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Implicit Sensorimotor Mapping of the Peripersonal
Space by Gazing and Reaching

Eris Chinellato, Member, IEEE, Marco Antonelli, Beata J. Grzyb, and Angel P. del Pobil

Abstract—Primates often perform coordinated eye and arm
movements, contextually fixating and reaching towards nearby
objects. This combination of looking and reaching to the same
target is used by infants to establish an implicit visuomotor
representation of the peripersonal space, useful for both oculo-
motor and arm motor control. In this work, taking inspiration
from such behavior and from primate visuomotor mechanisms,
a shared sensorimotor map of the environment, built on a ra-
dial basis function framework, is configured and trained by the
coordinated control of eye and arm movements. Computational
results confirm that the approach seems especially suitable for the
problem at hand, and for its implementation on a real humanoid
robot. By exploratory gazing and reaching actions, either free
or goal-based, the artificial agent learns to perform direct and
inverse transformations between stereo vision, oculomotor, and
joint-space representations. The integrated sensorimotor map that
allows to contextually represent the peripersonal space through
different vision and motor parameters is never made explicit, but
rather emerges thanks to the interaction of the agent with the
environment.

Index Terms— Eye–arm coordination, humanoid robots, ra-
dial basis function networks, self-supervised learning, spatial
awareness.

I. INTRODUCTION

H UMANS and other primates build their perception of the
surrounding space by actively interacting with nearby

stimuli, mainly looking and reaching at them. Through active
exploration, they construct a representation of the environment
useful for further interactions. The main sensory information
used to build such representation is retinotopic (visual data) and
proprioceptive (eye, neck, and arm position). A critical issue in
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this process is to coordinate movements and associate sensory
inputs, in order to obtain a coherent mental image of the envi-
ronment. Indeed, eye and arm movements often go together, as
we fixate an object before, or while, we reach it. Such combina-
tion of looking and reaching towards the same target is used to
establish a consistent, integrated visuomotor representation of
the peripersonal space.

In primates, areas within the dorsal visual stream of the pri-
mate brain, and more precisely, regions of the posterior parietal
cortex (PPC), are in charge of performing the reference frame
transformations required to map visual information to appro-
priate oculomotor and limb movements. These areas are the best
candidates for the role of accessing and updating a visuomotor
representation of the reachable space. It is often argued, and
increasingly accepted by the neuroscientific community, that
such ability is achieved through the use of gain fields and basis
function representations, that permit to simultaneously repre-
sent stimuli in various reference frames. In fact, the basis func-
tion approach has the attractive feature that both head-centric
representations for arm movements and retino-centric represen-
tations for gaze movements can be encoded concurrently in the
same neural map [1]. In the basis function framework, explicit
encoding of targets in retino-centric coordinates is enhanced via
gain fields to hold in parallel an implicit encoding in other ref-
erence frames [2]. Such gain fields are found in retino-centric
organized eye movement areas lateral intraparietal sulcus (LIP)
[3], [4] and frontal eye field (FEF) [5] and, most importantly, in
posterior parietal area V6A, as explain in Section II.

In this work, eyes and arms of a humanoid robot are treated as
separate effectors that receive motor control via different move-
ment vectors associated to specific spatial representations, i.e.,
oculomotor and arm joint space. These representations are com-
bined to form a unique, shared visuomotor map of the periper-
sonal space. The exploratory behavior of the robot is based on
a functional model of the tasks performed by the primate pos-
terior parietal cortex. The main building block of such a model
is a basis function framework that associate different reference
frames, giving them mutual access to each other, during plan-
ning, execution and monitoring of eye and arm movements.
We implement such framework by relying upon findings from
human and monkey studies, especially from data on gaze direc-
tion and arm reaching movements in monkey area V6A [6].

