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Compressive Sensing

m A signal x(n) of length N is K-sparse if it contains K nonzero
components with K < N.
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Compressive Sensing

m A signal x(n) of length N is K-sparse if it contains K nonzero
components with K < N.

m A signal is near K-sparse if it contains K significant components.
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Compressive Sensing, cont'd

m Sparsity is a generic property of signals: A real-world signal always
has a sparse or near-sparse representation with respect to an
appropriate basis.
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m Sparsity is a generic property of signals: A real-world signal always
has a sparse or near-sparse representation with respect to an
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Compressive Sensing, cont'd

» Compressive sensing (CS) is a data acquisition process whereby a
sparse signal x(n) represented by a vector x of length N is
determined using a small number of projections represented by a
matrix ® of dimension M x N.
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Compressive Sensing, cont'd

» Compressive sensing (CS) is a data acquisition process whereby a
sparse signal x(n) represented by a vector x of length N is
determined using a small number of projections represented by a
matrix ® of dimension M x N.

m In such a process, measurement vector y and signal vector x are
interrelated by the equation

y=®.x C T
Y =
Mx1 MxN
- - Nx1
measurements projection sparse signal
matrix of interest
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Compressive Sensing, cont'd

m CS theory shows that these random projections contain much,
sometimes all, the information content of signal x.
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Compressive Sensing, cont'd

m CS theory shows that these random projections contain much,
sometimes all, the information content of signal x.

m If a sufficient number of such measurements is collected,
recovering signal x from measurements y is possible.

m A condition for this to be possible is

M>c-K-log(N/K)

where c is a small constant.
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Compressive Sensing, cont'd

m CS theory shows that these random projections contain much,
sometimes all, the information content of signal x.

m If a sufficient number of such measurements is collected,
recovering signal x from measurements y is possible.

m A condition for this to be possible is
M>c-K-log(N/K)
where c is a small constant.
m Typically,
K<M<N
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Signal Recovery by Using ¢; and ¢, Minimizations

u The inverse problem of recovering signal vector x from
measurement vector y such that

is an ill-posed problem.

Compressive Sensing 7 University of Victoria



Signal Recovery by Using ¢; and ¢, Minimizations

u The inverse problem of recovering signal vector x from
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is an ill-posed problem.

m A classical approach for solving this problem is to find a vector x*
with minimum ¢, norm in the translated null space of ® such that

x* =arg min||x||» subjectto ®x=y
X
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Signal Recovery by Using ¢; and ¢, Minimizations

u The inverse problem of recovering signal vector x from
measurement vector y such that

is an ill-posed problem.

m A classical approach for solving this problem is to find a vector x*
with minimum ¢, norm in the translated null space of ® such that

x* =arg min||x||» subjectto ®x=y
X

m Unfortunately, the £/, minimization fails to recover a sparse signal.
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Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

m Why /5-norm minimization fails to work?
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Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

m Why /5-norm minimization fails to work?

As r increases, the
contour of ||x|[o = r
grows and touches the
hyperplane ®x =y.

The solution x*
obtained is not sparse.

Contours of ||x|[o = r
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Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

m A sparse signal, say x*, can be obtained by finding a vector with
minimum /1 norm in the translated null space of ®, i.e., using

X" = arg min||x||; subjectto ®x=y
X
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Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

m A sparse signal, say x*, can be obtained by finding a vector with
minimum /1 norm in the translated null space of ®, i.e., using

X" = arg min||x||; subjectto ®x=y
X

As ¢ increases, the
LT contour of ||x|[; = ¢
s grows and touches the
' N hyperplane ®x =y,
yielding a sparse
solution

Contours for ||x||; = ¢
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Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

If ® = {¢;} where ¢; are independent and identically distributed
random variables with zero-mean and variance 1/N and

M > cK log(N/K), the solution of the ¢;-minimization problem would
recover exactly a K-sparse signal with high probability.
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Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

If ® = {¢;} where ¢; are independent and identically distributed
random variables with zero-mean and variance 1/N and

M > cK log(N/K), the solution of the ¢;-minimization problem would
recover exactly a K-sparse signal with high probability.

m For real-valued data {®,y}, the /;-minimization problem is a linear
programming problem.
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Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

m Example: N =512, M =120, K = 26
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Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

m Example: N =512, M =120, K = 26

A Sparse Signal with K = 26 Reconstructed Signal by L1 Minimization, M = 120
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Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

m The sparsity of a signal can be measured by using its ¢

pseudonorm
N

[xllo = _bxl°

i=1
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Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

m The sparsity of a signal can be measured by using its ¢

pseudonorm
N
[Ix[lo =Y _Ixi[°
i=1

m Hence the sparsest solution of ®x =y can be obtained by finding
the vector x* with the smallest value of the ¢y pseudonorm in the
translated null space of ®, i.e.,

x* =arg min ||[x|[o subject to ®x =y
X

Compressive Sensing 12 University of Victoria



Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

m The sparsity of a signal can be measured by using its ¢

pseudonorm
N

[xllo = _bxl°

i=1

m Hence the sparsest solution of ®x =y can be obtained by finding

the vector x* with the smallest value of the ¢y pseudonorm in the
translated null space of ®, i.e.,

x* =arg min ||[x|[o subject to ®x =y
X

m Unfortunately, the above {y-pseudonorm minimization problem is
nonconvex with combinatorial complexity.
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Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

m An effective signal recovery strategy is to solve the
{p-minimization problem
minimize  [|x[|5  with 0<p<1
X
subject to dx =y
N

where ||x||g = > |xiP.
i=1
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Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

m An effective signal recovery strategy is to solve the
{p-minimization problem

minimize  [|x[|5  with 0<p<1
subject to dx =y
N

where ||x||g = > |xiP.
i=1

® This £,-norm minimization problem is nonconvex.
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Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

= Contours of ||x|[, =1 with p < 1
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Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

= Why ¢, minimization with p < 17
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Signal Recovery by Using ¢; and ¢, Minimizations, cont'd

= Why ¢, minimization with p < 17

As c increases, the contour
|[x[|5 = ¢ grows and touches
the hyperplane ®x =y,
yielding a sparse solution

<= 7]

The possibility that the contour
S will touch the hyperplane at
P another point is eliminated.

