New Constrained Affine-Projection Adaptive-Filtering Algorithm

Md. Zulfiquar Ali Bhotto and Andreas Antoniou

Department of Electrical and Computer Engineering
University of Victoria, Victoria, BC, Canada
Emails: zbhotto@ece.uvic.ca, aantoniou@ieee.org

ISCAS 19-23 May 2013
Objectives
Objectives

Two versions of a new constrained affine-projection (CAP) algorithm, PCAP-I and PCAP-II, are proposed as follows:

- derivation of PCAP-I algorithm
- derivation of the PCAP-II algorithm
- discussion on proposed and conventional CAP algorithms.
Outline

- Objectives
 - Two versions of a new constrained affine-projection (CAP) algorithm, PCAP-I and PCAP-II, are proposed as follows:
 - derivation of PCAP-I algorithm
 - derivation of the PCAP-II algorithm
 - discussion on proposed and conventional CAP algorithms.

- Simulation results
 - system identification application
 - interference-suppression application for direct-sequence code-division multiple access (DS-CDMA) communication systems
Objectives

Two versions of a new constrained affine-projection (CAP) algorithm, PCAP-I and PCAP-II, are proposed as follows:

- derivation of PCAP-I algorithm
- derivation of the PCAP-II algorithm
- discussion on proposed and conventional CAP algorithms.

Simulation results

- system identification application
- interference-suppression application for direct-sequence code-division multiple access (DS-CDMA) communication systems

Conclusions
Objectives

- Develop adaptive-filtering algorithms that can be used for applications where the weight vector must satisfy certain constraints.
Objectives

- Develop adaptive-filtering algorithms that can be used for applications where the weight vector must satisfy certain constraints.
- The developed algorithms should
Objectives

- Develop adaptive-filtering algorithms that can be used for applications where the weight vector must satisfy certain constraints.

- The developed algorithms should
 - yield an unbiased solution
Objectives

- Develop adaptive-filtering algorithms that can be used for applications where the weight vector must satisfy certain constraints.
- The developed algorithms should
 - yield an unbiased solution
 - require a reduced computational effort
Objectives

- Develop adaptive-filtering algorithms that can be used for applications where the weight vector must satisfy certain constraints.
- The developed algorithms should
 - yield an unbiased solution
 - require a reduced computational effort
 - yield a reduced steady-state misalignment
Objectives

- Develop adaptive-filtering algorithms that can be used for applications where the weight vector must satisfy certain constraints.

- The developed algorithms should
 - yield an unbiased solution
 - require a reduced computational effort
 - yield a reduced steady-state misalignment
 - require fewer iterations to converge
Objectives

- Develop adaptive-filtering algorithms that can be used for applications where the weight vector must satisfy certain constraints.
- The developed algorithms should
 - yield an unbiased solution
 - require a reduced computational effort
 - yield a reduced steady-state misalignment
 - require fewer iterations to converge

compared to the constrained normalized least-mean square (CNLMS), known CAP, and set-membership CAP (CSMAP) algorithms.
The two versions of the CAP algorithm are obtained by solving the minimization problem

$$\min_w J(w) = 0.5 \| X_k^T w - d_k \|^2$$
The two versions of the CAP algorithm are obtained by solving the minimization problem

\[
\min_{\mathbf{w}} \quad J(\mathbf{w}) = 0.5 \| \mathbf{X}_k^T \mathbf{w} - \mathbf{d}_k \|^2
\]

subject to the constraint

\[
\mathbf{C} \mathbf{w} = \mathbf{f}
\]
The two versions of the CAP algorithm are obtained by solving the minimization problem

$$\min_w J(w) = 0.5 \|X_k^T w - d_k\|^2$$

subject to the constraint

$$Cw = f$$

where $d_k \in \mathbb{R}^{l \times 1}$ is the desired signal vector, $X_k \in \mathbb{R}^{m \times l}$ is the input signal matrix, $C \in \mathbb{R}^{p \times m}$ is a constraint matrix, and $f \in \mathbb{R}^{p \times 1}$ is a constraint vector.
New CAP Algorithm