Our system should finally be able to achieve a visuomotor
knowledge of its peripersonal space in a dynamical way, through
the practical interaction with the environment, using both stere-
optic visual input and proprioceptive data concerning eye and
arm movements. Following this approach, the robot should nat-
urally achieve very good open-loop reaching and saccade capa-
bilities towards nearby targets. This goal is represented in Fig. 1,
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Fig. 1. Conceptual schema of the space representation map, with afferent and
efferent signals.

which depicts a simple conceptual schema of how the space rep-
resentation is generated and updated. The peripersonal space is
represented by a plastic map, that constitutes both knowledge of
the environment and a sensorimotor code for performing move-
ments and evaluate their outcome. The map is accessed and
modified by two types of information: retinotopic (visual) and
proprioceptive (eye and arm movements). Contextually, eye and
arm motor plans are devised in accordance to the map itself.
This mechanism allows us to keep both eye and arm targeting
in register and to establish a common spatial representation of
the target’s location. The proposed framework is therefore based
on a common code for spatial awareness obtained by a learning
procedure based on target errors of eye or arm movements to vi-
sual targets, as described in Section III. As a final goal, the agent
should be able to purposefully build such visuomotor map of
the environment in 3-D, simultaneously learning to look at and
reach towards different visual targets.

The perception of the space and the related sensorimotor map
is thus accessed and updated by visuomotor interaction, e.g.,
moving the gaze and the arm toward a goal position. More in-
terestingly, the agent has to be able to keep learning during
its normal behavior, by interacting with the world and contex-
tually update its representation of the world itself. Such goal
can be achieved by adjusting the weights of the basis func-
tions according to the errors observed in the oculomotor and
reaching movements as guided by the same basis functions. The
concurrence of eye and arm movements should be sufficient
to provide the appropriate error signals even when actual dis-
tances between target and final position of the action are not
explicitly provided. We could call this approach as a “self-su-
pervised learning” framework, in which the different modal-
ities supervise each other, and eye and arm movements both
improve, and obtain together a precise visuomotor representa-
tion of the surrounding space. Upon tactile feedback, confirming
that the target object has been reached, the actual gazing and
reaching directions can be compared with the expected ones and
the 3-D visuomotor representation accordingly updated if nec-
essary. The presence of a tactile response, as feedback for the
correct execution of a reaching movement, provides a reliable
“master” signal to ensure the accuracy of the global represen-
tation. The results presented in Section IV refers to the com-
putational implementation of the model, and we are currently
working on its development on our humanoid robot setup (see
Section V).

II. BACKGROUND

This research builds on neuroscience findings and insights,
computational intelligence concepts and techniques, and engi-
neering goals and constraints posed by the robotic implemen-
tation. In this section we introduce the fundamental inspiring
concepts and relevant literature for each of these fields.

A. Sensorimotor Transformations in the Posterior
Parietal Cortex

The visual cortex of the primate brain is organized in two par-
allel channels, called “dorsal” and “ventral” streams. The former
elaborates visual data with the main purpose of endowing the
subject with the ability of interacting with his/her environment,
and its tasks are often synthesized as “vision for action.” The
latter is dedicated to object recognition and conceptual pro-
cessing, and thus performs “vision for perception.” Although
the interaction between the two streams is necessary for most
everyday tasks, dorsal stream areas are more strictly related to
the planning and monitoring of reaching and grasping actions
[7]. In fact, dorsal visual analysis is driven by the absolute di-
mension and location of target objects, requiring continuous
transformations from retinal data to effector-based frames of
reference. The frame of reference used for arm movements is
body-centered, e.g., fixed on the shoulder. Considering a dex-
terous primate, or a humanoid robot endowed with a pan-tilt-
vergence head, head movements are also body-centered, whilst
gaze movements are head-centered, usually referred to the cy-
clopean eye, ideal midpoint between the eyes. Visual informa-
tion is retinocentric, and there are two different retinal reference
frames for a stereo system. All these different reference frames
are brought in register to each other by coordinated movements
to the same target.

The ventral stream maintains instead a contextual coding of
objects in the environment, based on their identity and meaning.
Spatially, such coding can be defined as object-centered, as it
is mainly concerned with the relative location of objects with
respect to each other. This sort of coding is not used at this stage
of our research.

The hypothesis of parallel visuomotor channels within the
dorsal stream dedicated respectively to the transport and the
preshaping components of the reach-to-grasp action is well rec-
ognized [8]. Anatomically, these two channels fall both inside
the dorsal stream, and are sometimes named dorso–medial and
dorso–lateral visuomotor channels [9]. For what concerns prox-
imal joint movements, focus of interest of this research, and
according to a well established nomenclature, the most impor-
tant reach-related cortical areas are V6A and medial intrapari-
etal sulcus (MIP), both receiving their main input from V6 and
projecting to the dorsal premotor cortex [9]–[12].

