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Abstract—Two robust quasi-Newton (QN) adaptive filtering al-
gorithms that perform well in impulsive-noise environments are
proposed. The new algorithms use an improved estimate of the in-
verse of the autocorrelation matrix and an improved weight-vector
update equation, which lead to improved speed of convergence and
steady-state misalignment relative to those achieved in the known
QN algorithms. A stability analysis shows that the proposed
algorithms are asymptotically stable. The proposed algorithms
perform data-selective adaptation, which significantly reduces the
amount of computation required. Simulation results presented
demonstrate the attractive features of the proposed algorithms.

Index Terms—Adaptive filters, impulsive noise in
adaptive filters, quasi-Newton algorithms, robust adaptation
algorithms.

I. INTRODUCTION

KNOWN approaches for improving the performance of
adaptive filters in impulsive-noise environments involve

the use of nonlinear clipping [1], [2], robust statistics [3]–[5],
or order statistics. The common step in the adaptive filters
reported in [1]–[5] is to detect the presence of impulsive noise
by comparing the magnitude of the error signal with the value of
a threshold parameter, which is a scalar multiple of the variance
of the error signal, and then either stop or reduce the learning
rate of the adaptive filter. In [1], the variance of the error
signal is estimated by averaging the square of its instantaneous
values, but this approach is not robust with respect to impulsive
noise. In [2]–[5], improved robustness is achieved by estimating
the variance of the error signal using the median absolute
deviation [6].

The adaptation algorithms in [1] and [3] use the Huber
mixed-norm M -estimate objective function [6], and the algo-
rithms in [4] and [5] use the Hampel three-part redescending
M -estimate objective function [6]. The Huber function uses the
L1 norm to measure the amplitude of the error signal when the
absolute error is larger than the threshold. The Hampel function,
on the other hand, assigns a constant value to the error signal
when the absolute error becomes larger than the threshold.
Algorithms based on the Huber and Hampel functions of-
fer similar performance. The nonlinear recursive least-squares
(NRLS) algorithm in [2] uses nonlinear clipping to control the
learning rate and offers better performance in impulsive-noise
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environments than the conventional RLS algorithm. The recur-
sive least-mean (RLM) algorithm reported in [4] offers faster
convergence and better robustness than the NRLS algorithm
in impulsive-noise environments. The quasi-Newton algorithm
(QN) in [7] is not robust against impulsive noise. Simulation re-
sults in [5] show that the recursive QN (RQN) algorithm offers
faster convergence and improved robustness in impulsive-noise
environments relative to the QN algorithm in [7]. Algorithms
of the Newton family such as those in [2], [4], [5], and [7]
converge much faster than algorithms of the steepest-descent
family [8]. The RLS, RLM, and RQN algorithms exponentially
forget past input signal vectors in the estimate of the autocor-
relation matrix, and therefore, the positive definiteness of the
inverse of the autocorrelation matrix can be lost [9], [10]. As a
result, this type of adaptive filter can become unstable in finite-
precision implementations. This form of explosive divergence
in RLS adaptive filters is well documented in the literature, and
ways and conditions to stabilize these filters are addressed in
[9] and [10]. The QN algorithm reported in [7] is shown to be
robust in terms of explosive divergence, as compared with RLS
adaptive filters.

In this brief, we propose two new robust QN algorithms
that perform data-selective adaptation in updating the inverse
of the autocorrelation matrix and the weight vector. The new
algorithms are essentially enhancements of the algorithms we
reported in [16] for applications that entail impulsive noise. A
stability analysis shows that the proposed algorithms are as-
ymptotically stable. Furthermore, simulation results show that
the proposed algorithms offer improved performance relative
to two known QN (KQN) algorithms with respect to robust-
ness, steady-state misalignment, computational efficiency, and
tracking capability.

This brief is organized as follows. In Section II, the proposed
robust QN algorithms are described. In Section III, stability
issues of the algorithms are discussed, and in Section IV, some
practical issues concerning the implementation of the proposed
algorithms are examined. Simulation results are presented in
Section V, and conclusions are drawn in Section VI.

II. PROPOSED ROBUST QN ALGORITHMS

Two slightly different robust QN algorithms are possible, one
using a fixed threshold and the other using a variable threshold,
as will now be demonstrated.