- The two versions of the CAP algorithm are obtained by solving the minimization problem

\[
\text{minimize } J(w) = 0.5\|X_k^Tw - d_k\|^2
\]

subject to the constraint

\[
Cw = f
\]

where \(d_k \in \mathbb{R}^{l\times1}\) is the desired signal vector, \(X_k \in \mathbb{R}^{m\times l}\) is the input signal matrix, \(C \in \mathbb{R}^{p\times m}\) is a constraint matrix, and \(f \in \mathbb{R}^{p\times1}\) is a constraint vector.

- The gradient of \(J(w)\) at points \(w_k\) and \(w_{k-1}\) satisfies the inequality

\[
\|\nabla J(w_k) - \nabla J(w_{k-1})\|_2 \leq \lambda_{k,\text{max}}(X_kX_k^T)\|w_k - w_{k-1}\|_2
\]
The two versions of the CAP algorithm are obtained by solving the minimization problem

$$\min_w J(w) = 0.5\|X_k^T w - d_k\|^2$$

subject to the constraint

$$Cw = f$$

where $d_k \in \mathbb{R}^{l \times 1}$ is the desired signal vector, $X_k \in \mathbb{R}^{m \times l}$ is the input signal matrix, $C \in \mathbb{R}^{p \times m}$ is a constraint matrix, and $f \in \mathbb{R}^{p \times 1}$ is a constraint vector.

The gradient of $J(w)$ at points w_k and w_{k-1} satisfies the inequality

$$\|\nabla J(w_k) - \nabla J(w_{k-1})\|_2 \leq \lambda_{k,\text{max}}(X_k X_k^T)\|w_k - w_{k-1}\|_2$$

where $\lambda_{k,\text{max}}$ is the maximum eigenvalue of $X_k X_k^T$.
We can, therefore, approximate \(J(w) = 0.5\|X_k^T w - d_k\|^2 \) at \(w_k \) as

\[
J(w) \approx \hat{J}(w_k) = J(w_{k-1}) + (w_k - w_{k-1})^T \nabla J(w_{k-1}) + \frac{1}{2\mu_k} \|w_k - w_{k-1}\|^2
\]

where \(J(w) < \hat{J}(w_k) \) and \(\mu_k \) is called the **Lipschitz constant**.
We can, therefore, approximate $J(w) = 0.5\|X_k^T w - d_k\|^2$ at w_k as

$$J(w) \approx \hat{J}(w_k) = J(w_{k-1}) + (w_k - w_{k-1})^T \nabla J(w_{k-1})$$

$$+ \frac{1}{2\mu_k} \|w_k - w_{k-1}\|_2^2$$

where $J(w) < \hat{J}(w_k)$ and μ_k is called the Lipschitz constant.

The PCAP-I algorithm can now be obtained by solving the minimization problem

$$\minimize_{w_k} J(w_{k-1}) + (w_k - w_{k-1})^T \nabla J(w_{k-1}) + \frac{1}{2\mu_k} \|w_k - w_{k-1}\|_2^2$$
We can, therefore, approximate $J(w) = 0.5\|X_k^T w - d_k\|^2$ at w_k as

$$J(w) \approx \hat{J}(w_k) = J(w_{k-1}) + (w_k - w_{k-1})^T \nabla J(w_{k-1}) + \frac{1}{2\mu_k} \|w_k - w_{k-1}\|^2$$

where $J(w) < \hat{J}(w_k)$ and μ_k is called the Lipschitz constant.