Considering the functional role of the dorso–medial stream,
information regarding eye position and gaze direction is very
likely employed by area V6A in order to estimate the position
of surrounding objects and guide reaching movements toward
them. Two types of neurons have been found in V6A that allow
us to sustain this hypothesis [6]. The receptive fields of neu-
rons of the first type are organized in retinotopic coordinates,
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but they can encode spatial locations thanks to gaze modula-
tion. The receptive fields of the second type of neurons are or-
ganized according to the real, absolute distribution of the sub-
ject peripersonal space. In addition, V6A contains neurons that
arguably represent the target of reaching retinocentrically, and
others that use a spatial representation [13]. This strongly sug-
gests a critical role of V6A in the gradual transformation from
a retinotopic to an effector-centered frame of reference. More-
over, some V6A neurons appear to be directly involved in the ex-
ecution of reaching movements [9], indicating that this area is in
charge of performing the visuomotor transformations required
for the purposive control of proximal arm joints, integrating vi-
sual, somatosensory, and somatomotor signals in order to reach
a given target in the 3-D space.

B. The Basis Function Approach to Sensorimotor
Transformations

Basis functions are building blocks that, when combined
linearly, can approximate any nonlinear function, such as those
required to map between different neural representations of the
peripersonal space (retinotopic, head-centered, arm-centered).
Basis function networks have been proposed as a computational
solution especially suitable for modeling the kind of senso-
rimotor transformations performed by the posterior parietal
cortex [1], [14], [15]. Networks of suitable basis functions
are in fact able to naturally reproduce the gain-field effects
often observed in parietal neurons [16]. It was suggested that
positions of object in the peripersonal space are coded through
the activity of parietal neurons that act as basis functions, and
any coordinate frame can be read out from such population
coding according to the task requirements [14].

Several different transfer functions can be used as basis func-
tions, the only requirements are that they are nonlinear, that their
interaction is also nonlinear (e.g., product versus sum), and that
they cover all the possible input range. The most used functions,
for their convenience and biological plausibility, are Gaussian
and sigmoid functions. For example, retinotopic maps are often
modeled by Gaussian basis functions, and eye position by sig-
moid, or logistic, functions [14]. Learning in basis function net-
works is composed of two stages, the first for choosing the shape
and location of the basis functions and the second to map them to
the output representation. The first step is usually unsupervised,
the second depend on errors observed during the sensorimotor
interaction with the world.

C. Connectionist Sensorimotor Transformations in Robotics

Although the use of artificial neural networks in robotics is
very diffuse and not at all novel [17], just few works concern
visuomotor transformations involving arm movements, and es-
pecially rare is the coordinate control of gazing and reaching
movements. Visuomotor arm control has been usually tackled
with the use of self-organizing maps (SOM). Some works [18],
[19] apply them to the coordination between visual information
and arm control, modeling two cameras (although not in a clas-
sical stereo head configuration) and three degrees of freedom
manipulators. Neither of the above papers consider eye move-
ments, and their applicability to real robot setups is limited, re-

spectively by the huge number of required learning steps [18],
and by the discrete sampling of the space which makes any
target reachable only up to a certain precision, and only after
a number of steps dependent on the sampling [19]. A recent ex-
tension of these works [20] makes use of alternative SOM maps
linked to different cameras, in order to deal with occlusion, and
takes also into account the issue of obstacle avoidance. Espe-
cially interesting is the flexibility of their system to changes in
the geometry of the effector, which we are able to reproduce
with our approach. Fuke et al. [21] have used a SOM to model
the relation between arm movements and the perception of a
subject own face, as supposedly performed by area ventral in-
traparietal sulcus (VIP) of the primate brain.

Whilst the use of SOM networks is hence relatively common,
the employment of biologically inspired radial basis function
(RBF) networks remains relatively unexplored. Although RBF
have been successfully applied to the computation of inverse
kinematics, alone [22] or together with SOM [23], to the best
of our knowledge only two papers describes the use of RBF
networks for visuomotor transformations. The system of Mar-
janovic et al. [24] firstly learns the mapping between image co-
ordinates and the pan/tilt encoder coordinates of the eye motors
(the saccade map), and then the mapping of the eye position into
arm position (the ballistic map). A similar learning strategy is
employed by Sun and Scassellati [25], which use the difference
vector between the target and the hand position in the eye-cen-
tered coordinate system without any additional transformational
stages. Despite the similarity of their approaches to ours, some
major differences can be pointed out: first of all, we exploit
stereo vision, realizing a coordinated control of vergence and
version movements, moreover, the saccade map in [24] is fixed
and mainly used to provide visual feedback during the ballistic
map learning. On the other hand, our sensorimotor transforma-
tions are bidirectional, so that our system learns to gaze towards
its hand but also to reach where it is looking at. This skill is
trained through a self-supervised learning framework, in which
the different modalities supervise each other, and both improve
contextually their mapping of the space. The distribution of the
RBF centers also differs from the cited works, as we place the
neural receptive fields according to findings from neurophysio-
logical studies on monkeys.

