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Abstract—An improved set-membership affine-projection (AP)
adaptive-filtering algorithm is proposed. The new algorithm
uses two error bounds that are estimated during the learning
phase and by this means significantly reduced steady-state mis-
alignment is achieved as compared to those in the conventional
AP and set-membership AP algorithms while achieving similar
convergence speed and re-adaptation capability. In addition, the
proposed algorithm offers robust performance with respect to the
error bound, projection order, impulsive-noise interference, and in
tracking abrupt changes in the underlying system. These features
of the proposed algorithm are demonstrated through extensive
simulation results in system-identification and echo-cancellation
applications.

Index Terms—Affine-projection (AP) algorithms, robust adap-
tive-filtering algorithms, set-membership algorithms.

I. INTRODUCTION

A N important class of adaptive-filtering algorithms is the
class of affine-projection (AP) algorithms. These algo-

rithms offer superior convergence performance relative to least-
mean squares (LMS) algorithms, especially for correlated input
signals, although some increase in the computational effort is
involved [1], [2]. The basic AP algorithm was introduced in [3]
and, subsequently, several variants of this algorithm have been
developed by a number of researchers for different scenarios
such as the regularized AP algorithm [4], the partial-rank AP
algorithm [5], and the simplified set-membership AP (SSMAP)
algorithm described in [6].1 The set-membership binormalized
data-reusing LMS algorithm in [7] is an alternative implemen-
tation of the SSMAP algorithm in [6] with a projection order of
two. Performance analyses of the AP and SSMAP algorithms
are presented in [8] and [9], respectively. The analysis presented
in [8] shows that the convergence speed of the AP algorithm
increases as the number of projections, also known as the pro-
jection order, is increased, at the expense of increased steady-
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1This algorithm was referred to as the SMAP algorithm in [6] but was later
referred to as the “simplified” SMAP algorithm in [9]. For the sake of consis-
tency with the more recent publication on this algorithm, namely, [9], we will
refer to this algorithm as the simplified SMAP (SSMAP) algorithm hereafter.

state misalignment. The same conclusion was also drawn for the
SSMAP algorithm in [9]. However, by using a variable step size,
the SSMAP algorithm yields reduced steady-state misalignment
relative to that of the AP algorithm for the same projection order
[6]. Some other variants of the SSMAP algorithm are described
in [10], [11]; the algorithm in [10] yields improved convergence
speed for sparse system-identification applications and the algo-
rithm in [11] yields a slightly improved steady-state misalign-
ment as compared to the SSMAP algorithm in [9]. The prespec-
ified error bound in the SSMAP algorithm is usually chosen as

, where is the variance of the measurement noise, in
order to achieve a good balance between convergence speed and
computational effort [6], [9]–[11]. In practice, it may not be pos-
sible to accurately specify the error bound in the SSMAP algo-
rithm. In addition, as for the AP algorithm, the performance of
the SSMAP algorithm is affected by outliers in the error signal
samples that can be brought about by impulsive-noise interfer-
ence. Several recent algorithms of the LMS and least-squares
families that are robust with respect to outliers are compared
in [12].

In this paper, we propose a new SMAP adaptation algorithm
that is robust to outliers. The proposed algorithm uses two error
bounds one of which is used to achieve faster convergence and
the other is used to suppress impulsive-noise interference. By
this means, reduced steady-state misalignment is achieved rel-
ative to that in the conventional AP and SSMAP algorithms,
especially when the projection order is increased. Both of the
error bounds are estimated by using the power of the error signal
during the learning phase and, consequently, the proposed algo-
rithm is robust in the sense that: (1) its performance remains
largely insensitive to outliers brought about by impulsive noise;
(2) the sensitivity of the steady-state misalignment on the pro-
jection order is significantly reduced; (3) its re-adaptation ca-
pability is preserved; and (4) the sensitivity of the convergence
performance on the proper choice of error bound is significantly
reduced. The performance of the proposed algorithm is tested in
system-identification and echo-cancellation applications for dif-
ferent noise levels and projection orders, and is compared with
that of known competing algorithms of the AP and SMAP fami-
lies. The results obtained demonstrate the superior performance
of the proposed algorithm.