The PCAP-I algorithm can now be obtained by solving the minimization problem

$$\min_{w_k} \ J(w_{k-1}) + (w_k - w_{k-1})^T \nabla J(w_{k-1}) + \frac{1}{2\mu_k} \|w_k - w_{k-1}\|^2$$

subject to the constraint

$$Cw_k = f$$
The solution of the problem at hand can be obtained by using the *Lagrange* multiplier method as

\[w_k = Z [w_{k-1} + \mu_k X_k e_k] + t \]
The solution of the problem at hand can be obtained by using the *Lagrange* multiplier method as

$$w_k = Z [w_{k-1} + \mu_k X_k e_k] + t$$

where $Z \in \mathcal{R}^{m \times m}$ is a matrix given by

$$Z = I - C^T (CC^T)^{-1} C$$

and $t \in \mathcal{R}^{m \times 1}$ is a vector given by

$$t = C^T (CC^T)^{-1} f$$
For the PCAP-I algorithm, we solve the minimization problem

$$\min_{\mu_k} F(\mu_k) = 0.5\|X_k^T w_k - d_k\|^2$$

to obtain

$$\mu_k = \frac{e_k^T X_k^T Z X_k (d_k - X_k^T [Z w_{k-1} + t])}{e_k^T X_k^T Z X_k X_k^T Z X_k e_k}$$

which can be used in the update formula

$$w_k = Z [w_{k-1} + \mu_k X_k e_k] + t$$
For the PCAP-I algorithm, we solve the minimization problem

$$\min_{\mu_k} F(\mu_k) = 0.5\|X_k^T w_k - d_k\|^2$$

to obtain

$$\mu_k = \frac{e_k^T X_k^T Z X_k (d_k - X_k^T [Z w_{k-1} + t])}{e_k^T X_k^T Z X_k X_k^T Z X_k e_k}$$

which can be used in the update formula

$$w_k = Z [w_{k-1} + \mu_k X_k e_k] + t$$

With the initialization $w_0 = t$ the update formula of the PCAP-I algorithm simplifies to

$$w_k = w_{k-1} + \mu_k Z X_k e_k$$
For the PCAP-I algorithm, we solve the minimization problem
\[
\min_{\mu_k} \quad F(\mu_k) = 0.5\|X_k^T w_k - d_k\|^2
\]
to obtain
\[
\mu_k = \frac{e_k^T X_k^T Z X_k (d_k - X_k^T [Z w_{k-1} + t])}{e_k^T X_k^T Z X_k X_k^T Z X_k e_k}
\]
which can be used in the update formula
\[
w_k = Z [w_{k-1} + \mu_k X_k e_k] + t
\]
With the initialization \(w_0 = t \) the update formula of the PCAP-I algorithm simplifies to
\[
w_k = w_{k-1} + \mu_k Z X_k e_k
\]
where
\[
\mu_k = \frac{e_k^T X_k^T Z X_k e_k}{e_k^T X_k^T Z X_k X_k^T Z X_k e_k}
\]
New PCAP-I Algorithm, Cont’d…

- The solution of the system of equations $Cw = f$ can be obtained as

$$w = V_r\omega + C^+f$$

where C^+ denotes the Moore-Penrose pseudo-inverse of C, $V_r \in \mathbb{R}^{m \times r}$ is a matrix consisting of the last $m = r - p$ columns of V which is obtained by using the singular-value decomposition of C, and $\omega \in \mathbb{R}^{r \times 1}$ is a vector.
The solution of the system of equations $Cw = f$ can be obtained as

$$w = V_r \omega + C^+ f$$

where C^+ denotes the *Moore-Penrose pseudo-inverse* of C, $V_r \in \mathbb{R}^{m \times r}$ is a matrix consisting of the last $m = r - p$ columns of V which is obtained by using using the singular-value decomposition of C, and $\omega \in \mathbb{R}^{r \times 1}$ is a vector.

With this solution, the optimization problem

$$\min_w J(w) = 0.5 \| X_k^T w - d_k \|^2$$

subject to the constraint

$$Cw = f$$
The solution of the system of equations $Cw = f$ can be obtained as

$$w = V_r \omega + C^+ f$$

where C^+ denotes the Moore-Penrose pseudo-inverse of C, $V_r \in \mathcal{R}^{m \times r}$ is a matrix consisting of the last $m = r - p$ columns of V which is obtained by using the singular-value decomposition of C, and $\omega \in \mathcal{R}^{r \times 1}$ is a vector.

