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Abstract—A technique for the identification of hot-spot locations
in proteins using digital filters is described. In this technique, the
characteristic frequency of the protein sequence of interest is first
determined from the consensus spectrum of the corresponding
functional group. The sequence is then filtered by using a spe-
cialized narrowband bandpass digital filter in order to select the
characteristic frequency. The energy of the filtered output reveals
the hot-spot locations. Zero-phase filtering is used to eliminate
the need of computing the phase response of the digital filter. The
technique has a unique advantage over existing computational
hot-spot location techniques in that it identifies the hot-spot
locations solely from the amino-acid sequence of a protein, which
is usually the only information initially available for a newly dis-
covered protein molecule. This paper deals also with a MATLAB
implementation of the technique that incorporates a user-friendly
graphical interface. The technique is illustrated using several
protein examples and the results obtained are compared with
corresponding results based on biological methodologies in order
to demonstrate the usefulness, accuracy, and reliability of the
technique.

Index Terms—Characteristic frequency, consensus spectrum,
digital filters, electron-ion interaction potential (EIIP), fast Fourier
transform (FFT), hot spots, proteins, resonant recognition model
(RRM).

1. INTRODUCTION

ROTEINS are the fundamental building blocks of all living
Porganisms and include substances such as enzymes, hor-
mones, and antibodies [1]-[4]. They are complex molecules
known as macromolecules and consist of linear chains of sub-
units known as amino acids. The individual amino acids in a
protein molecule are linked by covalent linkages called peptide
bonds. Hence, the chain of amino acids is called a polypeptide
chain.

An amino acid consists of a carboxylic acid group, an amino
group, and a variable side chain, all attached to a central carbon
atom called the a-Carbon. The side chain is the only compo-
nent that varies from one amino acid to another. The varying
side chains are responsible for the chemical variety of the amino
acids. Although numerous different amino acids are theoreti-
cally possible, only 20 of them are commonly found in proteins.
These 20 amino acids make up the proteins found in all kinds
of living organisms. The reason for the specific choice of this
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set of amino acids can only be attributed to millions of years of
evolution.

Protein chains range in length from about 30 amino acids
to more than 10000 amino acids. However, the vast majority
of proteins are between 50 and 2000 amino acids long. Al-
though proteins can be conceptually thought to be linear chains
of amino acids, in reality, they fold in certain unique ways to
form complex 3-D structures. By virtue of these structures, pro-
teins perform their biological functions through selective in-
teractions with other molecules known as targets. Usually, the
target molecules are also proteins, although they can sometimes
be of other types such as parts of the DNA molecule.

The order of amino acids in a protein is known as its primary
structure. It is known that the 3-D structure of a protein molecule
is determined by its primary structure. However, the problem of
how the 3-D structure and the biological function of a protein
are coded into its primary structure is not fully resolved. Solving
this problem is very crucial, and when this is achieved, it will
be possible to construct artificial proteins having desired or pre-
scribed functions by carefully assembling the amino acids. Such
custom-made proteins will lead to new cures for diseases such as
paralysis and heart ailments. Consequently, solving the protein
structure-function problem is a very active area of research in
which biologists, chemists, computer scientists, and engineers
are working in a collaborative effort.

One of the main steps in solving the protein structure-function
problem is to understand the protein-target interactions. These
interactions are very selective in nature. Specific regions in the
protein and target molecules, known as active sites, bring about
the protein-target interactions. Identifying the locations of the
active sites is, therefore, crucial to the understanding of pro-
tein-target interactions. After locating the active sites in a pro-
tein, the next step is to identify the groups of amino acids that
dominate the protein’s function. These are known as hot spots. A
popular experimental technique! for the identification of the lo-
cations of active sites and hot spots is site-directed mutagenesis
[5]-[8]. In this technique, the amino acids at specific locations
in a naturally-occurring protein are replaced by some other type
of amino acid. Such replacements are known as mutations. As
a result of these mutations, changes in the biological properties
of the protein may occur. If a particular amino-acid location is
very crucial to the biological function of the protein, then a mu-
tation at that location will considerably hamper the protein’s bi-
ological function. From this, we can conclude that the particular
location belongs to a hot spot. The procedure must then be re-
peated for every suspected amino-acid location to determine all

| An experimental technique is carried out in a wet laboratory as opposed to a
computational technique that can be carried out by using a digital computer.
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the hot spots. To perform the mutations, the amino acid alanine
is usually chosen as the replacement [7]. The procedure is then
called alanine-scanning mutagenesis (ASM). The reason for the
choice of alanine is because it has a methyl group (—CH3s) as
the side chain making it one of the simplest amino acids with re-
spect to molecular structure. The methyl group of alanine is non-
reactive, and, thus, it is almost never directly involved in protein
function. Replacement of an amino acid by alanine eliminates
the side chain yet it does not alter the main chain conformation
nor does it impose extreme electrostatic or steric effects. Fur-
thermore, alanine is abundant in proteins. A limitation of this
technique is that it cannot be used if a suspected hot-spot amino
acid happens to be alanine. However, this situation may be rela-
tively rare due to the observation that three amino acids, namely,
tryptophan, arginine, and tyrosine have a high probability of ap-
pearing in hot spots [9].

Although conceptually simple, the ASM procedure involves
several delicate steps that need to be flawlessly executed at mi-
croscopic levels. Moreover, it is an expensive procedure as it
requires the use of specialized chemicals and laboratory appa-
ratus. Therefore, simpler and less expensive computational tech-
niques that can yield estimates of the hot-spot locations will be
of immense help to biologists in minimizing unnecessary mu-
tations. By using the estimates obtained, biologists can selec-
tively perform laboratory mutagenesis procedures to confirm the
hot-spot locations thereby saving a considerable amount of lab-
oratory resources.

In this paper, we propose a new computational technique
for identifying hot-spot locations based on the use of digital
filters. The main advantage of this technique over existing
computational techniques is that the hot-spot locations are
identified solely from the amino-acid sequence of a protein,
which is usually the only information initially available for a
newly discovered protein molecule. The paper deals also with
a MATLAB implementation of the technique that incorporates
an easy-to-use graphical user interface (GUI). The technique is
illustrated in terms of several protein examples and the results
obtained are compared with corresponding results based on
biological methodologies.