A. RQN Algorithm with a Fixed Threshold

The objective of the proposed adaptation algorithm is to
generate a series of weight vectors that would eventually solve
the optimization problem

minimize
w

E
[
(dk − wT xk)2

]
(1)
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recursively, where E[·] is the expected value of [·], xk is a
vector of dimension M representing the input signal, dk is the
desired signal, and w is the weight vector, which is also of
dimension M . An approximate solution of the problem in (1)
can be obtained by using the weight-vector update equation

wk = wk−1 + 2μkSk−1xkek (2)

where μk is the step size, Sk−1 is a positive definite matrix of
dimension M × M , and

ek = dk − yk (3)

is the a priori error for the output signal yk = wT
k−1xk. If Sk−1

in (2) is chosen as the M × M identity matrix, then the update
equation in (2) would minimize the objective function

Jwk−1 =
(
dk − wT

k−1xk

)2
(4)

with respect to the steepest-descent direction, and a series of
updates would eventually yield an approximate solution of the
problem in (1). Other choices of Sk−1 would entail different
search directions but would serve the same purpose as long as
Sk−1 is positive definite. In order to use an approximation of
the Newton direction Sk−1 in (2), we obtain Sk−1 by using the
gradient of Jwk−1 in (4) in the rank-one update formula of the
classical QN optimization algorithm [11], which is given by

Sk = Sk−1 −
(δk−Sk−1ρk)(δk − Sk−1ρk)T

(δk − Sk−1ρk)T ρk

(5)

where

δk =wk − wk−1 (6)

ρk =
∂e2

k+1

∂wk
− ∂e2

k

∂wk−1
. (7)

This formula satisfies the Fletcher QN condition Skρk = δk

[12]. From (3), we note that ek+1 would require future data
xk+1 and dk+1. To circumvent this problem, we use the a
posteriori error

εk = dk − xT
k wk (8)

in place of ek+1 in (7). As a first step in the proposed algo-
rithm, we obtain a value of step size μk in (2) by solving the
optimization problem

minimize
μk

{ ∣∣dk − xT
k wk

∣∣ − γ, if |ek| > γ
0, otherwise

(9)

where γ is a prespecified error bound. The solution of this
problem can be obtained as

μk = αk
1

2τk
(10)

where τk = xT
k Sk−1xk, and

αk =
{

1 − γ
|ek| , if |ek| > γ

0, otherwise.
(11)

In effect, step size μk is chosen to force equality |εk| = γ
whenever |ek| > γ. Since μk in (10) forces εk to assume the

value of the prespecified error bound, i.e.,

εk = γ · sign(ek) (12)

we obtain ∇ε2k = 0, and hence from (7), we have

ρk = 2ekxk. (13)

Vector δk, which is linearly dependent on Sk−1xk, can be
obtained by using (2) and (6). Since the equality in (12) is
satisfied for each update, we can use the a posteriori error to
obtain

δk = 2γ · sign(ek)Sk−1xk (14)

instead of the a priori error used in the KQN algorithm reported
in [8]. Now, substituting ρk and δk given by (13) and (14) in (5),
we obtain an update equation for matrix Sk for the proposed
robust QN algorithm as

Sk = Sk−1 − αk
Sk−1xkxT

k Sk−1

xT
k Sk−1xk

. (15)

Substituting μk given by (10) in (2), we obtain the correspond-
ing weight-vector update equation as

wk = wk−1 + αk
Sk−1xk

xT
k Sk−1xk

ek. (16)

In order to achieve robust performance against impulsive noise,
we choose error bound γ as

γ =
{
|ek| − υθk, if |ek| > θk

γc, otherwise
(17)

where γc is a prespecified error bound chosen as
√

5σv , where
σ2

v is the variance of the measurement noise, 0 ≤ υ � 1 is a
scalar, and θk is a threshold parameter, which is estimated as

θk = 1.98σk (18)

where

σ2
k = λσ2

k−1 + (1 − λ)min(gk) (19)

with 0 � λ < 1, gk = [ e2
k + ε · · · e2

k−P+1 + ε ] is a vector
of dimension P , where ε is a small scalar. Whenever |ek| < γ,
no update is applied. Consequently, the amount of computation
and the required storage are significantly reduced since Sk is
not evaluated in every iteration. A similar weight-vector update
strategy has been used in set-membership adaptation algorithms
[13]–[15], but the mathematical framework of those algorithms
is very different from that of the proposed robust QN algorithm.
The estimator in (19) is robust to outliers. A large σ2

