Recovery of Sparse Signals from Noisy Measurements Using an ℓ_p -Regularized Least-Squares Algorithm

J. K. Pant, W.-S. Lu, and A. Antoniou

University of Victoria

August 25, 2011

Compressive Sensing

Image: A matrix

Compressive Sensing

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

- Compressive Sensing
- Use of ℓ_1 Minimization

・ロン ・四 と ・ ヨ と ・ ヨ と

э.

- Compressive Sensing
- Use of ℓ_1 Minimization
- Use of ℓ_p Minimization

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ E → + E →

University of Victoria

э.

- Compressive Sensing
- Use of ℓ_1 Minimization
- Use of ℓ_p Minimization
- Use of ℓ_p -Regularized Least Squares

Image: A matrix

3 > 4 3 >

- Compressive Sensing
- Use of ℓ_1 Minimization
- Use of ℓ_p Minimization
- Use of ℓ_p -Regularized Least Squares
- Performance Evaluation

Image: A matrix

4 3 5 4 3 5

- Compressive Sensing
- Use of ℓ_1 Minimization
- Use of ℓ_p Minimization
- Use of ℓ_p -Regularized Least Squares
- Performance Evaluation
- Conclusion

Image: A matrix

4 3 5 4 3 5

Compressive Sensing

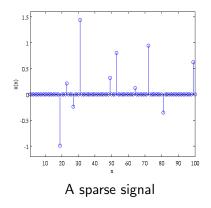
A signal x(n) of length N is K-sparse if it contains K nonzero components with K ≪ N.

A B +
 A B +
 A

(4) (2) (4) (3) (4)

Compressive Sensing

A signal x(n) of length N is K-sparse if it contains K nonzero components with K ≪ N.



An image with sparse gradient (Shepp-Logan phantom)

University of Victoria

Compressive Sensing

 A signal acquisition procedure in the compressive sensing framework is modelled as

 $\mathbf{y} = \mathbf{\Phi} \cdot \mathbf{x}_{\substack{|\\ M \times 1}} \mathbf{x}_{\substack{N \times N \\ M \times N}} \mathbf{x}_{\substack{N \times 1}}$

where Φ is a measurement matrix, typically with $K < M \ll N$, and **y** is measurement vector.

 A signal acquisition procedure in the compressive sensing framework is modelled as

 $\mathbf{y} = \mathbf{\Phi} \cdot \mathbf{x}_{\substack{|\\ M \times 1}}$

where Φ is a measurement matrix, typically with $K < M \ll N$, and **y** is measurement vector.

The inverse problem of recovering signal vector **x** from **y** is an ill-posed problem.

 A signal acquisition procedure in the compressive sensing framework is modelled as

 $\mathbf{y} = \mathbf{\Phi} \cdot \mathbf{x}_{\substack{|\\M \times 1}}$

where Φ is a measurement matrix, typically with $K < M \ll N$, and **y** is measurement vector.

- The inverse problem of recovering signal vector **x** from **y** is an ill-posed problem.
- A classical approach to recover **x** from **y** is the method of least squares

$$\mathbf{x}^{*} = \mathbf{\Phi}^{T} \left(\mathbf{\Phi} \mathbf{\Phi}^{T}
ight)^{-1} \mathbf{y}$$

University of Victoria

Compressive Sensing

 Unfortunately, the method of least squares fails to recover a sparse signal.

Image: A matrix

- Unfortunately, the method of least squares fails to recover a sparse signal.
- The sparsity of a signal can be measured by using its ℓ_0 pseudonorm

$$||{f x}||_0 = \sum_{i=1}^N |x_i|^0$$

Image: A matrix

- Unfortunately, the method of least squares fails to recover a sparse signal.
- The sparsity of a signal can be measured by using its ℓ_0 pseudonorm

$$||\mathbf{x}||_0 = \sum_{i=1}^N |x_i|^0$$

If signal x is known to be sparse, it can be estimated by solving the optimization problem

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & ||\mathbf{x}||_{0} \\ \underset{\mathbf{x}}{\text{subject to}} & \mathbf{\Phi}\mathbf{x} = \mathbf{y} \end{array}$$

• Unfortunately, the ℓ_0 -pseudonorm minimization problem is nonconvex with combinatorial complexity.

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Unfortunately, the ℓ_0 -pseudonorm minimization problem is nonconvex with combinatorial complexity.
- Computationally tractable algorithms include the *basis pursuit* algorithm which solves the problem

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & ||\mathbf{x}||_{1} \\ \text{subject to} & \mathbf{\Phi}\mathbf{x} = \mathbf{y} \end{array}$$

where
$$||\mathbf{x}||_1 = \sum_{i=1}^{N} |x_i|$$
.