The paper is organized as follows. Section II describes the
fundamentals of hot spots in proteins. Section III describes the
resonant recognition model which forms the basis for our tech-
nique. In Section IV, the proposed hot-spot location technique
is described in detail. Section V describes the MATLAB im-
plementation of the technique. A variety of examples are then
presented in Section VI to demonstrate the technique and illus-
trate its capabilities relative to known biological methodologies.
The computational complexity of the technique is discussed in
Section VIIL.

II. HOT SPOTS IN PROTEINS

The two interacting molecules in a protein-target interaction
can either be both proteins or a protein and another type of
molecule such as a DNA regulatory segment. When both
the molecules are proteins, then the two terms “protein” and
“target” have relative meanings. Protein 1 is the target for
protein 2, and protein 2 is the target for protein 1. Hence,
depending on the context, both molecules qualify to be called

Protein

Target

Fig. 1. Tllustration of how a protein fits into its target.

by either name. However, there is no ambiguity when only one
of the molecules involved in an interaction is a protein.

The protein-target interactions are very specific in nature.
This specificity is achieved by way of the unique 3-D struc-
ture of a protein molecule brought about by the folding of its
amino-acid chain in a certain manner [10]. The protein-target in-
teractions occur at predefined locations within the 3-D structure
of a protein molecule. These locations are known as active sites
and are typically the regions that make contact in an interaction
[1], [11]. The active sites are formed as unique patterns in the
arrangement of the amino acids in a protein. The shapes of the
active sites are such that they can fit into the target molecules
in a way analogous to a hand fitting into a glove, as shown in
Fig. 1.

A general property of protein-protein interfaces identified by
various studies over the past two decades [12]-[16] is that most
of the binding energy in an interaction is contributed by a small
portion of the total number of amino acids comprising an ac-
tive site. These few amino acids are termed hot spots and are
responsible for the stability of the active sites, as well as the pro-
tein-target complex as a whole [17]-[20]. Due to the crucial role
played by hot spots, thorough knowledge about their locations is
essential in understanding protein function. Therefore, reliable
and efficient techniques for locating hot spots are required.

In concrete terms, a hot spot is defined using a thermody-
namic quantity known as Gibbs free energy. This is the differ-
ence between the internal energy of a system and the product of
its absolute temperature and entropy, and denotes a measure of
the capacity of the system to do work.2 It is measured in kilo-
joules or kilocalories per mole and is denoted as AG. The lower
the free energy value, the easier it is for the system to do work.
If the free energy is negative, the system will have a tendency to
do work spontaneously, as in the case of an exothermic chemical
reaction. In the context of a protein-target interaction, the work
involved is the binding of the two molecules, and, hence, the
term used is binding free energy. In order to determine whether
a given amino acid is a hot spot, it is mutated to alanine and
the binding free energy of the mutated protein-target complex
is measured. The change in the binding free energy before and

2Adopted from the American Heritage Science Dictionary.
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Hot spots

Fig. 2. Three-dimensional structure of a protein, with hot spots. The protein
molecule shown is malate dehydrogenase and the interaction is between the
chains A (left) and C (right) of the molecule. The circled regions contain the hot
spots. Protein structures are generally represented in terms of structural motifs
known as a-helix and 3-sheet, the coils and sheets in the figure. This structure
was obtained from the Protein Data Bank (PDB) at http://www.pdb.org using
the protein ID “lguy.”

after the mutation is denoted as AAG. If the amino acid in ques-
tion is a hot spot, then the mutation reduces the binding affinity
or, in other words, the binding becomes more difficult after the
mutation. A reduction in the binding affinity corresponds to a
positive AAG. A hot spot is defined as an amino acid whose
mutation to alanine leads to a AAG of at least 2.0 kcal/mol.
This definition is commonly accepted in the biological commu-
nity and has been widely used in the past (e.g., in [9] and [19]).
A schematic of a protein with hot spots is shown in Fig. 2.

The hot-spot location technique proposed in this paper is
based on a model of protein-target interactions known as the
resonant recognition model (RRM), which is explained next.

III. RESONANT RECOGNITION MODEL

Amino acids are represented by assigning distinct alphabets
to them. Thus, an entire protein sequence can be represented
by a corresponding character sequence. In order to apply digital
signal processing (DSP) for their analysis, the protein character
sequences need to be mapped onto numerical sequences. This
can be achieved by finding a set of numerals whose elements
can be assigned to the individual amino acids.

Usually, the choice of the numerals is based on some phys-
ical property that is relevant to the biological function of the
amino acids. A successful attempt to assign numerical values
to the amino acids was made in [21] where each amino acid
is assigned a numerical value called its electron-ion interaction
potential (EIIP). The EIIP of an amino acid is a physical prop-
erty denoting the average energy of the valence electrons in the
amino acid, and is known to correlate well with a protein’s bi-
ological properties [22]. Among over 200 different types of nu-
merical mappings, it has been shown in [22] that EIIP values
provide the most suitable mapping for a frequency-based anal-
ysis of protein sequences. The use of the EIIP value as a basis
for characterizing the protein-target interactions assumes that
the strength of the electromagnetic field surrounding a molecule
can provide us with a preliminary indication of the molecule’s
capability to take part in biochemical processes [23].

TABLE I
EIIP VALUES FOR THE 20 AMINO ACIDS

Aminoacid | ENP |[  Aminoacid | ENP
Leucine (Leu) 0.0000 Tyrosine (Tyr) 0.0516
Isoleucine (Ile) 0.0000 Tryptophan (Trp) 0.0548
Asparagine (Asn) 0.0036 Glutamine (Gln) 0.0761
Glycine (Gly) 0.0050 Methionine (Met) 0.0823
Valine (Val) 0.0057 Serine (Ser) 0.0829
Glutamic acid (Glu) | 0.0058 Cysteine (Cys) 0.0829
Proline (Pro) 0.0198 Threonine (Thr) 0.0941
Histidine (His) 0.0242 Phenylalanine (Phe) | 0.0946
Lysine (Lys) 0.0371 Arginine (Arg) 0.0959
Alanine (Ala) 0.0373 Aspartic acid (Asp) 0.1263

An EIIP value exists for each of the 20 amino acids. It can be
computed by using formulas based on the general-model pseu-
dopotential as described in [24]. By representing amino acids
by their EIIP values, a numerical sequence corresponding to
the original character sequence can be obtained. In this manner,
every protein character sequence can be transformed into a cor-
responding numerical sequence. DSP techniques can then be ap-
plied to the numerical sequences for detailed analysis. The EIIP
values for the 20 amino acids are listed in Table I.