A few attempts to tackle the problem of coordinate control of
gazing and arm movements by using neural networks, but not
RBFs, have also been reported. Schenk et al. [26] employ a feed-
forward neural network for learning to saccade toward targets,
and a recurrent neural network is employed for executing the
transformation carrying from the visual input to an appropriate
arm posture, suitable for reaching and grasping a target object.
The reaching model of Nori et al. [27] consists in learning a
motor–motor map to direct the hand close to the fixated object,
and then activate a closed loop controller that using visual dis-
tance between the hand and the target improves reaching accu-
racy. Eye gazing control is not adaptive, and they do not consider
the importance of contextually maintaining a series of represen-
tations in different body reference frames, as suggested by neu-
roscience findings, especially those regarding posterior parietal
area V6A.
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III. SENSORIMOTOR MAPPING OF THE PERIPERSONAL SPACE:
CONCEPTUAL FRAMEWORK

As mentioned in Section I and considering the theoretical
description of Section II, the main sources of inspiration for
our model are the basis function approach [14], [16] and neu-
roscience experiments on the role of posterior parietal cortical
areas (especially V6A) during gazing and reaching actions [6],
[9], [13].

The use of a robot hardware constitutes a possible complica-
tion in the realization of a model of cortical mechanisms, and
some issues that would easily be solved in simulated environ-
ments have to be dealt with more accurately considering the
real world implementation. The approach we follow is epige-
netic, being the robot endowed with an innate knowledge of
how to move in its environment, which is later developed and
customized through exploration and interaction with visual and
tactile stimuli. Following this idea, all transformations are first
implemented on a computational model, which final configu-
ration represents the genetic component of the developmental
process, and is then used as a bootstrap condition for the actual
experimental learning process by the robot.

Although in principle one representation should be enough
for all the required transformations, the number of neurons nec-
essary to contextually code for different signals is given by
the size of the signals to the power of . It is easy to see that
a representation maintaining both eye visual and proprioceptive
signals, and arm joint information would be computationally un-
feasible, even for the brain itself. A more logical structure is one
in which a central, body-centered representation is accessed and
updated both by limb sensorimotor signals on the one hand and
visual and oculomotor signals on the other hand (see Fig. 2).
Indeed, this seems to be how the problem is solved within the
brain, in which different areas or populations of neurons in the
same areas are dedicated to different transformations. Most im-
portantly, this approach is consistent with the findings related to
area V6A, which contains neurons that code for the retinocentric
position of targets, others that code for their limb-related posi-
tion, and even others that seem to maintain both codings and
look thus especially critical for performing sensorimotor trans-
formations. In this way, different representations of the same
target can be maintained contextually, and used to act on the
target if required. It is the relation between these representa-
tions that is accessed and modified by a conjunction of gaze and
reach movements to the same target. The global structure of our
model follows this principles, and is thus modular, separating
the retinal to body-centered transformation and the body-cen-
tered to arm-joint transformations (left and right sides of Fig. 2).

The quality and the nature of the sensory stimuli to be intro-
duced in the schema is quite varied, as the process of 3-D lo-
calization requires the integration of information coming from
various sources and different modalities. Such integration can
be modeled with different levels of detail and considering alter-
native data sources and formats. In our case, we include visual
information about potential targets and proprioceptive data on
eye position and arm position. Several possible alternatives for
representing the above information can be employed. Among
possible alternatives for representing binocular information we

Fig. 2. Building blocks of the global space representation. The central
body-centered map constitutes the integrated sensorimotor representation of
the peripersonal space.

favor the composition of a cyclopean image representation with
a disparity map (under the assumption that the correspondence
problem is already solved), over the option of having separate
left and right retinotopic maps (see left side of the schema of
Fig. 2). Similarly, considering that we are modeling extrastriate
and associative visual areas, it is plausible to assume that gazing
direction is represented by version and vergence angles instead
of the two explicit eye positions. This scheme allows us to trans-
form ocular movements and stereoptic visual information to
a body/head-centered reference frame and also, when needed,
elicit the eye movements that are necessary to foveate on a given
visual target. On the right hand of the conceptual schema of
Fig. 2 we find the somatosensory/arm–motor map, required to
code arm movements. Such map is modified by proprioceptive
and tactile feedback, and allows to execute reaching actions to-
ward visual or remembered targets. The integrated map, built of
the two sides of the schema, is thus accessed and updated upon
requirements, as described in Section IV-A.

