)

where is the a priori error signal and is the convergence
factor whose value assumes the value of unity in the CRLS al-
gorithm. The a priori error signal can be expressed as

(7)

where is a white Gaussian noise signal with variance

(8)
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is the noise-free a priori error signal and in the case of a system-
identification application is the impulse response of the
unknown system. The a posteriori error signal can be ex-
pressed as

(9)

where

(10)

is the noise-free a posteriori error signal. In the case of a system-
identification application, the desired signal becomes

. The noise-free a posteriori error signal at iteration
can also be obtained by using (6) and (8) in (10) as

(11)

where

(12)

lies in the range (0,1). If the unknown system now evolves as per
a first-order Markov model, i.e., where is a
white Gaussian noise signal with variance , then in (10)
and (11) requires an additional term due to the lag in adaptation.
This can be obtained from (11) as

(13)

By squaring both sides of (13), we obtain

(14)

Assuming that and are independent and white Gaussian
noise signals and taking the expectation on both sides in (14),
we obtain

(15)

An optimal value of the convergence factor can now be
obtained by solving the one-dimensional minimization problem

(16)

The solution of this problem can be obtained by setting the
derivative of the objective function in (16) with respect to ,
i.e.,

to zero. In this way, we can obtain

(17)

Note that since is a measure of the excess MSE (EMSE)
[2], using (17) in (6) the minimum EMSE can also be obtained.
Based on the above analysis, we can now obtain an optimal

value of the forgetting factor. We start by obtaining a simplified
expression for in (17). The recursion formula in (3) can be
expressed as

(18)

Taking the expectation of both sides in (18), we obtain

(19)

which at steady state, i.e., as , becomes

(20)

As in [2], at steady state

(21)

On the other hand,

(22)

and from (21) and (22), we obtain

(23)

If we neglect the dependence of on in (17) and as-
sume that is large, then as shown in the
Appendix. Using this approximation along with (23) in (17), we
get the optimality condition

(24)

For any fixed , (24) yields a that would be an approximate
solution of the problem in (16). Similarly, for any fixed , (24)
yields a that is also an approximate solution of the problem in
(16). Using , an optimal forgetting factor can be obtained
as

(25)
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In order to compute , we need which is unknown
a priori. With the noise-free a priori error signal known,
we can approximate by using the time average of ,
which is given by

(26)

where is the pole of a first-order moving average filter in (26)
whose value should be in the range . Using (26) in
(25), we obtain the optimal forgetting factor at iteration as

(27)

B. VCF-RLS Algorithm

The proposed VCF-RLS algorithm is based on the following
principles. Equation (24) suggests that for every fixed there
is a value of that solves the problem in (16). However, since
the assumption has been made and the de-
pendence of on has been neglected in the derivation
of (24), can become greater than unity which, as can be seen
from (6), would affect the stability of the adaptive filter. To cir-
cumvent this problem, we use instead of in
(6). The variable convergence factor at iteration can be ob-
tained as

(28)

by replacing in (24) by given by (26). In (28), in-
teger is a tuning integer whose value should lie in the range
2 to 8 based on extensive simulations (see Section IV-B). Con-
stant in (28) would further reduce the value of and hence a
reduced steady-state misalignment can be achieved. Since
in (26) is a measure of the EMSE of the adaptive filter, its
steady-state value would be significantly smaller than . How-
ever, due to the use of a time average in (26) the transient value
of would be significantly larger than . Therefore, we
would obtain and in
(28) during the transience and steady state of the adaptive filter,
respectively. In such a situation from (28), we would get

during transience and

during steady state. If we now choose a in the range
, e.g., , we would get during transience.
On the other hand, during steady state we would get as

in (26) during steady state. Under these circumstances,
we would obtain and during transience and
steady state, respectively. Therefore, the convergence speed of
the proposed VCF-RLS algorithm would remain the same as
that of the CRLS algorithm while its steady-state misalignment
would be reduced. When is chosen to be close to unity, e.g.,

, we would obtain , i.e., for all

and hence the performance of the proposed VCF-RLS algorithm
would be similar to that of the CRLS algorithm.
The proposed VCF-RLS algorithm can be used in applica-

tions where the use of RLS algorithms with a fixed forgetting
factor is preferred.

IV. IMPLEMENTATION ISSUES OF THE PROPOSED
RLS ALGORITHMS

In this section, we discuss some implementation issues asso-
ciated with the proposed RLS algorithms.