As a first step towards DSP-based analysis, Veljcovi€ et al.
have subjected the EIIP sequences of several proteins to Fourier
spectral analysis [21]. They have observed that the discrete
Fourier transforms (DFTs) of the EIIP sequences of the pro-
teins belonging to a particular functional group share a unique
spectral component. The frequency of this spectral component
characterizes the protein function, and, hence, it has been
termed the characteristic frequency of the functional group.
Thus, each protein function can be mapped onto a unique fre-
quency in the frequency domain. Some proteins perform more
than one function during their life cycle. For such proteins, each
function will correspond to a different characteristic frequency.

For a successful protein-target interaction, both the protein
and the target signals must share the same characteristic fre-
quency but must have opposite phase. This matching resembles
resonance, and, hence, the characteristic frequency is said to
provide resonant recognition between a protein and its target.
This model of the protein-target recognition has been termed
the resonant recognition model (RRM).

Based on the RRM, we can predict whether a particular pro-
tein will interact with an arbitrary target molecule by examining
whether or not the protein and target share a common charac-
teristic frequency. For more information on the RRM and its
application to various protein sequences, the reader is referred
to [25]-[29].

A. Determination of the Characteristic Frequency

The common characteristic frequency of a functional group
of M proteins can be determined by computing the cross-spec-
tral function

S(e?*) = |X1(ejw)X2(ejw)...XM(ej“’)| (1
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Fig. 3. Consensus spectrum of the epidermal growth factor functional group.

where X1, Xo, ..., X, are the DFTs corresponding to the M
proteins. In simpler terms, (1) corresponds to the product of the
amplitude spectra of the protein sequences belonging to a func-
tional group. Such a product is known as the consensus spectrum
of the group. The consensus spectrum of a functional group has
a distinct peak at the characteristic frequency. The consensus
spectrum for a group of proteins called epidermal growth factor
(EGF) is shown in Fig. 3.

The number of protein sequences, M, required for a typical
consensus spectrum varies from case to case. Typically, a suf-
ficient number of protein sequences should be used to achieve
a distinct peak at the characteristic frequency in the consensus
spectrum. To start with, a set of two protein sequences may be
tried. If there is ambiguity (i.e., if there are two or more peaks
of approximately the same amplitude), then one more protein
sequence from the functional group of interest is included in the
computation. This procedure is repeated until the ambiguity is
resolved, i.e., there is only one prominent peak with all other
peaks well below it, thus clearly identifying the characteristic
frequency.

If a protein performs more than one function, then, according
to the RRM, each function will correspond to a unique charac-
teristic frequency which can be identified by considering several
consensus spectra, one for each function.

B. Hot Spots in Terms of the RRM

The hot-spot locations in a protein or a target molecule can
be identified by determining the regions in the corresponding
numerical sequence where the characteristic frequency is
dominant. This corresponds to localization in the amino-acid
domain of a protein numerical sequence, which can be easily
achieved by using a variety of DSP techniques. A technique for
the location of hot spots based on the use of the short-time dis-
crete Fourier transform (STDFT) was proposed by the authors
in [30]. In what follows, we explore the use of digital filters
for the location of hot spots. As will be demonstrated, digital
filtering is computationally more efficient than the STDFT
technique.

IV. LOCATION OF HOT-SPOTS IN PROTEINS
USING DIGITAL FILTERS

The consensus spectrum of the proteins belonging to a func-
tional group reveals the characteristic frequency for the func-
tional group. The hot-spot locations in a particular protein can
be identified by first determining the corresponding character-
istic frequency and then identifying the regions in the protein
numerical sequence where the characteristic frequency is domi-
nant. A simple strategy to identify such regions would be to alter
the amplitude of the DFT coefficient corresponding to the char-
acteristic frequency and determine the amino acids that are most
affected by this alteration. This strategy is described in [25]. Its
disadvantage is that a change in a single DFT coefficient af-
fects all the elements of the original protein numerical sequence
and, consequently, a hot-spot location technique based on this
strategy is not reliable.

An alternative approach is the transform-based technique
introduced in [30]. Although effective in locating hot spots,
the technique is computationally expensive. A very efficient
alternative based on the use of digital filters was introduced by
the authors in [31]. Here, we present the complete details of the
technique along with several innovations and new results and
comparisons with corresponding results based on biological
methodologies. The innovations include the introduction of a
control parameter that can be used to vary the resolution of
the hot-spot location technique according to the user’s prefer-
ence. Varying this control parameter is analogous to varying
the threshold value of 2.0 kcal/mol in the mutagenesis-based
hot-spot location procedure, and it would thus enable a typical
user to group the identified hot spots based on their significance
in the function of the corresponding protein.

A. General Idea

The characteristic frequency of a protein numerical sequence
obtained by using the RRM uniquely correlates with its bio-
logical function. We also know from Section III-B that the hot
spots can be located by determining the regions in the protein
numerical sequence where the characteristic frequency is dom-
inant. If we can select the characteristic frequency from the
large number of insignificant frequencies present in a protein
numerical sequence, then it would become easier to locate the
hot spots. This selection can be achieved with the aid of a nar-
rowband bandpass digital filter. The output of this digital filter
will be a sequence having energy only at the characteristic fre-
quency. Therefore, a plot of the energy (squared magnitude) of
the output sequence will reveal the locations of the hot spots in
the form of distinct energy peaks.

B. Step-by-Step Procedure

A step-by-step procedure of the proposed hot-spot location

technique is as follows.

1) Convert several protein sequences belonging to the func-
tional group of interest into numerical sequences using
EIIP values.

2) Compute the DFTs of the numerical sequences and their
consensus spectrum to determine their characteristic
frequency.
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3) Design a narrowband bandpass digital filter that would se-
lect the characteristic frequency.

4) Filter the protein numerical sequence of interest by using
the digital filter designed.

5) Compute the energy of the filter output to determine the
regions in the numerical sequence where the characteristic
frequency is dominant.