The exploration of the environment through saccades and
reaching movements constitutes the basic behavior that is
employed to build the visuomotor representation of the periper-
sonal space. Building such representation is done incrementally,
through subsequent, increasingly complex interactions. The
learning sequence is inspired by infant development [28].
As a first step, the system learns the association between
retinal information and gaze direction (i.e., proprioceptive eye
position). This can be done simply by successive foveation
on salient points of the binocular images. The subject looks
around and focuses the eyes on certain stimuli, thus learning
the association between retinal information and vergence and
version parameters. Then, gaze direction is associated to arm
position, e.g., moving the arm randomly and following it with
the gaze, so that each motor configuration of the arm joint is
associated to a corresponding configuration of the system for
eye motor control. In this case, proprioceptive information
regarding arm position is included in the computation, and the
vectors corresponding to reaching movements can be extracted
similarly to what is done for ocular movements. This process
make the subject learn a bidirectional link between different
sensorimotor systems. The subject can look where its hand is
but also reach a point in space he is looking at. Later on, visual
targets are shown to the system, which is required to perform
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Fig. 3. Computational framework of the visuomotor integration model. Two transformations allow to code a stimulus contextually in visual, oculomotor, and
arm–motor frames of reference.

both saccadic and arm reaching movements toward them. This
requires the use of both direct and inverse transformations,
and allow to fine-tune the sensorimotor representation of the
space. Tactile feedback can be used as a master signal, for
confirming that the target has been reached, making all the
process substantially self-supervised.

IV. SENSORIMOTOR TRANSFORMATIONS WITH

RADIAL BASIS FUNCTIONS

So far, the model has been implemented in a simulated en-
vironment, taking always into account the final application on
our humanoid robotic setup, currently under development. The
computational framework is depicted in Fig. 3, which is a sim-
plification of the conceptual schema of Fig. 2, in which the neck
is fixed, and thus body-centered corresponds to head-centered.
Also, there is no tactile feedback for the moment, and the con-
trol of arm movements is based purely on proprioception.

The visual input regarding a potential target is expressed with
its location in a cyclopean visual field accompanied by infor-
mation on binocular disparity; the output is the correspondent
head/body center representation, built of a potential vergence/
version movement required to foveate on the target. This trans-
formation has been implemented with a RBF network, described
below. The second transformation, also implemented with radial
basis functions, is used instead to maintain a contextual coding
of stimuli in both a body-centered and an effector based frame
of reference. It is used to recode oculomotor coordinates in arm
joint space and vice versa.

Each of the two codings of the space corresponds to a poten-
tial movement, so that, thank to this second transformation, the
agent is able to reach where it is looking at (direct transforma-
tion) and to foveate on the position of the hand (inverse trans-
formation). If one of the potential motor signals is not released,
eye and arm movements can be decoupled, i.e., the system can
for example reach a peripheral visual target without directing
the gaze toward it, only using the body-centered representation
as an intermediate step to recode visual input to arm motor re-
sponse. Similarly, arm movements can also be planned but not
executed, e.g., waiting for a cue signal in an experimental pro-
tocol of delayed reaching. Details regarding the computational
implementation of the two transformations are given next.

A. Visual to Oculomotor Transformation

Learning the transformation from binocular visual data to eye
position consists in identifying visual targets and foveating them

with both eyes, in order to associate appropriate version and
vergence movements to retinal locations. Either left and right
retinal images or a cyclopean visual field accompanied by a dis-
parity map can be used as visual input, and we employed the
latter. Since visual processing is not the focus at this stage of
development, visual stimuli are just point-like features, similar
to the LEDs used in monkey experiments. The transformation
was implemented with an RBF network, for the theoretical rea-
sons explained above.