Compressive Sensing

Theorem

If $\mathbf{\Phi} = \{\phi_{ij}\}$ where ϕ_{ij} are independent and identically distributed random variables with zero-mean and variance 1/N and $M \ge cK \log(N/K)$, the solution of the ℓ_1 -minimization problem would recover exactly a *K*-sparse signal with high probability.

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

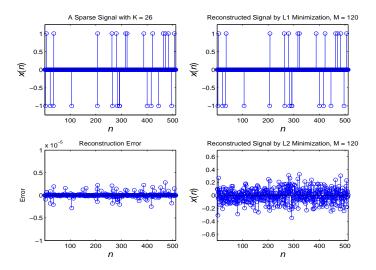
Theorem

If $\mathbf{\Phi} = \{\phi_{ij}\}$ where ϕ_{ij} are independent and identically distributed random variables with zero-mean and variance 1/N and $M \ge cK \log(N/K)$, the solution of the ℓ_1 -minimization problem would recover exactly a K-sparse signal with high probability.

For real-valued data $\{\Phi, y\}$, the ℓ_1 -minimization problem is a linear programming problem.

Use of ℓ_1 Minimization, cont'd

Example: N = 512, M = 120, K = 26



Compressive Sensing

< D > < D

Use of ℓ_p Minimization

Chartrand's lp-minimization based iteratively reweighted algorithm which solves the problem

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & ||\mathbf{x}||_{p}^{p} \\ \text{subject to} & \mathbf{\Phi}\mathbf{x} = \mathbf{y} \end{array}$$

where $||\mathbf{x}||_{p}^{p} = \sum_{i=1}^{N} |x_{i}|^{p}$ with p < 1 yields improved performance.

A B +
 A B +
 A

Use of ℓ_p Minimization

Chartrand's lp-minimization based iteratively reweighted algorithm which solves the problem

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & ||\mathbf{x}||_{p}^{p} \\ \text{subject to} & \mathbf{\Phi}\mathbf{x} = \mathbf{y} \end{array}$$

where $||\mathbf{x}||_{p}^{p} = \sum_{i=1}^{N} |x_{i}|^{p}$ with p < 1 yields improved performance.

- Mohimani et al.'s smoothed ℓ_0 -norm minimization algorithm solves the problem

minimize
$$\sum_{i=1}^{N} [1 - \exp(-x_i^2/2\sigma^2)]$$

subject to $\mathbf{\Phi}\mathbf{x} = \mathbf{y}$

= nan

イモト イモト

University of Victoria

with $\sigma > 0$ using a sequential steepest-descent algorithm.

Compressive Sensing

• The unconstrained regularized ℓ_p norm minimization algorithm estimates signal **x** as

$$\mathbf{x}^* = \mathbf{x}_s + \mathbf{V}_n oldsymbol{\xi}^*$$

where \mathbf{x}_s is the least-squares solution of $\mathbf{\Phi}\mathbf{x} = \mathbf{y}$, the columns of \mathbf{V}_n constitue orthonormal basis of null space of $\mathbf{\Phi}$, and $\boldsymbol{\xi}^*$ is obtained as

$$\boldsymbol{\xi}^* = \text{ arg minimize } \sum_{i=1}^{N} \left[\left(x_{si} + \boldsymbol{v}_i^T \boldsymbol{\xi} \right)^2 + \epsilon^2 \right]^{p/2-1}$$

Compressive Sensing

• The unconstrained regularized ℓ_p norm minimization algorithm estimates signal **x** as

$$\mathbf{x}^* = \mathbf{x}_s + \mathbf{V}_n oldsymbol{\xi}^*$$

where \mathbf{x}_s is the least-squares solution of $\mathbf{\Phi}\mathbf{x} = \mathbf{y}$, the columns of \mathbf{V}_n constitue orthonormal basis of null space of $\mathbf{\Phi}$, and $\boldsymbol{\xi}^*$ is obtained as

$$oldsymbol{\xi}^* = ext{ arg minimize } \sum_{i=1}^N \left[\left(x_{si} + oldsymbol{v}_i^T oldsymbol{\xi}
ight)^2 + \epsilon^2
ight]^{p/2-1}$$

This algorithm finds a vector ξ* that would give the sparsest estimate x*.

Compressive Sensing

• The proposed ℓ_p regularized least-squares algorithm is an extension of the unconstrained regularized ℓ_p algorithm for noisy measurement.