6) Locate the hot spots by locating the energy peaks in the
filtered signal based on a suitable peak-to-average ratio.

To achieve a distinct peak at the characteristic frequency in the
consensus spectrum, a sufficient number of protein sequences
should be used. As discussed in Section III-A, the number of
sequences required can vary from a minimum of two to as many
as nine or more.

The lengths of protein sequences are usually less than 216
and, consequently, the use of 216-point DFTs tends to give good
results in practice. Evidently, the lengths of proteins need to be
adjusted to 2'6 points and this can be achieved by appending the
appropriate number of trailing zeros in each sequence.

C. Choice Between IIR and FIR Filters

Several factors need to be taken into account while choosing
the type of the digital filter that can be used for our application
in order to assure accurate locations of the hot spots as well as
minimal computational effort.

1) Linear Phase Response: In many applications, the choice
between a finite-duration impulse response (FIR) and an infi-
nite-duration impulse response (IIR) digital filter is dependent
on whether or not linear phase response is required [32], [33].
This is because linear phase response is easily achieved in FIR
filters while it would be somewhat involved to obtain even a
near-linear phase response in an IIR filter. If the application at
hand is real-time and a linear phase response is a requirement,
then an FIR filter must be used. On the other hand, if the ap-
plication is nonreal-time, then the filter delay can be eliminated
altogether by using zero-phase filtering, which will be discussed
in Section IV-E. In such situations, IIR filters are preferred since
they offer several advantages over FIR filters.

2) Low Filter Order and High Selectivity: The two charac-
teristics that are most critical for our application are a low order
for the filter transfer function and a high selectivity. The ratio-
nales behind these requirements are as follows.

a) Low Filter Order: The higher the order of a digital filter,
the longer would be its transient response. A long transient
response would make the filtering of the protein sequence
inefficient because a significant portion of the sequence
would have already passed through the filter by the time
steady state is attained. Thus, it is critical to have a low
order for the transfer function of the filter.

b) High Selectivity: The frequency spectrum of a protein nu-
merical sequence consists of a number of other frequency
components in addition to the characteristic frequency
component. Our aim is to select only the characteristic
frequency component while attenuating all the other fre-
quency components to an insignificant level. As it is pos-
sible to have unwanted frequencies very close to the char-
acteristic frequency in the frequency spectrum, the digital

Magnitude

(;) w, (rad/s)
Fig. 4. Amplitude response of a fifth-order normalized lowpass (a) Bessel-

Thomson filter, (b) Butterworth filter, (c) Chebyshey filter, (d) inverse-Cheby-
shev filter, and (e) elliptic filter.

filter must have a high selectivity (i.e., narrow transition
bands).

Both of the above requirements can be simultaneously satis-
fied by using an IIR filter. This is because, in an IIR filter, the
poles of the transfer function can be placed close to the unit circle.
Hence, a high selectivity can easily be achieved with a low-order
transfer function. In an FIR filter, on the other hand, with the
poles fixed at the origin, high selectivity can be achieved only
by using a relatively high order for the transfer function.

Choosing an IIR digital filter for our application offers an-
other advantage. Due to the much lower order of the IIR filter,
the filtering would involve only a small amount of computation,
which would lead to an efficient implementation of the hot-spot
location system.

D. Choice Among Different Types of IR Filters

IIR digital filters are classified on the basis of the analog-
filter approximations from which they are derived. The most
frequently used analog-filter approximations are the Bessel-
Thomson, Butterworth, Chebyshev, inverse-Chebyshev, and the
elliptic approximations. Typical amplitude-response plots for a
fifth-order normalized lowpass filter designed using each of the
five approximations are shown in Fig. 4.

A digital filter derived from a particular approximation in-
herits the characteristics of the approximation. The narrowband
bandpass digital filter required for our application can be de-
signed in two steps. First a normalized lowpass transfer function
is transformed into a denormalized bandpass transfer function
by employing the standard lowpass-to-bandpass analog-filter
transformation. Then the bilinear transformation is applied to
obtain the transfer function of the digital filter (see Chap. 12
in [32]).
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Fig. 5. (a) Zero-phase filter; (b) implementation.

The Bessel-Thomson and Butterworth filters are not suitable
for our application as they do not offer good selectivity when
compared with the other three filter types. Among the other
three types, the Chebyshev and elliptic filters exhibit a ripple
in their passband amplitude response, which would introduce
increased amplitude distortion in the band of frequencies close
to a characteristic frequency thereby resulting in errors in lo-
cating the hot spots. For this reason, Chebyshev and elliptic fil-
ters are unsuitable for this application. Inverse-Chebysheyv filters
have good selectivity and require similar filter orders as Cheby-
shev filters to satisfy a given set of specifications; in addition,
they have a monotonic passband amplitude response which is
highly desirable for the present application. For these reasons,
the proposed hot-spot location system was implemented using
inverse-Chebyshev filters.

E. Zero-Phase Filtering

At the filter output, the passband frequency component will
be delayed by a certain period of time. Calculation of this delay
is essential in order to collect the appropriate output samples.
Unfortunately, this calculation is not very straightforward for
an IIR filter. A simpler solution is to eliminate the filter delay
by using zero-phase filtering.

In zero-phase filtering (see Sec. 12.5 in [32]), the signal is fil-
tered through a cascade arrangement of two filters characterized
by H(z) and H(z~1), as depicted in Fig. 5(a). The frequency
response of the cascade arrangement can be expressed as

Hy(e™T) = H(eT)H(e T) = |[HET)[". @)

In other words, the frequency response of the arrangement is real
and, as a result, the filter has zero phase response. If the impulse
response of the first filter is 4 (n), then that of the second filter is
h(—n). The cascade of Fig. 5(a) is implemented as depicted in
Fig. 5(b) where the protein numerical sequence is first fed to the
filter characterized by H (z) and the resulting output is then re-
versed and fed to the same filter again. The output of the second
filtering operation is then reversed to obtain the final output. De-
vices R in Fig. 5(b), which are actually first-in last-out regis-
ters, are used to reverse the signals at the input and output of
the second filtering operation. The delay introduced by the first
filtering operation is canceled by the second filtering operation
since the signal is fed backwards the second time. Thus, upon
zero-phase filtering, the characteristic frequency component is
not delayed at the output, and the need to compute the phase re-
sponse of the IIR filter is eliminated. The locations of the peaks

ElIP
Transformation

Protein
sequence

x[n]

H(z) —‘

Hot-spot
Energy sequence
H) Computation
yln] putatl EyIn]

Fig. 6. Complete digital-filter based hot-spot location system.

in the energy of the output signal identify the locations of the
hot spots. If the output signal is denoted as y[n], then its energy
is given by

Ey[n] = ly[n][*. )

We refer to E,[n] as the energy sequence corresponding to a
protein and to the peaks in E, [n] as the energy peaks.
The complete hot-spot location system is depicted in Fig. 6.