We tested Gaussian and sigmoid neural activation functions,
for both cyclopean visual input and disparity, and try the corre-
sponding nets with different spreads. The best performance was
achieved for Gaussian-shaped units for both inputs, described
by the following equation, which is the vectorial equivalent of a
single variable Gaussian function

(1)

where is the input vector, the center of the
th bidimensional basis function, the diagonal matrix with

the spreads of the unit in each of its dimensions, and is the
resulting activation of the th unit. The two outputs of the net-
work, i.e., vergence and version movements required to foveate
on the given input, are computed by a linear combination of the
basis functions, according to

(2)

in which is the number of units, is the value of
the th output and is the weight that connects the th RBF
unit with the th output. The learning process consists in finding
the weights that best fit input with output datasets.

We decided to employ fixed centers, which receptive fields
can not move according to the input data, favoring biological
plausibility over potentially better performance. For this reason,
we distributed the radial basis functions according to a retino-
topic-like criterion (input to V6A is, at least partly, retinotopic),
following a logarithmic distribution of the centers. For what
concerns cyclopean visual input, a logarithmic organization of
the neural receptive fields is suitable for modeling foveal mag-
nification, whilst for disparity it corresponds to a finer coding
for smaller disparities, actually observed in the primate visual
cortex [29]. It is hence not surprising that the logarithmic organ-
ization of the centers allowed to obtain results about ten times as
good as by using a homogeneous distribution (0.10 mm against
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Fig. 4. Distribution and spread of the radial basis functions of the visual to
oculomotor network on the cyclopean/disparity space.

1.1 mm). For setting the number of neurons, we defined an ar-
bitrary threshold of 0.10 mm error for training points,
that was achieved by a 7 7 neural lattice in the cyclopean/dis-
parity input space (thus ; see Fig. 4).

The training points are constituted by input–output pairs
, and are provided by the simulated execution of

saccadic movements and the estimation of the target visual
displacement. More exactly, an oculomotor behavior is simu-
lated in which the agent: 1) is fixating a given point in space
close to a visual stimulus; and 2) performs a random ocular
movement toward a different location. The input-output pairs
are composed by the visual position (cyclopean-disparity) of
the initial stimulus as seen from the current ocular position, and
the vergence–version components of the performed movement.
This solution allows to learn a visual to oculomotor mapping
without previous focusing skills. The underlying assumption
is that of a rich visual environment, in which visual stimuli
are always available close to the ocular fixation point. This
assumption is reasonable for biological agents, and useful for
the modeled system, but the robot has to follow a different
strategy, as explained in Section V, due to its limited visual
skills in dealing with cluttered environments.

An initial setting of the weights is done employing the batch
learning technique of linear pseudo-inverse solution, typical for
RBF networks [30]

(3)

where is a matrix containing the output of each RBF
neuron for all inputs , while is the output
matrix. We tested this first learning step on datasets of different
size , obtaining the error evolution depicted in Fig. 5. Looking
for a trade-off between performance and size of the dataset, we
have chosen providing error as the number
of training points to employ in this stage of the process.

To simulate the sort of learning process that would be per-
formed by robot, we executed a step by step learning sequence
on the next 200 points. This second learning stage is performed

Fig. 5. Oculomotor positioning error (mm) of the network trained with datasets
of different size.

by applying the delta rule gradient descent technique, to update
the weights of (2) on each time step

(4)

where is the output of the neurons for input , is the
actual output of the network, the expected output and the
learning rate (which we maintain constant). The use of an incre-
mental learning rule such as in (4), instead of a batch learning
as in(3), allows to keep the system flexible to possible changes
in visual accuracy and body kinematics. In principle, applying
the delta rule should allow to adapt to unavoidable hardware
asymmetries, image distortions, and also to deceptive sensory
information, as described below.

The inverse transformation from oculomotor to visual data
has also been implemented, using the same parameters of the
direct one. Its role is to estimate the expected retinal position
of a fixated point after a given saccadic vergence version
movement. We plan to use it in the real robot to detect possible
discrepancies between expected and observed visual feedback.
We considered most plausible for this transformation to employ
the same parameters of the direct one, such as the retinal organ-
ization of the centers, and probably for this reason it is not as
precise as the visual to oculomotor transformation (the average
error is about 0.5 mm).