The paper is organized as follows. Section II provides a brief
review of SM adaptive filtering. In Section III the SSMAP adap-
tation algorithm is discussed. The proposed robust SMAP algo-
rithm is then described in Section IV. A steady-state analysis of
the proposed algorithm is carried out in Section V. Simulation
results are presented in Section VI and conclusions are drawn
in Section VII.
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The symbols used for the and norms are and
whereas and denote absolute value and expectation,

respectively. Symbol denotes the real space and denotes
the space of nonnegative real quantities.

II. SET-MEMBERSHIP ADAPTIVE FILTERING

Conventional SM adaptive-filtering schemes estimate the
weight vector that would cause the magnitude of
the estimation error

(1)

where and are the input signal vector and
desired signal, respectively, to be less than or equal to a prespec-
ified bound for all possible input-desired signal pairs

. The set of all possible input-desired signal pairs
is commonly referred to as the data space and is denoted as .
The estimation error based on the SM adaptive-filtering crite-
rion must satisfy

(2)

The set of all possible vectors that satisfy (2) whenever
, designated as , is referred to as the feasibility or

solution set and can be expressed as

(3)

If the adaptive filter is trained with input-desired data pairs
, then the set containing all vectors for which the

associated output error at iteration is consistent with (2) is
called the constraint or observation set. It is given by

(4)

The intersection of the constraint sets over all iterations
is called the exact membership set and is given by

(5)

Evidently, the feasibility set is a subset of the exact member-
ship set in any given iteration.

III. SSMAP ALGORITHM

The SSMAP algorithm in [6] performs weight adaptation at
iteration in such a way as to ensure that the updated weight
vector belongs to the exact membership set , i.e., .
Whenever the weight vector is not a member of , an
update is performed by solving the optimization problem

(6)

where is the desired signal vector, is
the error-bound vector, is the input signal matrix,

i.e., . The solution of the problem
in (6) results in the weight-vector update formula

if

otherwise
(7)

where is the a priori error,
and is the a

posteriori error at iteration . The update formula in (7)
forms the basis of set-membership AP algorithms. As can be
seen, in (7) needs to be specified and in [6] it is chosen as

in which case the update
formula becomes

(8)

where

if
otherwise

(9)

and [6]. Using projection order and the
closed-form inverse of in (8), the weight-vector update
formula becomes identical with that of the SM binormalized
data-reusing LMS-II adaptation algorithm in [7].

IV. PROPOSED ROBUST SET-MEMBERSHIP AP ALGORITHM

In the proposed robust SMAP (RSMAP) algorithm, the error-
bound vector is chosen as

(10)

For this error bound, if , we would obtain
for where denotes the th element of

vector . The use of (10) in the update formula in (7) results in
the weight-vector update formula

(11)

where is defined in (9). The conventional AP algorithm in
[3] uses the weight-vector update formula

(12)

where is a fixed step size and . On the basis of (11)
and (12), the proposed RSMAP algorithm could be considered
to be a variable-step-size AP algorithm in which the step size

can vary in the range zero to unity.
Two versions of the proposed RSMAP algorithm are possible,

one with fixed and the other with variable threshold, as detailed
below. These will be referred to as the RSMAP1 and RSMAP2
algorithms, respectively.
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A. RSMAP Algorithm With Fixed Threshold

In the proposed RSMAP algorithm with fixed threshold,
namely, the RSMAP1 algorithm, factor in the error-bound
vector in (10) is chosen as

if
otherwise

(13)

where , [6], and is chosen to be
less than in order to ensure that the algorithm would work
with error bound during steady state and also
for an impulsive-noise corrupted . Extensive simulations have
shown that a suitable value for can be obtained as
where . The value was found to lead
to improved computational efficiency. The variance of the error
signal is obtained as

(14)

(15)

where and
is a very small positive scalar of the order of whereas

is the forgetting factor and is an integer. A zero
vector can initially be assigned to vector . With known,

is obtained and thus is evaluated using (13). In turn, is
used in (9) to obtain which is then used in (11) to obtain the
weight vector .