FE. Determination of the Filter-Design Specifications

From our discussion so far, we have concluded that an in-
verse-Chebyshev narrowband bandpass IIR digital filter is the
best choice for locating the hot spots in proteins based on the
RRM, and that zero-phase filtering must be used in order to
eliminate the need to compute the phase response of the filter.
We now discuss the factors determining the design specifica-
tions of the filter. The specifications that need to be determined
are the selectivity, the maximum passband attenuation, the min-
imum stopband attenuation, and the filter order.

1) Selectivity: Selectivity depends on the locations of the
passband and the stopband edges. The closer the locations of
the stopband edges to the locations of the corresponding pass-
band edges the higher would be the selectivity. The band edges
of the digital filter can be determined from the frequency spec-
trum of the protein sequence of interest. For example, consider
the frequency spectrum of the tuna cytochrome C protein se-
quence shown in Fig. 7. The neighborhood of the characteristic
frequency is shown as an inset. The value of the characteristic
frequency is 0.944. As we need to pass the characteristic fre-
quency through the filter, the maximum passband gain of 0 dB
will correspond to the characteristic frequency. We can then de-
termine the two passband edges wy,1 and wyo as the frequen-
cies whose amplitudes are 3 dB below that of the characteristic
frequency. Thus, the difference, w2 — w1, will constitute the
3-dB bandwidth of the filter. The stopband edges w,1 and w2
should be such that the frequencies closest to the characteristic
frequency on either side of the characteristic frequency in the
frequency spectrum would be heavily attenuated. As long as
this condition is satisfied, the stopband edges are allowed to be
at the furthest possible location from the respective passband
edges. This would be worthwhile, as it would then prevent the
selectivity requirement from being oversatisfied, otherwise, the
order of the filter would be unnecessarily increased, thus devi-
ating from an optimal design. The values of w1, wp1, wp2, and
wq2 determined for the tuna cytochrome C protein are 0.928,
0.936, 0.952, and 0.960, respectively.
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Fig. 7. Determination of the filter-design specifications from the frequency
spectrum of a protein numerical sequence (this illustration corresponds to the
case of the tuna cytochrome C protein).

2) Passband and Stopband Attenuation: Since our filter is of
the inverse-Chebyshev type, there is no passband ripple in the
amplitude response. However, for the design process, we need
to specify a value for the maximum passband attenuation, which
occurs at the passband edges for an inverse-Chebysheyv filter. A
10% reduction in the amplitudes of the frequencies at the pass-
band edges is considered acceptable as this reduction will not
affect the characteristic frequency. This corresponds to a max-
imum passband attenuation of 1 dB. The minimum stopband at-
tenuation depends on the extent to which the stopband frequen-
cies need to be attenuated. Here we consider a uniform reduction
in the amplitudes of the stopband frequencies to a level below
5% of the amplitude of the characteristic frequency to be suffi-
cient for efficiently locating the hot spots. This corresponds to
a minimum stopband attenuation of approximately 30 dB.

3) Filter Order: The minimum filter order that would sat-
isfy all the specifications can be determined by using a standard
technique described in [32, Ch. 12].

Mostly, the frequency spectra corresponding to the proteins
belonging to a particular functional group are very similar, at
least in the neighborhood of the characteristic frequency. Hence,
in many cases, it is possible to use the same digital filter for lo-
cating the hot spots of different proteins as long as the proteins
belong to the same functional group. However, if the functional
group is different then the characteristic frequency is also dif-
ferent, which would alter the filter specifications.

Note that the design procedure is totally deterministic and
it can, therefore, be fully automated whereby the IIR inverse-
Chebyshev filter is designed by using the parameters of the fre-
quency spectrum of a protein as input.

V. HOT-SPOT SOFTWARE PACKAGE

In order to facilitate the application of the filter-based
hot-spot location technique, we have implemented it using
MATLAB and have also created a graphical user interface
(GUI) to achieve a user-friendly implementation. A screen
shot of the GUI is shown in Fig. 8. The GUI is organized

Jo
Last computed
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(ﬂ Hot_Spot_GUI

Select the protein sequences for the jobs
(Files MUST be in FASTA format)

Compute Consensus Spectrum ]

| Current Directory
C:\Documents and Settings\Protein_Sequencesisp_cytochrome_C

[Shnw only “txt' ﬁlesl [Show all ﬁles]
GUI Status: Ready!

sp_bovine_cytochrome_C_protein txt
sp_human_cytochrome_C_protein txt
sp_rabbit_cytochrome_C_protein txt
sp_tuna_cytachrome_C_protein txt vl

Inverse-Chebyshev filter
Predicting hot-spot locations of the selected protein sequences by using a narrowband bandpass
inverse-Chebyshey digital filter (Files MUST be in FASTA format)

r— Filter Specificati

. - Designs filter as per the latest
D Filter | <<<
FStop1 AStop1 e specs and stores in memaory
0.928 30 : )
— e Filter Info| <<< Displays info of the latest filter
0.936 1 <o Plots frequency response
FPass2 AStop2 [Fren. response | <<< (C 1ot ey
0.952 30 i
< Predicts hm’spms of the
FStop2 Match exactly latest selection
0.960 Passhand ‘v T o
e 0. of passes
(The other hand will No. of passes of
exceed the specs.) 1 === repeated filtering

Fig. 8. Screen shot of the hot-spot GUI.