A. Noniterative Shrinkage Method

The value of in (26) can be obtained from the a priori
error signal by using a so-called noniterative shrinkage method
which has been used to solve image denoising problems in [16],
[17]. In this method, a noise-free signal can be recovered
from a noisy signal , where is a white Gaussian
noise signal, by solving the minimization problem

(29)

where is the threshold parameter and is an orthogonal
matrix.
In the proposed VFF-RLS algorithm, , and in (29)

become , and 1, respectively, and the optimal solution,
i.e., of the problem in (29) can be obtained as

(30)

Since the computation of is not iterative, the above ap-
proach is suitable for real-time applications such as adaptive fil-
tering. The formula in (30) reduces by an amount . Using an
appropriate we can obtain .
Different minimization problems are formulated to

obtain new RLS adaptation algorithms in [18]–[20]. In the RLS
algorithms in [18], [19] an minimization problem was
formulated whose solution was used to bring sparsity in the
weight vector. In the RLS algorithm in [20] an mini-
mization problem was formulated and its solution was then used
to detect and remove the impulsive noise component in the error
signal.We formulated a different minimization problem
and we then used the solution to obtain a new variable forget-
ting factor and convergence factor in the CRLS algorithm.

B. Threshold Parameter

Taking the expectation of the squares of both sides in (7), we
obtain

(31)

as is independent of for a white Gaussian signal with
variance which may suggest that the threshold parameter
should be chosen as . However, since the derivation of
(27) involves: a) neglecting the dependence of on , b)
assuming that , and c) using a time average
instead of a statistical average, needs to be tuned with respect
to to achieve improved results. Through extensive simula-
tions, it was found that with in the range 2 to 8
yields good results.
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C. Forgetting Factor

The value of the forgetting factor given by (25) is in the range
and it is optimal in the sense that it yields a min-

imum EMSE. Since the value of in (26) becomes very large
during transience and very small during steady state, (27) yields

during transience and during steady
state. As a result, as per the discussion in Section II, the proposed
VFF-RLS algorithm yields fast convergence, good readaptation
capability, and reduced steady-state misalignment. As reported
in [2] and [8], the range of the forgetting factor for the stable
operation of the FRLS algorithm is which
encompasses the range of the forgetting factor in (27). Further
improvement regarding convergence speed and readaptation ca-
pability can be achieved in the proposed algorithm if in (27)
assumes values close to during transiencewhile
during steady state. Therefore, we propose to use

(32)

where is a tuning integer in the range 2 to 8 instead of the
given by (27). Tuning integer is used to increase the value of
to a similar level to that achieved using (27) during steady

state and a value in the range 2 to 8 was found to give good
results as per discussion in Section III-B. As can be seen in (26),
since during transience we obtain
and since during steady state we obtain during
steady state. In other words, the steady-state values of in (32)
and (27) would be very similar and hence both of them would
approximate in (25) with similar accuracy and hence would
minimize in (16). The transient values of in (32), on
the other hand, would be lower than those in (27) and hence
improved readaptation capability would be achieved.
Based on the above principles, the implementations of the

proposed RLS algorithms given in Table I can be obtained.

V. STEADY-STATE ANALYSIS

In this section, we derive expressions for theMSE for the pro-
posed RLS algorithms by using the energy conservation relation
reported in [2, p. 287].
The impulse response of the unknown system is modeled as

a first-order Markov model of the form [3]

(33)

where the elements of are the samples of a white Gaussian
noise signal with variance . The weight-vector update for-
mula in (6) for the system model in (33) can be expressed in
terms of the weight-error vector

(34)

where

(35)

(36)

TABLE I
PROPOSED RLS ALGORITHMS

This model is used in [9] and [21] to obtain the steady-state
MSE of the LMS-Newton and RLS algorithms, respectively, in
Markov-type nonstationary environments.

A. MSE in Nonstationary Environments

Let us consider the case of the proposed VFF-RLS algorithm.
Premultiplying both sides of (34) by , we obtain

(37)

where is a positive-definite matrix. Scaled noise-free a poste-
riori and a priori errors can be defined as

(38)

(39)

respectively. Also let us define

(40)

(41)

Using (38)–(41) in (37), we obtain

(42)

Now substituting in (34) by using the obtained from (42),
we have

(43)
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If we take the square of the weighted norm, i.e., , of
both sides in (43), we get

(44)

The energy conservation relation for the system in (33) can now
be obtained by taking the expectation of both sides in (44) as

(45)

where we assume that vector in (44) is an independent and
identically distributed white Gaussian noise signal with vari-
ance . Note that no assumption has been made in obtaining
the energy conservation relation in (45).
During steady state, we obtain

and, therefore, the steady-state energy conservation relation as-
sumes the form

(46)