B. RSMAP Algorithm With Variable Threshold

The RSMAP algorithm with variable threshold, namely, the
RSMAP2 algorithm, uses all the equations of the RSMAP1 al-
gorithm, i.e., (13) to (15), along with

(16)

(17)

where is a parameter used to control the switching between
error bounds and , is the variance of the
error signal, is the forgetting factor used to obtain
the threshold

(18)

where is a tuning constant and is an approximate estimate
of the noise variance . If no information is available about the
noise variance, a zero value can be assigned to . In effect,
the RSMAP2 algorithm uses (14) and (15) to obtain and,
in turn, evaluates as ; it then uses (16)–(18)
to obtain and (13) to obtain . With known, (9) yields

which is then used in (11) to obtain the new weight vector
. The estimators in (13)–(18) are similar to the estimators we

have used in the robust quasi-Newton adaptation algorithm we
proposed in [13]. Note that the estimate in (18) is different
from that used in the SMLMS family in [14] and [15].

C. Discussion

We have used the median of the squared error-signal sam-
ples over a finite window for the evaluation of in (15) in
order to render the estimate of robust with respect to out-
liers for both the RSMAP1 and RSMAP2 algorithms. On the
other hand, we have used to estimate the error bound for
the RSMAP2 algorithm. In order to achieve robustness with re-
spect to sudden system changes, the estimator of uses the
minimum of the previous and current values of . Eq. (16)
controls how long in (18) would work with .

As reported in [9], with a small the SSMAP algorithm
yields faster convergence and increased steady-state misalign-
ment; on the other hand, with a large it yields slower con-
vergence and reduced steady-state misalignment. Under these
circumstances, optimal performance can be achieved by using
a small error bound during transience and a large error bound
during steady state. In the proposed RSMAP algorithm, optimal
performance is achieved by choosing the initial values of ,

, and to be large. In such a situation, during transience
the algorithm would work with error bound which is
significantly smaller than and, as a result, the
transient state would decay at a fast rate. On the other hand,
during steady state the algorithm would work with error bound

as during steady-state which
would yield reduced steady-state misalignment. In addition,
this choice of would work in the occurrence of impulsive
noise to yield robust performance with respect to outliers. In
the presence of a sudden system disturbance, would tend
to grow and, therefore, error bound would come into
play. As a result, the re-adaptation capability of the proposed
algorithm would be retained. Although a rough choice of the
initial values of , , and would work, simulation re-
sults have shown that the choices , ,

and , where is a crude approximation of the noise
variance, give good results. Parameters are
integers which can be chosen in the range 1 to 8 based on
simulation results. The proposed algorithms are more robust
with respect to the choice of tuning parameters for medium to
high signal-to-noise ratios (SNRs) as compared to low SNRs.
Parameter in the RSMAP2 algorithm is a constant chosen to
be 2.5. The regularization matrix , where is the iden-
tity matrix and is a small constant, is added to the correlation
matrix in (8), (11), and (12) to assure its invertibility
if the signal becomes ill-conditioned. The value of should be
very small, of the order of , so that it does not noticeably
influence the behavior of the algorithm.

The steady-state performance of the proposed algorithm is
not influenced by the tuning parameters as it is determined by
parameter . The convergence speed could become sensitive to
changes in the tuning parameters especially for low SNRs and
unknown systems of high order. However, no such problems
have been experienced for high SNRs and unknown systems of
low to moderate orders. For unknown systems of low order, say,
7 to 15, of the type commonly used in communication systems,
the tuning parameters are easy to adjust and the performance of
the adaptive filter is quite robust even for relatively low SNRs.
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Since is prespecified in the RSMAP1 algorithm, it can
be chosen to achieve a good balance between convergence
speed and computational savings in the RSMAP1 algorithm.
On the other hand, the RSMAP2 algorithm can be used in
applications where cannot be prespecified. In most other
situations, the two versions of the proposed algorithm offer
similar performance.