into two main sections. The top portion consists of the listbox
that can be used to navigate to the desired folder and select
the files of the protein sequences to be analyzed. The bottom
portion consists of the fields where the various filter design
parameters can be entered by the user. The basic operation
of the software consists of the following steps. First, the user
navigates to the folder containing the desired protein sequences
belonging to the functional group of interest, selects them, and
clicks the button labeled “Compute Consensus Spectrum.” The
software will compute the consensus spectrum and display
it in a separate window. It will also automatically detect any
distinct peak in the consensus spectrum and thereby determine
the characteristic frequency. After this, the software will assign
default values to all the design parameters. The user can keep
these values or alter them as desired. Then the user clicks on
the button labeled “Design Filter.”Once the filter is designed
and stored in memory, the user selects from the listbox the
protein sequences whose hot-spot locations need to be com-
puted and clicks on the button labeled “Predict.” This will yield
the hot-spot locations for all the selected protein sequences
in separate figure windows. The software can also produce
the amplitude-response plot of the designed filter or perform
repeated filtering on the click of the appropriate buttons. The
particular instance shown in Fig. 8 corresponds to the stage
where the consensus spectrum has just been computed for the
cytochrome C functional group and the default values for the
filter parameters have been assigned.

As can be seen, the software combined with the GUI is an
easy-to-use and efficient implementation of the filter-based hot-
spot location technique.3 By using the software, biologists can
efficiently perform numerous trials on their protein sequences
in order to obtain estimates of the hot-spot locations before con-
ducting wet laboratory experiments.

VI. ILLUSTRATIVE EXAMPLES AND RESULTS

In order to illustrate the effectiveness of the proposed tech-
nique, we applied it to a set of protein sequences obtained from

3The MATLAB source code can be obtained by contacting the authors.
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TABLE II
PROTEIN EXAMPLES INVESTIGATED
Example Organism Protein name PDB | Swiss-Prot | Sequence | Characteristic | Filter
number ID ID length frequency order
1 human basic fibroblast growth factor (bFGF) Afgf P09038 146 0.904 8
2 human growth hormone (hGH) 3hhr P01241 190 0.270 6
3 human growth hormone binding protein (hGHbp) 3hhr P10912 203 0.270 6
4 bacteria barnase 1brs P00648 110 0.321 6
5 bacteria barstar 1brs P11540 89 0.321 6
6 human interleukin-4 (IL-4) 1rcb P05112 129 0.587 6
7 E. Colit colicin-E9 immunity protein (IM9) 1bxi P13479 86 0.190 6
8 human neurotrophin-3 (NT3) Int3 P20783 119 0.069 8
9 bacteria tryptophan RNA-binding attenuator protein (TRAP) | 1wap P19466 75 0.247 6
10 C. fimi endoglucanase C lulo P14090 152 0.093 8
1 It is a common practice to italicize the scientific names of living organisms.
standard online databases. In this section, we present the results TABLE III
obtained and also compare them with corresponding results re- PASSBAND AND STOPBAND EDGES FOR THE EXAMPLES
ported by the biological cgmm’umty in order tg evaluate the use- Example | Stopband cdges | Passband edges
fulness, accuracy, and reliability of the technique. number | = o o
al a2 p1l P2
A. Online Databases 1 0.896 0.912 0.901 0.907
Protein sequence data in the form of strings of alphabets with 2 0262 | 0.278 | 0.267 | 0.273
each alphabet representing an amino acid, are freely available 3 0262 | 0.278 | 0.267 | 0.273
at various Web databases. The most important databases of this 4 0.313 | 0329 | 0.318 | 0324
class are the protein data bank (PDB) [34], [35] and Swiss-Prot 5 0313 | 0329 | 0318 | 0.324
[36], [37]. The PDB focuses on detailed 3-D structural infor- 6 0579 | 0.595 | 0.584 | 0.59
mation of proteins in the form of atomic coordinates, while the 7 0.182 | 0.198 | 0.187 | 0.193
Swiss-Prot focuses on details about the amino acid sequences. 8 0.061 | 0.077 | 0.066 | 0.072
Both these databases are considered to be very reliable by the bi- 2 0239 | 0255 | 0244 | 0250
ological community and are updated as and when new sequence 10 0.085 | 0.101 | 0.0%0 | 0.09

information becomes available. All the protein sequences for
our examples have been obtained from these databases.

Protein hot-spot location data obtained through alanine-scan-
ning mutagenesis (ASM) have been compiled into an online
database named the alanine scanning energetics database
(ASEdb) [38], [39]. This is a standard repository for hot-spot
location data used by the biological community and is updated
as and when new data become available. We used this database
as a benchmark to evaluate all the hot-spot locations identified
by our technique.

B. Preliminaries

We applied our technique to a set of ten example protein se-
quences each chosen based on two factors. First, the proteins
must be very different from each other in terms of biological
functionality and, second, the hot-spot location results of the
proteins obtained using biological methodologies must be avail-
able in ASEdb. This is to ensure that our results can be compared
with corresponding results obtained using biological method-
ologies. Details pertaining to the protein examples are given in
Table II. The protein sequences themselves can be downloaded
from the databases by using their respective IDs. Proteins hGH
and hGHbp bind to each other and, hence, have the same charac-
teristic frequency as seen in Table II. This is consistent with the
RRM which states that a protein and its target must share the
same characteristic frequency (see Section III). Consequently,

the same digital filter can be used to locate their hot-spots. The
same applies to the proteins barnase and barstar. For each of
the examples, a narrowband bandpass inverse-Chebyshev IIR
digital filter was used with its passband centered at the corre-
sponding characteristic frequency. For the sake of convenience,
a sampling frequency of ws = 2 was assumed which corre-
sponds to a Nyquist frequency of ws/2 = 1. The filter order
used in each case was the lowest order for an inverse-Chebyshev
filter that satisfied the set of specifications, and was computed
by using the design formulas given in [32]. A maximum pass-
band attenuation of 1 dB and a minimum stopband attenuation
of approximately 30 dB were assumed for designing the filters.
The passband and stopband edges for the filters used are listed
in Table I1I. A sample amplitude response plot corresponding to
the filter used for the human basic fibroblast growth factor pro-
tein (bFGF) is shown in Fig. 9.

