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INTRODUCTIONINTRODUCTION
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• FIR filters are usually designed 
with symmetric coefficients to 

achieve linear phase response 

with respect to the baseband, i.e., 
b0= bN-1, b1= bN-2, etc.

– Efficient design methods are 

available, e.g., window method, 

Remez algorithm

– Large group delay
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INTRODUCTION (ContINTRODUCTION (Cont’’d)d)
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• Filters with Asymmetric CoefficientsFilters with Asymmetric CoefficientsFilters with Asymmetric CoefficientsFilters with Asymmetric Coefficients

– Approximately linear phase response in passband

– Relatively small group delay

– Can be designed by using classical optimization 
methods with a multiobjective formulation.

– Can also be designed by using a multiobjective 

genetic algorithm (GA) known as the elitist
nondominated sorted GA (ENSGA).
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CLASSICAL OPTIMIZATION ALGORITHMSCLASSICAL OPTIMIZATION ALGORITHMS

• Fast and efficient

• Very good in obtaining local solutions

• Unbeatable for the solution of convex (concave) 
problems 

• In multimodal problems, they tend to zoom to a 
solution in the locale of the initialization point. 

• Not equipped to discard inferior local solutions in 
favour of better solutions.

5
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GENETIC ALGORITHMSGENETIC ALGORITHMS

• Are very flexible, nonproblem specific, and robust. 

• Can explore multiple regions of the parameter 
space for solutions simultaneously. 

• Can discard poor local solutions in favour of more 
promising subsequent local solutions. 

• They are more likely to obtain better solutions for 
multimodal problems than classified methods.
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GENETIC ALGORITHMS (ContGENETIC ALGORITHMS (Cont’’d)d)

• Owing to the heuristic nature of GAs, arbitrary 
constraints can be imposed on the objective function 
without increasing the mathematical complexity of 
the problem.

• Multiple objective functions can be optimized 
simultaneously.

• They require a very large amount of computation. 
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MULTIOBJECTIVE OPTIMIZATIONMULTIOBJECTIVE OPTIMIZATION
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• In many applications, several objective functions 
need to be optimized simultaneously.

• In classical optimization, multiple objective functions 
are used to construct a more complex unified 
objective function with or without constraints.

• On the other hand, with GAs multiple objective 
functions can be optimized directly to obtain a set of 
compromise solutions of the problem at hand.
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MULTIOBJECTIVE OPTIMIZATION (ContMULTIOBJECTIVE OPTIMIZATION (Cont’’d)d)
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• A multiobjective optimization problem with k objective 
functions can be represented as:

Minimize

)](...,),(),([)( 21 xxxxf kfff=

subject to Xx ∈

• A set of compromise solutions obtained by 
multiobjective approaches is known as a Pareto optimal
solution set.

• The user can select the best compromise solution from  
a Pareto-optimal set.

where X is the solution space
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PARETO OPTIMALITYPARETO OPTIMALITY
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• A solution x1 is said to dominate a solution x2 if the 

following conditions hold:

– Solution x1 is no worse than x2 for all objectives

– Solution x1 is strictly better than x2 in at least one 

objective 

• A solution that is not dominated by any other is said to 
be a nondominated solution.

• A set of nondominated solutions in the solution space 
is a Pareto-optimal  solution set.
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PARETO OPTIMALITY (ContPARETO OPTIMALITY (Cont’’d)d)
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• The nondominated set of the entire feasible solution 

space is the globally Pareto-optimal set.

• The solution space corresponding to the Pareto 

optimal solution set is called the Pareto front.

f3(x)

Pareto Pareto 

frontfront

Feasible Feasible 

solution solution 

spacespace
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ELITIST NONDOMINATED SORTING GAELITIST NONDOMINATED SORTING GA

- ENSGA introduces diversity in solutions by sorting  

the population according to the nondomination principle.

- classifies the population into a number of mutually 

exclusive classes

- assigns highest fitness to the members of the class  

that are closest to the Pareto-optimal front

- uses the elitism principle to increase the number of  

Pareto solutions.
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ENSGA STEPSENSGA STEPS

Initialize population

Evaluate fitness of individuals

Select nondominated solutions

by using nondominated sorting

by assigning fitness values according to crowding distance

Perform crossover to obtain new offsprings

Mutate individuals in the offspring population

Evaluate offspring solutions

Perform elitist replacement
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NONDOMINATED SORTINGNONDOMINATED SORTING

• Identify the best nondominated set. 