V. STEADY-STATE ANALYSIS OF RSMAP ALGORITHM

In this section, we provide a steady-state analysis of the pro-
posed RSMAP algorithm. The analysis is based on the frame-
work of an energy-conservation relation described in [8], [16]
which was used to analyze several adaptation algorithms, for
example, in [17]–[19]. Since the formula in (11) is essentially
the same as that in (12), the steady-state analysis of the proposed
RSMAP algorithm can be carried out by replacing in (12) by

given by (9) and then proceeding as in [8]. The update equa-
tion in (7) can be expressed in terms of the weight-error vector

as

(19)

where denotes the weight vector of the unknown system and
is the regularization matrix. Premultiplying both sides in (19)

by the input signal matrix, we obtain

(20)

Using the definition of the noise-free a posteriori error given by

(21)

and the noise-free a priori error given by

(22)

in (20), we obtain

(23)

Hence, we can write

(24)

Substituting into (19), we get

(25)

By taking the square of the norm on both sides of the above
equation, after some manipulation we obtain the following en-
ergy conservation relation [8]:

(26)
Taking the expectation of both sides in (26), we obtain

(27)

At steady state, we have and hence
the above relation assumes the form

(28)

Substituting in (23) into (28), we obtain

(29)

Using the definition of the input-signal correlation matrix, i.e.,
, and assuming that

(30)

for , (29) can be simplified to

(31)

where . At steady state and
. Since at steady state, then for a

small value of (9) yields

(32)

Thus by using a deterministic value for , (31) simplifies to

(33)

The noisy and noise-free a priori error vectors and , re-
spectively, are interrelated by

(34)

where is the measurement noise
vector. Now substituting (34) into (33), we obtain

(35)
Considering the noise signal to be white as well as statisti-
cally independent of the input signal and neglecting the depen-
dency of on , the expression in (35) can be further simpli-
fied to

(36)

By using the definition in (30), we obtain ; with this
modification applying the trace operation to both sides of (36),
we obtain

(37)
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Fig. 1. Relative error between expected and experimental MSE: (a) RSMAP algorithm with fixed threshold. (b) RSMAP algorithm with variable threshold.

Now assuming that is statistically independent of both the a
priori error at steady state and the noise signal, we obtain

(38)
This result is used in the next subsection to derive an expression
for the excess MSE in the RSMAP algorithm.

A. Excess MSE for RSMAP Algorithm

In order to derive an expression for the excess MSE in the
proposed RSMAP algorithm, we have to deduce an expression
for the noise-free error covariance . The update equa-
tion in (11) during steady-state can be written in terms of (34)
as

(39)

Now following the steps in [8], we obtain

(40)

where and are diagonal matrices given by

. . .
(41)

and

. . .
(42)

respectively. Since the step size is very small at steady state,
we obtain and . Consequently, (40) as-
sumes the form

(43)

Using (43) in (38), we obtain

(44)

For a sufficiently small , we can assume that and in
this case (44) yields the excess MSE as

(45)

As can be seen, the excess MSE is independent of the projection
order.

B. Verification of EMSE

In this subsection, we examine the accuracy of the expression
for the EMSE given in (45) in a system-identification applica-
tion. The unknown system in this experiment was a sixteenth-
order FIR filter with a cut-off frequency of 0.3, which was de-
signed using MATLAB command .
The weight vector of the unknown system was normalized to
have unity power. An IIR filter with a pole at 0.95 was used to
produce a colored input signal from a zero-mean white Gaussian
noise signal with a variance of unity. The desired signal was
contaminated with a zero-mean white Gaussian noise signal
with variance . The expected steady-state MSE was
obtained as where EMSE is given in
(45). The parameters for the proposed algorithms were set to

, , , and for all
and and 3 for and , respectively.

The relative error between the expected and experimental MSE
defined as

(46)
with fixed and variable thresholds for different values of and

is plotted in Fig. 1(a), (b).
As can be seen in Fig. 1(a) and (b), (46) provides a fairly

accurate estimate of the relative MSE error for values of in the
range . It should be mentioned that a reduced does
not affect the convergence speed or the re-adaptation capability
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Fig. 2. Impulse response of network echo path in first experiment.

of the adaptive filter and at the same time for values of in the
range (0,0.2], the relative error is quite small for different values
of as can be seen in Fig. 1(a), (b).