C. Removing the DC Bias

Since the EIIP values assigned to the protein characters are
all nonnegative (see Table I), the resulting protein numerical
sequence is superimposed on a DC bias, i.e., it has a nonzero
average value. Consequently, its DFT will show a tall peak at
zero frequency, which corresponds to the DC bias and is not part
of the actual signal. This peak can obscure other peaks including
that of the characteristic frequency, and, thus, the DFT of the
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Fig. 9. Amplitude response of the filter used to identify the hot-spot locations in the human basic fibroblast growth factor protein (example 1): (a) decibel (dB)

scale; (b) linear scale.

numerical sequence can be misleading. This problem can be
avoided by subtracting the average of the numerical sequence
from its samples before computing its DFT. This was performed
for all the numerical sequences used to compute the consensus
spectra of the examples.

D. Peak-to-Average Threshold Parameter

Our intention in identifying the hot-spot locations is to iden-
tify the regions in the protein numerical sequence where the
characteristic frequency is dominant. The degree of dominance
of the characteristic frequency in a particular region of the pro-
tein sequence can be estimated by computing the energy of the
characteristic frequency component in that region and then com-
paring it with a reference energy level. The energy of the charac-
teristic frequency component at various locations in the protein
sequence can be obtained from the squared magnitude of the
output sequence of the digital filter [see (3)], which has been
referred to earlier as the energy sequence. The reference energy
level is taken to be the average energy value for the particular
protein sequence under consideration. Thus, in order to estimate
the degree of dominance of an energy peak, we can first com-
pute the average value of the energy sequence and then divide
the magnitude of the energy peak by the average value. This
ratio is referred to as the peak-to-average ratio.

The peak-to-average ratio of an energy peak can be inter-
preted as an estimate of the significance of the corresponding hot
spot in the functioning of the protein. This is one way of using
the peak-to-average ratio. Alternatively, it is possible to define a
threshold value for the peak-to-average ratio denoted as t,,, then
compare the peak-to-average ratio of each energy peak with the
value of £, and designate only those peaks with peak-to-average
ratios above the value of ¢, as hot-spot locations. If ¢, is as-
signed the value 1, then it means that the threshold is exactly
at the average value, i.e., all peaks above the average value are
designated as hot-spot locations. If ,, is assigned the value 3,
then it means that the threshold is 3 times the average value,

i.e., all peaks above 3 times the average value are designated as
hot-spot locations, and so forth.

Initially, a default value of 1 may be assumed for ¢, after
which the value may be raised or lowered depending on the
specific case being investigated. A biologist using the proposed
technique may use a ¢, value larger than 1 to focus on the main
hot spots or reduce the value below 1 to increase the resolution
of the technique and thus identify the less significant hot spots.
In the extreme case, if the user wishes to consider all the peaks
revealed by our technique for further analysis, then #,, can be set
to zero.

Since £, serves as a threshold value for the peak-to-average
ratio that can be used as a control parameter to control the res-
olution of the hot-spot location technique, we refer to ¢,, as the
peak-to-average threshold parameter.

E. Advantages of Computational Hot-Spot Location
Techniques Over Alanine-Scanning Mutagenesis

Although biological experimentation techniques such as ala-
nine-scanning mutagenesis (ASM) will have to be ultimately
employed to conclusively determine hot-spot locations, compu-
tational techniques such as the one proposed here can be very
useful as a first line of attack, thus aiding biologists to selec-
tively focus on specific probable hot spots before they perform
wet lab experiments. In analyzing newly discovered proteins, bi-
ologists can first apply computational techniques, consider the
results obtained as a starting point, and then further analyze only
those locations using the experimental techniques to confirm the
hot-spot locations. In this way, significant amounts of time, ef-
fort, and biological resources can be saved. On the basis of our
examples, on the average, only a third of the amino acids in a
protein sequence belong to hot-spot locations. Thus, if computa-
tional techniques are made very reliable, then biologists would
need to perform mutations for only a third of the total number
of amino acids in a protein sequence.

Most of the existing computational techniques require de-
tailed information about the 3-D structure of the protein being
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HOT-SPOT LOCATIONS IDENTIFIED BY THE FILTglil];I/;]SEE})VTECHNIQUE ALONG WITH THOSE FROM ASEdb
Example Hot-spot locations
Protein name
Number Filter-based technique ASEdb
human basic fibroblast growth factor (bFGF) 24, 96, 103 24, 96, 103, 140
2 human growth hormone (hGH) 14, 22, 26, 41, 45, 48, 14, 21, 22, 26, 41, 45, 46, 48,
56, 62, 63, 64, 68, 164, 56, 61, 62, 63, 64, 68, 164,
167, 168, 171, 175, 167, 168, 171, 172, 175,
178, 179, 183, 186 176, 178, 179, 183, 186
3 human growth hormone binding protein (hGHbp) 43, 44, 105, 106, 43, 44, 103, 104, 105, 106,
127, 164, 165, 169 126, 127, 164, 165, 169
4 bacteria barnase 27, 54, 59, 60, 73, 27, 54, 59, 60, 73, 82,
83, 87, 102, 103 83, 87, 102, 103
5 bacteria barstar 33, 35, 38, 42, 73, 76, 80 | 33, 35, 38, 39, 42, 73, 76, 80
6 human interleukin-4 (IL-4) 9, 88 9, 88
7 E. Coli colicin-E9 immunity protein (IM9) 34, 41, 50, 51, 55 33, 34, 41, 50, 51, 55
8 human neurotrophin-3 (NT3) 11, 68, 103 11, 68, 103
9 bacteria tryptophan RNA-binding attenuator protein (TRAP) | 37, 40, 56 37, 40, 56, 58
10 C. fimi endoglucanase C 50 19, 50, 84
investigated [18], [19], [40]. However, for newly discovered 5x10'7
proteins, only the amino-acid sequence information is initially
available. The 3-D structural information becomes available - 48
only after researchers meticulously perform detailed structural e 4
analysis on the proteins such as nuclear magnetic resonance ‘i qg’_ 3.5}
(NMR) spectroscopy. This is very laborious and takes a con- g.fl_’ sl
siderable amount of time, usually several years of further S 2
research from the time a protein has been discovered. Hence, El '% 25r
computational techniques capable of predicting hot-spot loca- (%’ g 2r
tions solely based on a protein’s amino-acid sequence, such E 15} t,= 1 (Average) |
as the one proposed here, are very useful in analyzing newly ° Al
discovered proteins. I R 1 O O O VY \ OO =~ RO SV
0.5H
F. Discussion of the Results 0 . L
0 50 100 150

A sample plot illustrating the hot-spot locations corre-
sponding to the human basic fibroblast growth factor (bFGF)
protein is shown in Fig. 10. The threshold level at the average
value is marked. If we set £, = 1, then only the peaks that are
above the average threshold level will be designated as hot-spot
locations. However, for the sake of completeness, we designate
all the peaks as probable hot-spot locations, i.e., ¢, is set to
Zero.