• Discard the nondominated solutions from the 

population temporarily.

• Identify the next best nondominated set.

• Continue till all solutions are classified.

F2: Rank=2

F1: Rank=1F1: Rank=1
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CROWDING DISTANCECROWDING DISTANCE

• Crowding distance is a diversity metric.

• Crowding distance  is defined as the front density in a 

specific locale.

• Each solution is assigned a crowding distance.

• Solutions located in a less crowded space are preferred.

Solution A is located in a less 

crowded locale than B
Solution A is located in a less 

crowded locale than B
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ELITIST REPLACEMENTELITIST REPLACEMENT

• Combine parent and offspring populations.

• Select better ranking individuals and use crowding 

distance to break any ties.

Parent
population

Offspring
population

Nondominated
sorting

Crowdingdistance
sorting

Population
for next
generation

Population
discarded
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DESIGN OF ASYMMETRIC FIR FILTERSDESIGN OF ASYMMETRIC FIR FILTERS

– A population of potential solutions is created from an 
initial least-squares solution.

– Simulated binary crossovers and polynomial 
mutations are applied according to predefined 
probabilities of occurrence, Px and Pm, respectively.

– The objective functions used to evaluate the fitness 
of the individual solutions are based on the 
amplitude response and group-delay errors.

– The ENSGA is terminated after a prespecified 
number of generations.
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CHROMOSOME STRUCTURECHROMOSOME STRUCTURE

•• ChromosomeChromosomeChromosomeChromosomeChromosomeChromosomeChromosomeChromosome ((candidate solutioncandidate solution) :) :

– The coefficient vector of the FIR filter, b, is used as 
the candidate solution.

– To avoid very long binary strings, a floating-point 
representation is used in encoding the 
chromosomes.
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OBJECTIVE FUNCTIONOBJECTIVE FUNCTION
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• Three objective functions have been used:

- norm of the passband amplitude-response error

- norm of the stopsband amplitude-response  

error with a constrained imposed on the peak error

- A parameter Q which measures the degree of  
flatness of the passband group-delay characteristic
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•• Specifications:Specifications: Highpass FIR filter, 

ωa = 0.4, ωp = 0.55, ωs = 1 rad/s,

δa = 52 dB, N = 35

•• Initialization: Initialization: An FIR filter with nonsymmetric 

coefficients designed using a weighted least-

squares method was used as the initial design.

•• Solutions: Solutions: The next two slides give the results for The next two slides give the results for 

two solutions from the Paretotwo solutions from the Pareto--optimal solution set.optimal solution set.

DESIGN EXAMPLEDESIGN EXAMPLE
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Amplitude response Delay characteristic

Solution 1:Solution 1:

DESIGN EXAMPLE (ContDESIGN EXAMPLE (Cont’’d)d)

Design obtained with ENSGA                  Initial design
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DESIGN EXAMPLE (ContDESIGN EXAMPLE (Cont’’d)d)

Amplitude response Delay characteristic

Solution 2:Solution 2:

Design obtained with ENSGA                  Initial design



DSP GroupDSP GroupDSP GroupDSP GroupDSP GroupDSP GroupDSP GroupDSP Group 23

DESIGN EXAMPLE (ContDESIGN EXAMPLE (Cont’’d)d)

3-D scatter plot of the Pareto-optimal solutions obtained 
by using the ENSGA
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CONCLUSIONSCONCLUSIONS

• The ENSGA can be used to design  nonsymmetric 
FIR filters that would satisfy multiple requirements 

imposed on the amplitude response and the delay 

characteristic.

• The approach yields an improved design with 

respect to the initial weighted least-squares design.

• The design that is best-suited to a specific 
application can be chosen from the set of Pareto-

optimal solutions obtained.

• In common with other GAs, the ENSGA requires a 
large amount of computation. However, this is not a 

serious problem unless the filter design has to be 

carried out in real or quasi-real time.



DSP GroupDSP GroupDSP GroupDSP GroupDSP GroupDSP GroupDSP GroupDSP Group 25

Thank youThank youThank youThank youThank youThank youThank youThank you