Using given by (42) in (46) and applying some straightfor-
ward simplifications based on the assumption concerning the
statistical independence of , we obtain

(47)

If we use (7) in (47) and simplify the result by using the assump-
tion that the measurement noise in (7) is an independent white
Gaussian noise signal, we have

(48)

Now if we neglect the dependence of on in (48), we
obtain

(49)

In order to obtain the EMSE for the case of nonstationary envi-
ronments, we let in (49) and (39)–(41) to get

(50)

As can be seen, the first term at the right-hand side of the above
equation represents the EMSE for stationary environments.
Using (25) and (23) in (50) after some simple manipulations,
we obtain

(51)

If we now solve (51) for , we obtain the EMSE as

Since is a positive quantity, we obtain the EMSE for
nonstationary environments as

(52)

Now can be obtained as

(53)

since . From (53) and (52), we obtain the EMSE
as

(54)

Therefore, the MSE in nonstationary environments can be ob-
tained as

(55)

B. MSE in Stationary Environments

In stationary environments, we have and hence the
solution of (51) becomes or . Since
the EMSE is a nonnegative quantity, we obtain .
Therefore, for stationary environments, we have

(56)

C. VCF-RLS Algorithm

Repeating the above analysis, it can be shown that the ex-
pressions for the MSE given by (55) and (56) also apply to the
VCF-RLS algorithm. However, the analysis is based on the as-
sumption that the exact value of is known. Since the
solution of the problem in (29) would not recover exactly,

in (30) would not be exactly equal to . Furthermore,
(26) would not yield the exact value of as required for
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TABLE II
MSE FOR THE VFF-RLS ALGORITHM IN DB

the derivation of the formula in (25). Consequently, the expres-
sions for the MSE given by (55) and (56) would be rough ap-
proximations at best in the case of the VCF-RLS algorithm.

D. Verification of MSE

In this section, we provide experimental verification for the
MSE formula given by (55) in a system-identification applica-
tion for the case of the proposed VFF-RLS algorithm. The im-
pulse response of the initial unknown system in (33), i.e., ,
was the impulse response of an FIR filter obtained by using
MATLAB commands
where is the normalized cutoff frequency of the FIR
filter. Eight experiments were carried out where the input signal
was obtained by filtering a white Gaussian signal with unity
variance through an IIR filter with a single pole at 0.95. The
values of in the first four and the last four experi-
ments were set to and , respectively.
We used (27) with , and in all
experiments. The desired signal was contaminated in the first
four experiments by using a white Gaussian signal with vari-
ance values 0.3162, 0.1, 0.0316, 0.01, and 0.0032, respectively,
which correspond to signal-to-noise ratios (SNRs) of 5, 10, 15,
20, and 25 dB, respectively. The same values of were also
used in the last four experiments. The theoretical MSE was cal-
culated using the formula

(57)

where we assumed that . The learning curve
in each experiment was obtained using 500 independent trials
and the experimental MSE was obtained by averaging the last
50 samples of 4000 samples in the learning curve.
The experimental and theoretical MSE values are given in

Table II. As can be seen, the experimental results agree quite
well with the theoretical results and, in effect, the steady-state
performance of the VFF-RLS algorithm can be accurately pre-
dicted if can be accurately recovered from . As the noise
power decreases for a constant input signal power , i.e.,
for a large SNR, the error between the experimental and theoret-
ical results increases because of the effect of the approximation

made in the second term on the right-hand side
of (57); in effect, the second term in (57) becomes more promi-
nent compared to the first term for a large SNR.
Note that the experimental values in Table II can also be ob-

tained by using (32) with to 8.

VI. DISCUSSION

The a posteriori error signal for stationary environments i.e.,
can be obtained from (6) as

(58)

where is defined in (12). Taking the expectation of the
square of in (58) and neglecting the dependence of on

, we obtain

(59)

For the VFF-RLS algorithm, the convergence factor in (58)
is equal to unity. By using (25) and (23) in (59) along with the
assumption that after some manipulation,
we get

(60)

It is easy to show that (60) also holds true for the proposed
VCF-RLS algorithm. Since is a measure of the excess
MSE [2] and it is a positive quantity, we obtain for
the proposed RLS algorithms. For the SRLS algorithm of [7]
we obtain .
An advantage of the proposed RLS algorithms over the

KVFF-RLS algorithm in [6] is that the forgetting or conver-
gence factor in the proposed RLS algorithms involves less
computation than the forgetting factor in the KVFF-RLS
algorithm.
A disadvantage of the proposed RLS algorithms is that the

information about the measurement noise variance is required
to be known a priori. In distributed sensor networks [22]–[25],
an adaptive filter at a given sensor can interact with other adap-
tive filters in the neighboring sensors to update its weight vector.
Such interactive adaptations among adaptive filters on the entire
network bring significant improvement in the steady-state mis-
alignment in each of the adaptive filters connected to the net-
work. During the communication interval between sensors, the
variance of the measurement noise can be obtained by using a
time average. On the other hand, for speech signals the variance
of the measurement noise can be obtained during silent periods.