In Table IV, we list the probable hot-spot locations identi-
fied by our technique for the ten example protein sequences.
Also listed are the hot-spot locations reported in the biolog-
ical community, identified by performing alanine-scanning mu-
tagenesis. We obtained this data from ASEdb [38], [39]. The
effectiveness of our technique can be evaluated by comparing
the probable hot-spot locations obtained by using our technique
with corresponding hot-spot locations reported in ASEdb. From
Table IV, we can see that for the examples considered the filter-
based technique correctly identified most of the hot-spot loca-
tions reported in ASEdb. Out of a total of 76 locations, our tech-
nique identified 61 locations, corresponding to a success rate of

Amino acids

Fig. 10. Hot-spot locations of human basic fibroblast growth factor protein (ex-
ample 1).

more than 80%. The filter-based technique also identified sev-
eral amino-acid locations which could be new hot spots that
have not yet been reported in the database. These are listed in
Table V. Owing to the fact that the ASEdb is dynamic and that
the hot-spot identification problem is far from being resolved,
we believe that the new hot-spot locations predicted by our tech-
nique will match entries that may be added to the ASEdb by the
biological community in the future. These new locations may
provide new insights that may significantly improve the current
understanding of the working of proteins.

In the immediate future, we plan to apply the technique to a
more diverse range of protein samples, to improve the quality
of the bandpass filter further by increasing its selectivity while
reducing the duration of its transient response, and to compare
the method with any other computational methods that may be
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TABLE V
NEW HOT-SPOT LOCATIONS IDENTIFIED BY THE FILTER-BASED TECHNIQUE

Example
number Protein name New locations
1 bFGF 6, 27, 37, 48, 58, 69, 79, 110, 120, 131
2 hGH 4,7, 11, 19, 30, 33, 37, 52, 59, 70, 74, 78, 81, 85, 89, 93, 96, 100, 104, 107, 111, 115, 118, 122,
126, 130, 133, 137, 141, 144, 148, 152, 156, 159, 189
3 hGHbp 5,9, 12, 16, 20, 23, 27, 31, 34, 38, 49, 53, 57, 60, 64, 68, 71, 75, 79, 82, 86, 90, 93, 97, 101, 112,
116, 119, 123, 130, 134, 138, 141, 145, 149, 153, 156, 160, 175, 178, 182, 186, 189, 193, 197
barnase 3,6,9, 12, 15, 18, 21, 25, 31, 34, 37, 40, 43, 46, 49, 56, 65, 68, 71, 77, 80, 90, 93, 96, 99, 105, 108
barstar 4,7, 10, 13, 16, 19, 22, 25, 28, 44, 47, 50, 53, 56, 60, 63, 66, 69, 78, 84, 87
IL-4 3,6, 11, 13, 15, 18, 20, 23, 25, 28, 30, 32, 35, 37, 40, 42, 45, 47, 49, 52, 54, 57, 59, 61, 64, 66,
69, 71, 74, 76, 78, 81, 83, 86, 91, 93, 95, 98, 100, 103, 105, 108, 110
M9 4,9, 14, 19, 25, 30, 46, 62, 67, 72, 77, 83
NT3 7,9, 22, 35, 37, 50, 79, 93, 108
TRAP 3,7, 11, 15, 19, 23, 27, 31, 35, 39, 44, 48, 52, 60, 64, 68, 72
10 endoglucanase C | 4, 14, 26, 36, 57, 68, 79, 90, 101, 111
TABLE VI transform-based technique, i.e., the filter-based technique is sig-
AVERAGE CPU TIMES nificantly more efficient than the transform-based technique.
Average CPU time (milliseconds)
Protein Filter-based | Transform-based VII CONCLUSION
name technique technique A new technique for the identification of hot-spot locations
bFGE 03937 37643 in proteins using digital filters was presented. The technique
hGH 03110 16561 was applied to several' example prot'ein sequences z.md the re-
sults were compared with corresponding results obtained by the
hGHbp 0.3145 4.8868 . . . .
biological community. It was found that the technique correctly
barnase 02749 3.0763 identifies more than 80% of the hot-spot locations surveyed. The
barstar 0.2693 26193 technique also reveals several amino-acid locations that could
IL-4 0.2840 3.4171 be new hot spots.
IM9 0.2670 2.5612 The technique is particularly suitable for analyzing newly
NT3 0.2918 3.2255 discovered proteins owing to its capability to predict hot-spot
TRAP 0.2630 2.3231 locations solely from the amino-acid sequence. However, in-
endoglucanase C 0.2956 3.9029 corporating the 3-D structural information into the technique

proposed in the literature. We also hope to investigate the exis-
tence of a certain periodicity that was expected to manifest itself
in our results by one of the reviewers but which did not reveal
itself in our simulations.

VII. COMPUTATIONAL COMPLEXITY

From an implementation perspective, the major advantage of
the proposed filter-based technique over the transform-based
technique introduced in [30] is its lower computational com-
plexity. In order to establish this fact, we compared the com-
putational complexity of the filter-based technique with that of
the transform-based technique by recording the average CPU
times over 1000 runs applied for each example sequence. The
MATLAB commands tic and toc were used to compute the
CPU time. In order to obtain a fair comparison, the same com-
puter system was used throughout the procedure with its pro-
cessor entirely dedicated to this task. The results are shown in
Table VI. As can be seen from the table, the filter-based tech-
nique requires less than 15% of the computation required by the

could significantly improve its accuracy and reliability. If this is
achieved, then the technique can first be used to predict probable
hot-spot locations of a newly discovered protein solely from its
amino-acid sequence; subsequently, when 3-D structural infor-
mation becomes available, the technique can be reapplied taking
the available structural information into account to yield more
accurate predictions.

The paper dealt, in addition, with a MATLAB implementa-
tion of the technique that incorporates a user-friendly graphical
interface.
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