・ロト ・回ト ・ヨト ・ヨ

- The proposed ℓ_p regularized least-squares algorithm is an extension of the unconstrained regularized ℓ_p algorithm for noisy measurement.
- For noisy measurements, the signal acquisition procedure is modelled as

$$\mathbf{y} = \mathbf{\Phi} \mathbf{x} + \mathbf{w}$$

where \mathbf{w} is the measurement noise.

- The proposed ℓ_p regularized least-squares algorithm is an extension of the unconstrained regularized ℓ_p algorithm for noisy measurement.
- For noisy measurements, the signal acquisition procedure is modelled as

$$\mathbf{y} = \mathbf{\Phi} \mathbf{x} + \mathbf{w}$$

where \mathbf{w} is the measurement noise.

In such case, the equality condition $\Phi \mathbf{x} = \mathbf{y}$ should be relaxed to

$$||\mathbf{\Phi}\mathbf{x} - \mathbf{y}||_2^2 \le \delta$$

University of Victoria

where δ is a small positive scalar.

Compressive Sensing

Consider the optimization problem

 $\underset{\mathbf{x}}{\text{minimize}} \quad ||\mathbf{x}||_{p,\epsilon}^{p} \quad \text{subject to} \quad ||\mathbf{\Phi}\mathbf{x} - \mathbf{y}||_{2}^{2} \leq \delta$

$$||\mathbf{x}||_{p,\epsilon}^{p} = \sum_{i=1}^{N} (x_{i}^{2} + \epsilon^{2})^{p/2}$$

where

イロン 不良と 不良と 不良と 一度

Consider the optimization problem

 $\underset{\mathbf{x}}{\operatorname{minimize}} \quad ||\mathbf{x}||_{p,\epsilon}^{p} \quad \text{subject to} \quad ||\mathbf{\Phi}\mathbf{x} - \mathbf{y}||_{2}^{2} \leq \delta$

$$||\mathbf{x}||_{p,\epsilon}^{p} = \sum_{i=1}^{N} (x_{i}^{2} + \epsilon^{2})^{p/2}$$

An unconstrained formulation of the above problem is given by

$$\underset{\mathbf{x}}{\text{minimize}} \quad \frac{1}{2} \left| \left| \mathbf{\Phi} \mathbf{x} - \mathbf{y} \right| \right|_{2}^{2} + \lambda \left| \left| \mathbf{x} \right| \right|_{p,\epsilon}^{p}$$

where λ is a regularization parameter.

Compressive Sensing

where

イロト イポト イヨト イヨト

Consider the optimization problem

 $\underset{\mathbf{x}}{\text{minimize}} \quad ||\mathbf{x}||_{p,\epsilon}^{p} \quad \text{subject to} \quad ||\mathbf{\Phi}\mathbf{x} - \mathbf{y}||_{2}^{2} \leq \delta$

$$||\mathbf{x}||_{p,\epsilon}^{p} = \sum_{i=1}^{N} (x_{i}^{2} + \epsilon^{2})^{p/2}$$

. .

An unconstrained formulation of the above problem is given by

$$\underset{\mathbf{x}}{\text{minimize}} \quad \frac{1}{2} \left| \left| \mathbf{\Phi} \mathbf{x} - \mathbf{y} \right| \right|_{2}^{2} + \lambda \left| \left| \mathbf{x} \right| \right|_{p,\epsilon}^{p}$$

where λ is a regularization parameter.

We solve the above optimization problem in the null space of Φ and its complement space.

Compressive Sensing

where

- Let $\mathbf{\Phi} = \mathbf{U} [\mathbf{\Sigma} \ \mathbf{0}] \mathbf{V}^{\mathsf{T}}$ be the singular-value decomposition of $\mathbf{\Phi}$.
 - **\Sigma** is a diagonal matrix whose diagonal elements $\sigma_1, \sigma_2, \ldots, \sigma_M$ are the singular values of Φ .
 - The columns of \boldsymbol{U} and \boldsymbol{V} are, respectively, the left and right singular vectors of $\boldsymbol{\Phi}.$
 - $\mathbf{V} = [\mathbf{V}_r \ \mathbf{V}_n]$ where \mathbf{V}_r consists of the first M columns and \mathbf{V}_n consists the remaining N M columns of \mathbf{V} .
 - The columns of V_n and V_r form orthogonal basis vectors for the null space of Φ and its complement space, respectively.