0 would
cause |ek| to be less than θk during the transient state, and
therefore, the algorithm would work with error bound γc, which
would increase the initial rate of convergence. For a sudden
system disturbance, θk would also be very large, in which case
we obtain γc < |ek| < θk, and thus, the algorithm would again
use error bound γc, and therefore, the tracking capability of the
algorithm would be retained. For an impulsive noise-corrupted
error signal, θk would not increase, in which case the error
bound would be θk = |ek| − υθk, and this would suppress the
impulsive noise.
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B. RQN Algorithm With a Variable Threshold

The RQN algorithm with a variable threshold is essentially
the same as before except that the error bound γc in (17) is
estimated as

ξk = βξk−1 + (1 − β)min

(
ξk−1,

∣∣d2
k − y2

k

∣∣
d2

k

)
(20)

σ̂2
k = βσ̂2

k−1 + (1 − β)min
(
σ̂2

k−1, σ
2
k

)
(21)

γc,k =
√

ξkγc,0 + 1.12 [1 + sign(1 − ξk)] σ̂k (22)

where γc,0 is a rough estimate of σv, and ξ0 � 1. During
steady state, we obtain ξk ≈ 0 and σ̂2

k ≈ σ2
v , and hence, γc,k

would be 2.24σv , and this would yield reduced steady-state
misalignment. In the transient state, ξk ≈ ξ0, and therefore, the
algorithm would work with γc,k =

√
ξkγc,0, and this would

yield faster convergence. The parameters in (20) and (21) are
robust with respect to outliers as each is based on the minimum
of its two most recent values.

The variance is estimated as

σ2
k = λσ2

k−1 + (1 − λ)median(gk). (23)

For Gaussian signals, the median of the squares of the signal
samples in the variance estimator usually gives a more accurate
estimate of the variance of the signal than the instantaneous
values of the squares of the signal samples.

The use of the median operation in adaptive filters was
introduced by Zou et al. in [4] and was later used by other
researchers, e.g., in [18].

A variable threshold γc is useful in applications where the
noise variance σ2

v is unknown.

C. Discussion

In the proposed algorithms, we obtain 0 ≤ αk < 1 for both
values of γ in (17), and hence, the estimated Sk in (15) would
remain positive definite indefinitely if Sk is initialized with a
positive definite matrix [16]. The RLS-type robust algorithms in
[17] and [18] are implemented using a fast transversal filter im-
plementation [8] to reduce their computational complexity from
order M2, which is denoted by O(M2), to O(M), and there-
fore, both algorithms would inherit the problems associated
with the RLS algorithms of order M2. Moreover, the Huber
function used in [17] does not have a closed-form solution, and
hence, the solution obtained can be suboptimal, and in addition,
its tracking capability can be compromised [18]. The solution
obtained in [18] can also be suboptimal, as shown in [18]. The
adaptation algorithm in [18] is robust in the sense that it returns
to the true solution without losing its initial convergence speed
after being subjected to impulsive noise. Similarly, the proposed
robust QN algorithms are robust with respect to impulsive noise
in the sense that they return to the true solution faster than
the initial convergence. The KQN and known RQN (KRQN)
algorithms do not employ a variable step size. However, the
KRQN algorithm requires an additional amount of computation
of O[M log2(M)] per iteration, as compared with the KQN al-
gorithm and the proposed QN algorithm with a fixed threshold.

III. STABILITY ANALYSIS

Here, we address stability issues associated with the pro-
posed RQN algorithms. For purposes of analysis, we assume
that the desired response for the adaptive filter is generated as

dk = xT
k wopt (24)

where wopt is the weight vector of an FIR filter. We establish
the convergence behavior of the proposed RQN algorithm by
examining the behavior of the weight-error vector, which is
defined as

�wk = wopt − wk. (25)

Using (24) and (25), the error signal in (3) can be expressed as

ek = xT
k �wk−1. (26)

Subtracting wopt from both sides of (16) and using the above
relations, we obtain

�wk =
(
I − αk

Sk−1xkxT
k

xT
k Sk−1xk

)
�wk−1

=P k�wk−1. (27)

The global asymptotic convergence of the weight-error vector
can be assured if and only if E[P k] is time invariant and its
eigenvalues are strictly inside the unit circle. However, certain
strong independence assumptions have to be made to obtain a
time-invariant description of a system such as that represented
by (27). As an alternative, conditions for convergence with
probability 1 can be achieved by using a system based on
�wk rather than E[�wk]. A similar approach has been used
to demonstrate the stability of other algorithms, such as, for
example, the KQN algorithm in [7] and the constrained affine
projection algorithm in [13]. Before considering the stability
of the proposed RQN algorithm, we apply the matrix inversion
lemma [8] to (15) to obtain

Rk = S−1
k = Rk−1 +

αk

(1 − αk)τk
xkxT

k (28)

where τk = xT
k Sk−1xk. Since 0 < αk < 1 in each update,

matrices Sk and Rk remain positive definite and bounded
indefinitely [16], and therefore, the following theorem can be
established.