With this solution, the optimization problem

$$\min_w J(w) = 0.5 \|X_k^T w - d_k\|^2$$

subject to the constraint

$$Cw = f$$

can be expressed as

$$\min_\omega J(\omega) = 0.5 \|X_k^T V_r \omega + X_k^T C^+ f - d_k\|^2$$
The **PCAP-II** algorithm is obtained by solving the minimization problem

$$
\text{minimize } J(\omega) = 0.5\|X_k^T V_r \omega + X_k^T C^+ f - d_k\|^2
$$

by using the same steps as for the **PCAP-I** algorithm.
The **PCAP-II** algorithm is obtained by solving the minimization problem

$$\min_{\omega} J(\omega) = 0.5\|X_k^T V_r \omega + X_k^T C^+ f - d_k\|^2$$

by using the same steps as for the **PCAP-I** algorithm.

The update formula of the **PCAP-II** algorithm becomes

$$\omega_k = \omega_{k-1} + \mu_k V_r X_k e_k$$

where

$$\mu_k = \frac{e_k^T X_k^T V_r V_r^T X_k e_k}{e_k^T X_k^T V_r V_r^T X_k X_k^T V_r V_r^T X_k e_k}$$
The PCAP-I and PCAP-II algorithms do not require the inverse of $X_k^T ZX_k$ and hence they require less computation than the conventional CAP algorithm.
The PCAP-I and PCAP-II algorithms do not require the inverse of $X_k^T ZX_k$ and hence they require less computation than the conventional CAP algorithm.

The PCAP-II algorithm requires reduced computation as compared to the PCAP-I algorithm due to the reduced dimensions of ω_k and V_r^T.
Simulation Results

- MSD learning curves for system identification application:

![Graph showing MSD learning curves for system identification application with different algorithms: CNLMS, CAP, SMCAP, PCAP-I, PCAP-II. The x-axis represents the number of iterations, and the y-axis represents MSD in dB. The graph compares the performance of these algorithms over iterations.]
Simulation Results, Cont’d...

Table: Average CPU Time, in Microseconds

<table>
<thead>
<tr>
<th></th>
<th>CNLMS</th>
<th>CAP</th>
<th>SMCAP</th>
<th>PCAP-I</th>
<th>PCAP-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>27</td>
<td>61</td>
<td>8</td>
<td>38</td>
<td>36</td>
</tr>
</tbody>
</table>
Simulation Results, Cont’d…

- Learning mean output-error (MOE) curves for DS-CDMA interference suppression application:

![Graph showing MOE curves for different algorithms](image-url)

- CNLMS
- CAP
- SMCAP
- PCAP-I
- PCAP-II
Two new closely related CAP adaptive-filtering algorithms, the PCAP-I and PCAP-II, that use a new step size have been proposed. The new algorithms

- produce an unbiased output in applications where the desired signal is unavailable or not required
Conclusions

Two new closely related CAP adaptive-filtering algorithms, the PCAP-I and PCAP-II, that use a new step size have been proposed. The new algorithms

- produce an unbiased output in applications where the desired signal is unavailable or not required
- require reduced computational effort than the conventional CAP algorithm
Conclusions

Two new closely related CAP adaptive-filtering algorithms, the PCAP-I and PCAP-II, that use a new step size have been proposed. The new algorithms

- produce an unbiased output in applications where the desired signal is unavailable or not required
- require reduced computational effort than the conventional CAP algorithm
- yield reduced steady-state misalignment relative to the CNLMS algorithm as well as some recent CAP algorithms
Two new closely related CAP adaptive-filtering algorithms, the PCAP-I and PCAP-II, that use a new step size have been proposed. The new algorithms

- produce an unbiased output in applications where the desired signal is unavailable or not required
- require reduced computational effort than the conventional CAP algorithm
- yield reduced steady-state misalignment relative to the CNLMS algorithm as well as some recent CAP algorithms
- offer faster convergence than the CNLMS algorithm.