- Let $\mathbf{\Phi} = \mathbf{U} [\mathbf{\Sigma} \ \mathbf{0}] \mathbf{V}^{\mathsf{T}}$ be the singular-value decomposition of $\mathbf{\Phi}$.
 - **\Sigma** is a diagonal matrix whose diagonal elements $\sigma_1, \sigma_2, \ldots, \sigma_M$ are the singular values of Φ .
 - The columns of **U** and **V** are, respectively, the left and right singular vectors of $\mathbf{\Phi}$.
 - $\mathbf{V} = [\mathbf{V}_r \ \mathbf{V}_n]$ where \mathbf{V}_r consists of the first M columns and \mathbf{V}_n consists the remaining N M columns of \mathbf{V} .
 - The columns of V_n and V_r form orthogonal basis vectors for the null space of Φ and its complement space, respectively.

Vector x is expressed as

$$\mathbf{x}=\mathbf{V}_{r}oldsymbol{\phi}+\mathbf{V}_{n}oldsymbol{\xi}$$

where ϕ and $\boldsymbol{\xi}$ are vectors of lengths M and N - M, respectively.

・ロト ・同ト ・ヨト ・ヨト

University of Victoria

Compressive Sensing

• Using the SVD, we recast the optimization problem for the ℓ_p -RLS algorithm as

minimize
$$F_{
ho,\epsilon}(oldsymbol{\phi},oldsymbol{\xi})$$

where

$$F_{\rho,\epsilon}(\boldsymbol{\phi},\boldsymbol{\xi}) = \frac{1}{2} \sum_{i=1}^{M} \left(\sigma_i \phi_i - \tilde{y}_i \right)^2 + \lambda \left| \left| \mathbf{x} \right| \right|_{\rho,\epsilon}^{\rho}$$

 \tilde{y}_i is the *i*th component of vector $\tilde{\mathbf{y}} = \mathbf{U}^T \mathbf{y}$, and $\mathbf{x} = \mathbf{V}_r \phi + \mathbf{V}_n \boldsymbol{\xi}$.

・ロト ・回ト ・ヨト ・

University of Victoria

Compressive Sensing

In the kth iteration of the l_p-RLS algorithm, signal x^(k) is updated as

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha \mathbf{d}_{v}^{(k)}$$

where

$$\mathbf{d}_{v}^{(k)} = \mathbf{V}_{r}\mathbf{d}_{r}^{(k)} + \mathbf{V}_{n}\mathbf{d}_{n}^{(k)}$$

and $\alpha > 0$.

In the kth iteration of the l_p-RLS algorithm, signal x^(k) is updated as

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha \mathbf{d}_{v}^{(k)}$$

where

$$\mathbf{d}_{v}^{(k)} = \mathbf{V}_{r}\mathbf{d}_{r}^{(k)} + \mathbf{V}_{n}\mathbf{d}_{n}^{(k)}$$

and $\alpha > 0$.

Vectors $\mathbf{d}_r^{(k)}$ and $\mathbf{d}_n^{(k)}$ are of lengths M and N - M, respectively.

In the kth iteration of the l_p-RLS algorithm, signal x^(k) is updated as

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha \mathbf{d}_{v}^{(k)}$$

where

$$\mathbf{d}_{v}^{(k)} = \mathbf{V}_{r}\mathbf{d}_{r}^{(k)} + \mathbf{V}_{n}\mathbf{d}_{n}^{(k)}$$

and $\alpha > 0$.

- Vectors $\mathbf{d}_r^{(k)}$ and $\mathbf{d}_n^{(k)}$ are of lengths M and N M, respectively.
- Each component of vectors d^(k) and d^(k) is efficiently computed using the first step of a fixed-point iteration.

Proposed ℓ_p -Regularized Least-Squares Algorithm, cont'd

 According to Banach's fixed-point theorem, the step size α can be computed using a finite number of iterations as

$$\alpha = -\frac{\mathbf{d}_{r}^{(k)^{T}} \mathbf{\Sigma} \left(\mathbf{\Sigma} \boldsymbol{\phi} - \tilde{\boldsymbol{y}} \right) + \lambda \cdot \boldsymbol{p} \cdot \mathbf{x}^{(k)^{T}} \boldsymbol{\zeta}_{v}}{||\mathbf{\Sigma} \mathbf{d}_{r}^{(k)}||_{2}^{2} + \lambda \cdot \boldsymbol{p} \cdot \mathbf{d}_{v}^{(k)^{T}} \boldsymbol{\zeta}_{v}}$$

where

$$\boldsymbol{\zeta}_{v} = \left[\zeta_{v1} \ \zeta_{v2} \ \cdots \ \zeta_{vN}\right]^{T}$$

with

$$\zeta_{vj} = \left[\left(x_j^{(k)} + \alpha d_{vj}^{(k)} \right)^2 + \epsilon^2 \right]^{p/2-1} d_{vj}^{(k)}$$

for j = 1, 2, ..., N where $d_{vj}^{(k)}$ is the *j*th component of the descent direction $\mathbf{d}_{v}^{(k)}$.