The above analysis can be used to select appropriate values
for parameters and .

VI. SIMULATION RESULT

In this section, we compare the performance of the two ver-
sions of the RSMAP algorithm with that of some known AP and
SMAP algorithms through extensive simulations. Two applica-
tions, namely, a system-identification and an echo-cancellation
application were considered.

A. System Identification Application

In the first set of experimental results, the performance of
the RSMAP1 and RSMAP2 algorithms is compared with that
of the conventional AP, SSMAP, and SM proportionate AP
(SMPAP) algorithms reported in [3], [6], and [10], respectively,
for a system-identification application. A network echo path of
length with the impulse response illustrated in Fig. 2
was chosen as the unknown system.

A colored input signal for the adaptive filter was generated by
filtering a zero-mean white Gaussian noise signal with power 10
by using an IIR filter with transfer function [20]

The impulsive noise was modeled as where is
a Bernoulli process with and is a
zero-mean Gaussian signal with variance where
is the power of the uncorrupted output signal [21]. The weight
vector was initialized as in all algorithms and all ex-
periments. In addition, the error bounds, for the SSMAP and
SMPAP algorithms and for the RSMAP1 algorithm, were set
to in all experiments. Unless otherwise stated, the pa-
rameters of the RSMAP algorithms were chosen as ,

, , , , , and . The
measurement noise, , added to the desired signal was also a
Gaussian noise signal with a zero mean and variance
which corresponds to an SNR of 30 dB. The impulse response
of the echo path was multiplied by 1 at iteration to inves-
tigate the re-adaptation capability of the algorithms. Impulsive

noise was added to the desired signal at iterations and
. The learning curves obtained averaged over 1000 in-

dependent trials for are illustrated in Fig. 3(a). As can be
seen, the proposed RSMAP algorithms yield significantly re-
duced steady-state misalignment and improved robustness with
respect to impulsive noise as compared to the other algorithms
without compromising the initial speed of convergence. The
evolution of the averaged step size for the SSMAP, SMPAP,
and the proposed algorithms is illustrated in Fig. 3(b). As can be
seen, the proposed algorithms yield lower values of during
steady state, namely, 0.004, compared to 0.0834 and 0.0823 in
the SSMAP and SMPAP algorithms, respectively. As a result,
a much reduced steady-state misalignment is achieved in the
proposed algorithms. In addition, since returns back to high
values during sudden system changes, the proposed algorithms
preserve their re-adaptation capability.

To examine the effect of projection order on the performance
of the proposed algorithms, we repeated the same experiment
with the variance of the measurement noise changed to

, which corresponds to an SNR of 60 dB, for values of
2, 4, 6, and 8. In this experiment, the parameters of the RSMAP
algorithms were chosen as and impul-
sive noise was added to the desired signal at iteration .
Parameters and were both set to 6, 3, 2, and 1 for the simu-
lations of Fig. 3(c)–(f), respectively. The learning curves shown
were obtained using 1000 independent trials. As can be seen, as
the projection order is increased, the convergence speed of the
AP and SSMAP algorithms is increased at the cost of increased
steady-state misalignment, which is consistent with the analysis
presented in [8] and [9]. On the other hand, the proposed al-
gorithm yields significantly reduced steady-state misalignment
relative to that in the AP and SSMAP algorithms especially
when the projection order is large. The numerical values of the
steady-state MSE in dB for the AP, SSMAP, RSMAP1, and
RSMAP2 algorithms for and are given in Table I.
As can be seen, the use of the proposed algorithms leads to a
reduction in the steady-state misalignment in the range of 4.0 to
7.9 dB relative to the AP algorithm and 0.4 to 6.8 dB relative
the SSMAP algorithm depending on the value of . In addition,
the proposed algorithms offer improved robustness with respect
to impulsive noise.