VII. SIMULATION RESULTS

In this section, we present simulation results in system-iden-
tification and channel-equalization applications. The per-
formance of the CRLS, SRLS [7], KVFF-RLS [6], and the
proposed VFF-RLS algorithms are illustrated by using the
mean-square deviation (MSD) curves for different SNRs in
stationary and nonstationary environments. The MSD was
evaluated as and it was obtained
by using ensemble averages over 1000 independent trials in
all experiments. Unless otherwise stated the initial parameter

was chosen as a zero vector and was set to
in all algorithms. Parameters , and for the pro-

posed VFF-RLS algorithm given in Table I were set to 0, 0.9,
, and 8, respectively. The prespecified forgetting factor

was set to in the CRLS, SRLS, and KVFF-RLS
algorithms. The parameters for the SRLS algorithm were set
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Fig. 1. Learning curves for a system identification application in a stationary
environment with a dB (Experiment 1).

to and those for
the KVFF-RLS algorithm were set to

in all experiments.

A. System-Identification Application

The first experiment was concerned with a stationary envi-
ronment. The unknown system to be identified was an FIR filter
whose impulse response was obtained by using MATLAB com-
mands with

where is the normalized cutoff frequency
of the FIR filter. The coefficients of the unknown system were
multiplied by at iteration 20 000 to examine the readapta-
tion capability of the RLS algorithms. The input signal was ob-
tained by filtering a white Gaussian noise signal with variance

through an IIR filter that had the transfer function [26]

The measurement noise added to the desired signal was a
white Gaussian noise signal with variance which
corresponds to a SNR of 20 dB. The MSD curves obtained by
using the VFF-RLS, CRLS, SRLS, and the KVFF-RLS algo-
rithms are illustrated in Fig. 1.
In the second experiment, we repeated the first experiment

with the same setup, input signal, and measurement noise as in
the first experiment except that a nonstationarity was introduced
as per the model given in (33) where the impulse response of the
unknown system, , was the same as in the first experiment and
the elements of were obtained from a white Gaussian noise
signal with a variance . The SNR was the same as
in the first experiment, i.e., 20 dB. The MSD curves obtained
by using the VFF-RLS, CRLS, SRLS, and the KVFF-RLS al-
gorithms are illustrated in Fig. 2.
In the third experiment, we repeated the second experiment

except that we used . The MSD curves obtained by
using the VFF-RLS, CRLS, SRLS, and the KVFF-RLS algo-
rithms are illustrated in Fig. 3.
In the fourth experiment, we repeated the first experiment for

the case of a stationary environment except that the variance
of the measurement noise signal was set to (

Fig. 2. Learning curves for a system identification application in a nonsta-
tionary environment with a dB and (Experiment 2).

Fig. 3. Learning curves for a system identification application in a nonsta-
tionary environment with a dB and (Experiment 3).

Fig. 4. Learning curves for a system identification application in a stationary
environment with a dB (Experiment 4).

dB). The MSD curves obtained by using the VFF-RLS, CRLS,
SRLS, and the KVFF-RLS algorithms are illustrated in Fig. 4.
In the fifth experiment, we repeated the fourth experiment ex-

cept that a nonstationarity was introduced as per themodel given
in (33) where was the same as in the first experiment and
the elements of were obtained from a white Gaussian noise
signal with . The MSD curves obtained by using the
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Fig. 5. Learning curves for a system identification application in a nonsta-
tionary environment with a dB and (Experiment 5).

Fig. 6. Learning curves for a system identification application in a nonsta-
tionary environment with a dB and (Experiment 6).