Theorem 1: If the input signal is persistently exciting, then
the system in (27) is asymptotically stable, and consequently,
the proposed RQN algorithms are also asymptotically stable.

Proof: Since matrices Sk and Rk are bounded and in-
vertible according to Lemma 1 in [7], an equivalent system
of equations (in the Lyapunov sense) for �wk in (27) can be
obtained as

�wk = R
1/2
k �wk (29)

where Rk = R
T/2
k R

1/2
k . If the system represented by (29) is

stable or unstable, then the system represented by (27) is also
stable or unstable, as appropriate. Taking the Euclidean norm
of both sides of (29), we obtain

‖�wk‖2 = �wT
k Rk�wk. (30)
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Substituting �wk given by (27) in (30), we get

‖�wk‖2 = �wT
k−1P

T
k RkP k�wk−1. (31)

On the other hand, substituting Rk given by (28) in (31), we
have

‖�wk‖2 = �wT
k−1P

T
k Rk−1P k�wk−1

+
αk

(1 − αk)τk
· �wT

k−1P
T
k xkxT

k P k�wk−1. (32)

It is easy to verify that

P T
k Rk−1P k = Rk−1 − (2 − αk)

αk

τk
xkxT

k (33)

P T
k xkxT

k P k = (1 − αk)2xkxT
k . (34)

Now, if we use (33) and (34) in (32) and then use (30), we have

‖�wk‖2 = ‖�wk−1‖2 − αk

τk
�wT

k−1xkxT
k �wk−1. (35)

Since αk ⊂ (0, 1) and τk > 0 for all k, we obtain

‖�wk‖2 ≤ ‖�wk−1‖2. (36)

The left-hand side in (36) would be equal to the right-hand
side in an interval [k1, k2] if and only if xk remains orthogonal
to �wk−1 for all k ∈ [k1, k2]. However, in such a situation,
we would obtain �wk = �wk−1 for all k ∈ [k1, k2] in (27).
Therefore, ‖�wk‖2 = ‖�wk−1‖2 would hold true if and only
if �wk1

= �wk1+1 = · · · = �wk2
= �w. However, if the

input signal is persistently exciting, then there is an infinite
number of sets Si = {xk1,i, . . . xk2,i} with M ≤ k2,i − k1,i <
M ′ such that each set Si completely spans �M for some finite
value of M ′ > 0 [7], [14]. Thus, it would be impossible for
�wk−1 to be orthogonal to xk for all xk ∈ Si, and as a result,
‖�wk‖2 < ‖�wk−1‖2, which proves that the system in (27)
and, in turn, the proposed RQN algorithms are stable. As the
number of sets is infinite, it follows that ‖�wk‖2 → 0 for
k → ∞, and therefore, the system in (27) and the proposed
RQN algorithms are both stable and asymptotically stable. �

IV. PRACTICAL CONSIDERATIONS

In low-cost fixed-point hardware implementations, the accu-
mulation of roundoff errors can cause Sk to lose its positive
definiteness. This problem can be eliminated by periodically
reinitializing Sk using the identity matrix. This is also done in
the QN algorithm in [7] whenever xT

k Sk−1xk < 10−3 for the
case of a fixed-point implementation and also in the classical
optimization context. However, very frequent reinitializations
could slow the convergence of the algorithm. A compromise
number of reinitializations can be achieved by reinitializing
Sk whenever |ek| > 2.576σk, in which case the probability of
reinitialization in a given iteration assumes the value of 0.01.
Reinitialization of other parameters is not required. In floating-
point arithmetic, reinitialization is unnecessary.

The variance estimator of the error signal in (19) should be
initialized with a large value to ensure that the probability that
γ = γc in the transient state is increased. Although a rough
choice of σ2

0 would work, we have used σ2
0 = c1M/σ2

v , where
0 < c1 < 1 is a positive constant. This choice yields good

results. The forgetting factors in (19) and (21) are chosen as
λ = 1 − 1/(c2M) and β = 1 − 1/(c3M), respectively, where
c2 and c3 are positive scalars [18]. The length P of vector gk

should be greater than the duration of the impulsive noise. A re-
duced υ in (17) would yield reduced steady-state misalignment
and improved robustness with respect to impulsive noise. On
the other hand, an increased γc and θk would reduce the number
of updates and yield reduced steady-state misalignment. How-
ever, the convergence speed would be compromised in such a
situation.