Contours of |[x||f = c with p < 1
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Signal Recovery by Using Regularized ¢, Minimization

= We propose to minimize a regularized ¢, norm

N

XI5, = (2 + )P

i=1

where x lies in the null space of ® translated by the />-norm
solution vector, say xs, of ®x =y, namely,

x:Xs+Vr€

where V, is an orthonormal basis of the null space of ®.
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Signal Recovery by Using Regularized ¢, Minimization,

cont'd

m Note that as ¢ — 0, we have

2
(X + ez)p/ ~ |x;|P
Therefore,
XI5l o = [1XI175

i.e., the regularized ¢, norm closely approximates the £, norm.
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Signal Recovery by Using Regularized ¢, Minimization,

cont'd

m Note that as ¢ — 0, we have

Therefore,

XI5l o 2 [IXI15

i.e., the regularized ¢, norm closely approximates the £, norm.

m The reconstruction involves solving the optimization problem

P1 inimi () + Ve + & p/2
(P1) minimize ; {[x(i) + v/ &7 + €}
for a small value of €.
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Signal Recovery by Using Regularized ¢, Minimization,

cont'd

m Optimization overview:
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Signal Recovery by Using Regularized ¢, Minimization,

cont'd

m Optimization overview:

m Obtain an £»-norm solution x, set £ = 0, and select an initial value of ¢
to satisfy the inequality

e>y/1—p- m;i\éiirglt\;m|xs,-|
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Signal Recovery by Using Regularized ¢, Minimization,

cont'd

m Optimization overview:

m Obtain an £»-norm solution x, set £ = 0, and select an initial value of ¢
to satisfy the inequality

€ > +/1— p- maximum|xs;
=z P 20N |Xsi]
m Using £ as an initializer, solve the optimization problem P1 using a

quasi-Newton algorithm such as Broyden-Fletcher-Goldfarb-Shanno
algorithm. Set the resulting solution to &.
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Signal Recovery by Using Regularized ¢, Minimization,

cont'd

m Optimization overview:
m Obtain an £»-norm solution x, set £ = 0, and select an initial value of ¢
to satisfy the inequality

e>y/1—p- m?éiigll\;m|XSI|

m Using £ as an initializer, solve the optimization problem P1 using a
quasi-Newton algorithm such as Broyden-Fletcher-Goldfarb-Shanno
algorithm. Set the resulting solution to &.

m Reduce the value of ¢, use £ as an initializer, and solve problem P1
again using the same quasi-Newton algorithm.

Compressive Sensing 18 University of Victoria



Signal Recovery by Using Regularized ¢, Minimization,

cont'd

m Optimization overview:
m Obtain an £»-norm solution x, set £ = 0, and select an initial value of ¢
to satisfy the inequality

e>y/1—p- m?éiigll\;m|XSI|

m Using £ as an initializer, solve the optimization problem P1 using a
quasi-Newton algorithm such as Broyden-Fletcher-Goldfarb-Shanno
algorithm. Set the resulting solution to &.

m Reduce the value of ¢, use £ as an initializer, and solve problem P1
again using the same quasi-Newton algorithm.

m Repeat this procedure until problem P1 is solved for a sufficiently small
value of e.
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Signal Recovery by Using Regularized ¢, Minimization,

cont'd

m Line Search Based on Banach’s Fixed-Point Theorem:
m The (k + 1)th iterate is computed as

&1 = &+ ady
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Signal Recovery by Using Regularized ¢, Minimization,

cont'd

m Line Search Based on Banach’s Fixed-Point Theorem:
m The (k + 1)th iterate is computed as

&1 = &+ ady

m According to Banach's fixed-point theorem, the step size « can be
computed using a finite number of iterations of

N
Soxi v vi(au, €)P/2
i—1

qj41 = —
v? - ilau, e)p/271

=

1

1

where
2
Yilo,€) = (xi +av)) + €, xi=xs+v] &, vi=v]dy
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Performance Evaluation

Number of perfectly recovered instances versus sparsity K by various
algorithms with N = 256 and M = 100 over 100 runs.

Number of perfect reconstructions over
100 runs with & = 256, M= 100
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Performance Evaluation, cont'd

Average CPU time versus signal length for various algorithms with

M = N/2 and K = M/2.5.

Average CPU time over 100 runs
with M=N2, K =M25
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URLP: Proposed
NRALO: Null space re-weighted approximate £y (Pant, Lu, and Antoniou, 2010)
SLO: Smoothed £p-norm minimization (Mohimani et. al., 2009)
IR: Iterative re-weighting (Chartrand and Yin, 2008)
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Conclusions

m Compressive sensing is an effective technique for sampling sparse
signals.
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Conclusions

m Compressive sensing is an effective technique for sampling sparse
signals.

m {1 minimization works in general for the reconstruction of sparse
signals.

» {, minimization with p < 1 can improve the recovery performance
for signals that are less sparse.

= Regularized ¢, minimization offers improved signal rconstruction
performance.

m A line search method based on Banach's fixed-point theorem
offers improved complexity.
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Thank you for your attention.

This presentation can be downloaded from:
http://www.ece.uvic.ca/~andreas/RLectures/ISCAS2011-Jeevan-Web.pdf
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