VFF-RLS, CRLS, SRLS, and the KVFF-RLS algorithms are il-
lustrated in Fig. 5.
In the sixth experiment, we repeated the fifth experiment ex-

cept that we used . The MSD curves obtained by
using the VFF-RLS, CRLS, SRLS, and the KVFF-RLS algo-
rithms are illustrated in Fig. 6.
As can be seen in Figs. 1–6, the proposed VFF-RLS algo-

rithm outperforms the competing algorithms in all the exper-
iments. Since there is no prespecified forgetting factor in the
proposed algorithm, it performs better than the other algorithms
in Markov-type nonstationary environments.
In the seventh experiment, we examined the effect of tuning

integer on the VFF-RLS algorithm. We repeated the sixth
experiment for values of of 2, 4, and 6. The MSD curves
obtained are illustrated in Fig. 7. As can be seen from the MSD
curve of the VFF-RLS algorithm in Fig. 6 and the MSD curves
in Fig. 7, changes in tuning integer in the range 2 to 8 do not
significantly alter the performance of the VFF-RLS algorithm.
In effect, the VFF-RLS algorithm is quite robust with respect to
changes in .
In the eighth experiment, we examined the effect of tuning in-

teger in a system-identification application in the case of the
VCF-RLS algorithm and compared the performance achieved
with that of the CRLS algorithm and LMS-Newton-II algorithm

Fig. 7. Effect of changes in tuning integer on the VFF-RLS algorithm in a
system identification application (Experiment 7).

Fig. 8. Effect of changes in tuning integer on the VCF-RLS algorithm in
a system identification application and comparison with competing algorithms
(Experiment 8).

described in [9]. The unknown system was obtained as per the
model given in (33) where and the input signal were the
same as in the first experiment and the elements of were ob-
tained from a white Gaussian noise signal with .
The measurement noise added to the desired signal was a white
Gaussian noise signal with . The forgetting factor
in the CRLS andVCF-RLS algorithmswas set to 0.99 in order to
achieve the same readaptation capability. Parameters , and
for the VCF-RLS algorithm given in Table I were set to 0, 0.99,
and , respectively. In the LMS-Newton-II algorithm, we
used and . The MSD curves obtained for
the CRLS, VCF-RLS, and LMS-Newton-II algorithms are illus-
trated in Fig. 8. As can be seen, for the same readaptation capa-
bility the VCF-RLS algorithm yields a reduced steady-state mis-
alignment as compared to the CRLS algorithm. The VCF-RLS
algorithm, on the other hand, yields a faster convergence and
a reduced steady-state misalignment as compared to the LMS-
Newton-II algorithm.

B. Channel-Equalization Application

In this section, the proposedVCF-RLS algorithm is compared
with the CRLS and NLMS algorithms in a channel-equalization
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Fig. 9. Comparison of the VCF-RLS algorithm with the CRLS and NLMS
algorithms for in channel equalization application using

in the VCF-RLS algorithm (Experiment 9).

application. The taps of the impulse response of the channel to
be equalized were obtained as

for [3]. The binary-phase-shift key (BPSK)
input signal for each channel was obtained by using Bernoulli
trials (see [3] and [27] for details about Bernoulli trials). The
channel output was contaminated by using a white Gaussian
noise signal with . The length of the adaptive-filter
weight vector was set to . The total delay introduced
by the adaptive filter and the channel for the BPSK signal was

[3]. The forgetting factor was set to 0.99 for both the
VCF-RLS and CRLS algorithms. The MSE curves obtained in
5000 independent trials by using the VCF-RLS, NLMS, and the
CRLS algorithms are illustrated in Fig. 9. As can be seen, the
VCF-RLS algorithm yields a reduced steady-state misalignment
as compared to the CRLS algorithm for the same convergence
speed.

VIII. CONCLUSION

Two new improved RLS algorithms, the VFF-RLS and
VCF-RLS algorithms, have been developed. Both the vari-
able forgetting factor and variable convergence factor are
obtained by solving a mean-square noise-free a posteriori error
minimization problem. Simulation results for a system-iden-
tification application were presented which show that the
proposed VFF-RLS algorithm outperforms the CRLS, SRLS,
and KVFF-RLS algorithms in terms of steady-state misalign-
ment, tracking, and readaptation capability in both stationary
and nonstationary environments. Simulation results for a
channel-equalization application were presented which demon-
strate that the proposed VCF-RLS algorithm offers improved
performance compared to the CRLS and NLMS algorithms in
terms of steady-state misalignment. A steady-state analysis of
the proposed algorithms was also presented which led to ex-
pressions for the expected MSE in nonstationary and stationary
environments and the validity of these expressions has been
demonstrated by simulation results in a system-identification
application.

APPENDIX

From (12), we can write

and since, in practice, for a large all higher order
terms can be neglected, i.e., . With such a lin-
earized , we obtain by neglecting
the second-order term. As in [9], [28], and [29] it can be shown
that which becomes small for a large ; hence
we can obtain
where we have again neglected the second-order term. There-
fore, for a large we get .
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