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Compressive Sensing

A signal x(n) of length N is K -sparse if it contains K nonzero
components with K � N .

A sparse signal An image with sparse gradient
(Shepp-Logan phantom)
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Compressive Sensing, cont’d

A signal acquisition procedure in the compressive sensing
framework is modelled as

y
|

M×1

= Φ
|

M×N

· x
|

N×1

where Φ is a measurement matrix, typically with K < M � N ,
and y is measurement vector.

The inverse problem of recovering signal vector x from y is an
ill-posed problem.

A classical approach to recover x from y is the method of least
squares

x∗ = ΦT
(
ΦΦT

)−1
y
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Compressive Sensing, cont’d

Unfortunately, the method of least squares fails to recover a
sparse signal.

The sparsity of a signal can be measured by using its `0
pseudonorm

||x||0 =
N∑
i=1

|xi |0

If signal x is known to be sparse, it can be estimated by solving
the optimization problem

minimize
x

||x||0
subject to Φx = y
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Use of `1 Minimization

Unfortunately, the `0-pseudonorm minimization problem is
nonconvex with combinatorial complexity.

Computationally tractable algorithms include the basis pursuit
algorithm which solves the problem

minimize
x

||x||1
subject to Φx = y

where ||x||1 =
N∑
i=1

|xi |.
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Use of `1 Minimization, cont’d

Theorem

If Φ = {φij} where φij are independent and identically distributed
random variables with zero-mean and variance 1/N and
M ≥ cK log(N/K ), the solution of the `1-minimization problem would
recover exactly a K -sparse signal with high probability.

For real-valued data {Φ, y}, the `1-minimization problem is a linear
programming problem.
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Use of `1 Minimization, cont’d

Example: N = 512, M = 120, K = 26
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Reconstructed Signal by L2 Minimization, M = 120
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Use of `p Minimization

Chartrand’s `p-minimization based iteratively reweighted
algorithm which solves the problem

minimize
x

||x||pp
subject to Φx = y

where ||x||pp =
∑N

i=1 |xi |p with p < 1 yields improved performance.

Mohimani et al.’s smoothed `0-norm minimization algorithm
solves the problem

minimize
x

N∑
i=1

[1− exp (−x2
i /2σ2)]

subject to Φx = y

with σ > 0 using a sequential steepest-descent algorithm.
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Use of `p Minimization, cont’d

The unconstrained regularized `p norm minimization algorithm
estimates signal x as

x∗ = xs + Vnξ
∗

where xs is the least-squares solution of Φx = y, the columns of
Vn constitue orthonormal basis of null space of Φ, and ξ∗ is
obtained as

ξ∗ = arg minimize
ξ

N∑
i=1

[(
xsi + vT

i ξ
)2

+ ε2
]p/2−1

This algorithm finds a vector ξ∗ that would give the sparsest
estimate x∗.
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Proposed `p-Regularized Least-Squares Algorithm

The proposed `p regularized least-squares algorithm is an
extension of the unconstrained regularized `p algorithm for noisy
measurement.

For noisy measurements, the signal acquisition procedure is
modelled as

y = Φx + w

where w is the measurement noise.

In such case, the equality condition Φx = y should be relaxed to

||Φx− y||22 ≤ δ

where δ is a small positive scalar.
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Proposed `p-Regularized Least-Squares Algorithm, cont’d

Consider the optimization problem

minimize
x

||x||pp,ε subject to ||Φx− y||22 ≤ δ

where

||x||pp,ε =
N∑
i=1

(
x2
i + ε2

)p/2

An unconstrained formulation of the above problem is given by

minimize
x

1
2
||Φx− y||22 + λ ||x||pp,ε

where λ is a regularization parameter.

We solve the above optimization problem in the null space of Φ
and its complement space.
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Proposed `p-Regularized Least-Squares Algorithm, cont’d

Let Φ = U [Σ 0] VT be the singular-value decomposition of Φ.
Σ is a diagonal matrix whose diagonal elements σ1, σ2, . . . , σM are the
singular values of Φ.
The columns of U and V are, respectively, the left and right singular
vectors of Φ.
V = [Vr Vn] where Vr consists of the first M columns and Vn consists
the remaining N −M columns of V.
The columns of Vn and Vr form orthogonal basis vectors for the null
space of Φ and its complement space, respectively.

Vector x is expressed as

x = Vrφ + Vnξ

where φ and ξ are vectors of lengths M and N −M , respectively.
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Proposed `p-Regularized Least-Squares Algorithm, cont’d

Using the SVD, we recast the optimization problem for the
`p-RLS algorithm as

minimize
φ,ξ

Fp,ε(φ, ξ)

where

Fp,ε(φ, ξ) =
1

2

M∑
i=1

(σiφi − ỹi)
2 + λ ||x||pp,ε

ỹi is the ith component of vector ỹ = UTy, and x = Vrφ + Vnξ.
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Proposed `p-Regularized Least-Squares Algorithm, cont’d

In the kth iteration of the `p-RLS algorithm, signal x(k) is updated
as

x(k+1) = x(k) + αd(k)
v

where
d(k)
v = Vrd

(k)
r + Vnd(k)

n

and α > 0.

Vectors d(k)
r and d(k)

n are of lengths M and N −M , respectively.

Each component of vectors d(k)
r and d(k)

n is efficiently computed
using the first step of a fixed-point iteration.
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Proposed `p-Regularized Least-Squares Algorithm, cont’d

According to Banach’s fixed-point theorem, the step size α can be
computed using a finite number of iterations as

α = −d(k)
r

T
Σ (Σφ− ỹ) + λ · p · x(k)Tζv

||Σd(k)
r ||22 + λ · p · d(k)

v

T
ζv

where
ζv = [ζv1 ζv2 · · · ζvN ]T

with

ζvj =

[(
x
(k)
j + αd

(k)
vj

)2
+ ε2

]p/2−1
d
(k)
vj

for j = 1, 2, . . . ,N where d
(k)
vj is the jth component of the descent

direction d(k)
v .
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Proposed `p-Regularized Least-Squares Algorithm, cont’d

Optimization overview:
First, set ε to a large value, say, ε1, typically 0.5 ≤ ε1 ≤ 1, and initialize
φ and ξ to zero vectors.

Solve the optimization problem by i) computing descent directions dv

and dr , ii) computing the step size α; and iii) updating solution x and
coefficient vector φ.

Reduce ε to a smaller value and again solve the optimization problem.

Repeat this procedure until a sufficiently small target value, say, εJ is
reached.

Output x as the solution.
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Performance Evaluation

Number of recovered instances versus sparsity K by various algorithms with
N = 1024 and M = 200 over 100 runs.

`p-RLS: Proposed
URLP: Unconstrained regularized `p (Pant, Lu, and Antoniou, 2011)

SL0: Smoothed `0-norm minimization (Mohimani et al., 2009)
IR: Iterative re-weighting (Chartrand and Yin, 2008)
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Performance Evaluation, cont’d

Average CPU time versus signal length for various algorithms with
M = N/2 and K = M/2.5.

`p-RLS: Proposed
URLP: Unconstrained regularized `p (Pant, Lu, and Antoniou, 2011)

SL0: Smoothed `0-norm minimization (Mohimani et al., 2009)
IR: Iterative re-weighting (Chartrand and Yin, 2008)
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Conclusions

Compressive sensing is an effective technique for sampling sparse
signals.

`1 minimization works in general for the reconstruction of sparse
signals.

`p minimization with p < 1 can improve the recovery performance
for signals that are less sparse.

Proposed `p-regularized least-squares offers improved signal
reconstruction from noisy measurements.
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Thank you for your attention.
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