B. Echo Cancellation Application

In the second set of experimental results, the performance of
the RSMAP algorithms is compared with that of the competing
algorithms for the case of an echo-cancellation application. In
such an application, the length of the acoustic echo path would
be significantly larger than the length of the network echo path
and the adaptive filter would require thousands of taps to suc-
cessfully cancel the acoustic echo signal. The impulse response
of the acoustic echo path assumed is illustrated in Fig. 4(a). Only
the first 512 samples were used to produce the echo signal. An
IIR filter with transfer function

was used to bandlimit a zero-mean white Gaussian noise signal
with variance one which could serve as the input signal for the
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Fig. 3. Simulation results for system-identification application. (a) Learning curves: � � �, ��� � �� �	. (b) Evolution of � : � � �, ��� � �� �	. (c)
Learning curves: � � 
, ��� � �� �	. (d) Learning curves: � � �, ��� � �� �	. (e) Learning curves: � � �, ��� � �� �	. (f) Learning curves: � � �,
��� � �� �	.

TABLE I
NUMERICAL VALUES OF THE STEADY-STATE MSE, dB

adaptive filters [6]. The input signal would thus be more corre-
lated than that used in the previous application. The measure-
ment noise was a zero-mean white Gaussian noise signal with
variance with impulsive noise at iterations and

. The impulse response of the echo path was multiplied

by 1 at iteration . The parameters for the proposed
RSMAP algorithms were set to and
in all subsequent experiments. The learning curves obtained by
using the AP, SSMAP, SMPAP, SMRAP1, and SMRAP2 algo-
rithms for 1000 independent trials are illustrated in Fig. 4(b).
As can be seen, the RSMAP algorithms yield a significant re-
duction in the steady-state misalignment compared to the other
algorithms while retaining their re-adaptation capability and ini-
tial speed of convergence. The proposed algorithms also exhibit
robust performance with respect to the impulsive noise.

Next we repeated the same experiment with real speech sig-
nals as the input signals. Twenty speech signals were recorded
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Fig. 4. Simulation results for echo-cancellation application. (a) Impulse response of acoustic echo path. (b) Learning curves: Gaussian signals as input � � ��

(� symbols correspond to AP algorithm). (c) Learning curves: speech signals as input � � ��. (d) Learning curves: speech signals as input � � ���.

and each was then used as the input signal in a given trial. The
desired signal and each speech signal were contaminated with a
zero-mean white Gaussian noise signal with a variance of .
In order to obtain a smooth learning curve, the misalignment
was evaluated as where is the im-
pulse response shown in Fig. 4(a). The learning curves obtained
in 20 independent trials are illustrated in Fig. 4(c) and (d). The
plots of Fig. 4(c) correspond to the case where no impulsive
noise was added to the desired signal. The plots of Fig. 4(d)
correspond to the case where impulsive noise of duration
was added to the desired signal at iterations and

, where is the sampling period, and the impulse response
of the echo path was multiplied by 1 at iteration . As
can be seen in Fig. 4(c) and (d), the RSMAP1 and RSMAP2 al-
gorithms yield reduced steady-state misalignment for the same
convergence speed as compared to the other algorithms. In ad-
dition, the RSMAP1 and RSMAP2 algorithms are more robust
with respect to a long burst of impulsive noise and offer sim-
ilar re-adaptation capability relative to the other algorithms. The
RSMAP2 algorithm yields slightly more misalignment com-
pared to the RSMAP1 algorithm due to the fact that the latter
algorithm starts with a much lower error bound than the former.
The long burst of impulsive noise replicates crosstalk and in-
tersymbol interference situations commonly found in two-way
telephone and communication systems.

VII. CONCLUSION

A set-membership AP adaptive-filtering algorithm that
achieves robustness through the use of two error bounds has
been proposed. A steady-state analysis of the proposed algo-
rithm that leads to an approximate formula for the expected
MSE has been carried out. This formula can be used to estimate
appropriate values for parameters and . On the other hand,
extensive simulation results have shown that the guidelines
presented for the choice of parameters , , , ,
work quite well in practice. The two versions of the proposed
algorithm were applied to system-identification and echo-can-
cellation applications. The simulation results obtained show
that algorithms RSMAP1 and RSMAP2 perform much better
than the conventional AP, SSMAP, and SMPAP algorithms
in terms of steady-state misalignment and robustness with
respect to impulsive noise without compromising the initial
convergence speed and re-adaptation capability.
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