V. SIMULATION RESULTS

In order to evaluate the performance of the proposed RQN
algorithms with fixed and variable γc, which are designated as
the PRQN-I and PRQN-II algorithms, respectively, a system
identification application was considered, as detailed below. For
the sake of comparison, simulations were carried out with the
KQN and KRQN algorithms in [5] and [7], respectively.

The adaptive filter was used to identify a 36th-order low-pass
FIR filter with a normalized cutoff frequency of 0.3. The input
signal was generated by filtering a white Gaussian noise signal
with zero mean and unity variance through a recursive filter
with a single pole at 0.95. The measurement noise added to
the desired signal was a white Gaussian noise signal with zero
mean and variances of 10−3 and 10−6 (signal-to-noise ratios
(SNRs) of 30 and 60 dB, respectively). The impulse response
of the FIR filter was multiplied by −1 at iteration 2000 to
check the tracking capability of the algorithm. Impulsive noise
with a maximum duration of 3Ts, where Ts is the sampling
duration, was added to the desired signal at iterations 1000,
1300, and 3300 using a Bernoulli trial with probability 0.001
[19]. All algorithms were initialized with S0 = I , and w0 = 0.
The parameters for the PRQN-I and PRQN-II algorithms were
set to υ = 0.30, P = 5, c1 = 1/(2M), c2 = 0.5 and υ = 0.30,
P = 15, ξ0 = 10, σ̂2

0 = 10, c3 = 2, respectively.
We have explored two options for the evaluation of Sk in the

implementation of the KRQN algorithm, first using

Sk = λSk−1 +
{[

1 − λq(ek)τk

q(ek)τ2
k

]
Sk−1xk

}
xT

k Sk−1 (37)

and then using

Sk = λSk−1 +
[
1 − λq(ek)τk

q(ek)τ2
k

] {
Sk−1xkxT

k Sk−1

}
. (38)

Although (37) and (38) are equivalent, the implementation of
(37) was subject to numerical ill-conditioning, which caused
instability. On the other hand, the implementation of (38) was
found to be more robust, although it requires increased com-
putational effort. We have used (38) in our implementation of
the KRON algorithm. The parameters for the KRQN algorithm
were set to the values suggested in [5].

The learning curves obtained from 1000 independent trials
by using the KQN, KRQN, PRQN-I, and PRQN-II algorithms
are illustrated in Fig. 1(a) and (b). As shown, the PRQN-I
and PRQN-II algorithms offer robust performance with respect
to impulsive noise and yield significantly reduced steady-state
misalignment relative to those in the other algorithms. On
the other hand, the KQN algorithm is seriously compromised
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Fig. 1. Learning curves for system-identification application. (a) SNR = 30 dB. (b) SNR = 60 dB.

by impulsive noise in terms of both robustness and tracking
capability. The KRQN algorithm also offers robust performance
with respect to impulsive noise, but its tracking performance
is not as good as those of the PRQN-I and PRQN-II algo-
rithms. The total numbers of updates required by the PRQN-I
and PRQN-II algorithms were 2230 and 1356 for an SNR of
30 dB, and 2070 and 1207 for an SNR of 60 dB, respectively,
as compared with 4000 in the other algorithms. Note that two
systems were identified in this experiment, one before iteration
2000 and the other after iteration 2000. Otherwise, the number
of updates would be reduced to half.

VI. CONCLUSION

Two new robust QN adaptation algorithms have been de-
veloped on the basis of the mathematical framework of the
classical QN optimization algorithm, which lead to an im-
proved estimate of the inverse of the Hessian. Like the data-
selective QN algorithm we described in [16], the proposed
RQN algorithms incorporate data-selective adaptation, which
significantly reduces the number of adaptations required. A
stability analysis shows that the proposed RQN algorithms are
asymptotically stable.

Simulation results obtained in the case of a system identifica-
tion application demonstrate that the proposed RQN algorithms
converge faster than the KQN algorithms in [7] for medium to
high SNRs. In addition, they offer improved robustness against
impulsive noise, as well as improved computational efficiency
and tracking relative the KRQN algorithm reported in [5].
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