University of Victoria

Compressive Sensing

Proposed ℓ_p -Regularized Least-Squares Algorithm, cont'd

Optimization overview:

First, set ε to a large value, say, ε₁, typically 0.5 ≤ ε₁ ≤ 1, and initialize φ and ξ to zero vectors.

- First, set ϵ to a large value, say, ϵ_1 , typically $0.5 \le \epsilon_1 \le 1$, and initialize ϕ and ξ to zero vectors.
- Solve the optimization problem by i) computing descent directions d_ν and d_r, ii) computing the step size α; and iii) updating solution x and coefficient vector φ.

- First, set ϵ to a large value, say, ϵ_1 , typically $0.5 \le \epsilon_1 \le 1$, and initialize ϕ and ξ to zero vectors.
- Solve the optimization problem by i) computing descent directions d_ν and d_r, ii) computing the step size α; and iii) updating solution x and coefficient vector φ.
- Reduce ϵ to a smaller value and again solve the optimization problem.

- First, set ϵ to a large value, say, ϵ_1 , typically $0.5 \le \epsilon_1 \le 1$, and initialize ϕ and ξ to zero vectors.
- Solve the optimization problem by i) computing descent directions d_ν and d_r, ii) computing the step size α; and iii) updating solution x and coefficient vector φ.
- Reduce ϵ to a smaller value and again solve the optimization problem.
- Repeat this procedure until a sufficiently small target value, say, ϵ_J is reached.

・ロト ・ 日 ・ ・ ヨ ・

- First, set ϵ to a large value, say, ϵ_1 , typically $0.5 \le \epsilon_1 \le 1$, and initialize ϕ and ξ to zero vectors.
- Solve the optimization problem by i) computing descent directions d_ν and d_r, ii) computing the step size α; and iii) updating solution x and coefficient vector φ.
- Reduce ϵ to a smaller value and again solve the optimization problem.
- Repeat this procedure until a sufficiently small target value, say, ϵ_J is reached.

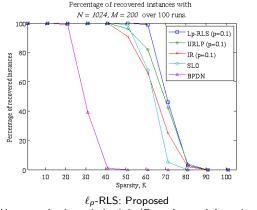
・ロト ・ 日 ・ ・ ヨ ・ ・

University of Victoria

• Output **x** as the solution.

Performance Evaluation

Number of recovered instances versus sparsity K by various algorithms with N = 1024 and M = 200 over 100 runs.

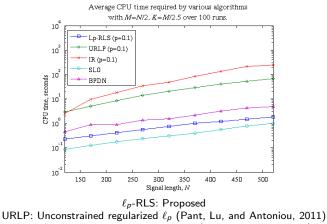


URLP: Unconstrained regularized ℓ_p (Pant, Lu, and Antoniou, 2011) SL0: Smoothed ℓ_0 -norm minimization (Mohimani et al., 2009) IR: Iterative re-weighting (Chartrand and Yin, 2008)

Compressive Sensing

Performance Evaluation, cont'd

Average CPU time versus signal length for various algorithms with M = N/2 and K = M/2.5.



- SL0: Smoothed ℓ_0 -norm minimization (Mohimani et al., 2009)
 - IR: Iterative re-weighting (Chartrand and Yin, 2008)

Compressive Sensing

 Compressive sensing is an effective technique for sampling sparse signals.

A B >
 A B >
 A

< ≥ > <

- Compressive sensing is an effective technique for sampling sparse signals.
- ℓ_1 minimization works in general for the reconstruction of sparse signals.

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Compressive sensing is an effective technique for sampling sparse signals.
- ℓ_1 minimization works in general for the reconstruction of sparse signals.
- ℓ_p minimization with p < 1 can improve the recovery performance for signals that are less sparse.

- Compressive sensing is an effective technique for sampling sparse signals.
- ℓ_1 minimization works in general for the reconstruction of sparse signals.
- ℓ_p minimization with p < 1 can improve the recovery performance for signals that are less sparse.
- Proposed l_p-regularized least-squares offers improved signal reconstruction from noisy measurements.

Thank you for your attention.

Compressive Sensing

・ロト ・回ト ・ヨト ・ヨト

ъ