To validate the model, we are comparing its behavior with
some psychophysical effects described in the literature re-
garding the tasks it executes. For example, we are checking the
model behavior in the case of the deceptive visual feedback,
such as in typical experiments of saccadic adaptation [31]. This
is done by eliciting a saccade (based on vergence/version eye
movement control) toward a given visual target, and providing
a fictitious error on the final reached position. For the com-
putational model, this is achieved by adding an offset to the
output. On the robot, the same effect will be obtained moving
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Fig. 6. Gazing and reaching schema. At each training step the artificial agent,
either model or robot, is required to move its hand and gaze toward the same
point, and update its sensorimotor representation using the observed error.

the visual target as for human subjects. Analysis of how (as in
the saccadic adaptation protocol) such artificial displacement of
the target affects the artificial agent oculomotor and arm motor
abilities can serve as a validation of the underlying model,
and may help in advance hypotheses on saccadic adaptation
mechanisms in humans and monkeys. So far, we were able to
verify that our model do exhibit saccadic adaptation, altering its
ability to perform correct saccades according to the deceptive
feedback. The analysis of error distributions around the target
point and of error vectors is also providing interesting informa-
tion that we are currently studying with more detail, together
with collaborators from cognitive sciences.

B. Oculomotor to Arm–Motor Transformation

In this learning phase, arm movements are introduced, as ex-
emplified in Fig. 6. This phase is further subdivided in two
stages, respectively free and goal-based. The free exploration
consists of random arm movements and subsequent saccades to-
ward the final hand position, which allows to learn the transfor-
mation from joint space to oculomotor space and vice versa. To
generate the training points constituted by oculomotor/arm joint
couples, a correct behavior of the visuomotor to oculomotor net-
work in gazing movements is required, so the second transfor-
mation can only be trained after the first one. In the goal-ori-
ented exploration a target object in space has to be foveated and
reached.

The choice of how to distribute the basis function neurons is
less straightforward for this second network. Automatic placing
driven by the training points is a standard solution [25], but again
we favor biological plausibility over performance. Our main
inspiration is on neuroscience findings regarding the posterior
parietal cortex, and especially area V6A. In a previous work, we
showed that a population of V6A neurons is properly modeled

Fig. 7. Mapping of the space according to uniform distributions in a vergence/
version oculomotor space (red), in a J1/J2 joint space (cyan) and in a standard
horizontal/depth ����� Cartesian space (green).

by a basis function approach [32]. As anticipated, this area in-
cludes neurons having only visual response, neurons apparently
involved mainly in motor actions and mixed neurons, activated
in all phases of sensorimotor processes. With our model we
wanted to check what computational advantages could be given
by such responsiveness pattern. For simplicity at this stage, only
two arm joints were used, and no tilt movements of the eyes, so
that the accessible environment is a 2-D space placed horizon-
tally in front of the subject, as in Fig. 6. This is anyway consis-
tent with most of the monkey experiments in which activity in
V6A was registered.

At this stage of the model development, we want thus to
achieve good performances in the learning of the transfor-
mations between oculomotor and arm motor space, while
respecting, and trying to emulate, the responsiveness pattern
observed in area V6A. We simulated the different types of
neurons of V6A with populations of radial basis function
neurons uniformly distributed in the vergence/version space
(representing oculomotor neurons) and in arm joint space
(representing arm–motor neurons). Homogeneous distributions
are used in this case instead of logarithmic ones, because the
reachable space has to be covered all with the same precision.
Again, we tested with both Gaussian and sigmoid functions,
finding slightly better results for the former, as for the first
network.

In order to check their suitability to model the transforma-
tions performed by V6A neurons, we trained RBF networks
having the centers distributed as in Fig. 7, red and cyan graphs,
for vergence/version and joint space respectively. V6A and
nearby areas perform all the transformations required for a
correct gazing and reaching, and for this reason, an important
requirement is that the same pool of artificial neurons, centers
of the radial basis functions, have to be used in the direct and
inverse transformations, so we included both transformations
in the comparison. To avoid biasing toward one or the other
distribution, training (again 400 points) and test sets were taken
randomly from a Cartesian space. As depicted in Fig. 7, the
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Fig. 8. Radial basis functions distributed according to a mixed criterion
��� oculomotor ��� arm motor, red stars�, visualized over a typical Cartesian
training set (blue dots).

TABLE I
OCULOMOTOR AND ARM JOINT SPACE RANGES

ranges were taken so that the superposition between the center
distributions and the training and test sets were equivalent be-
tween the oculomotor and the joint space. The exact ranges of
vergence and version and of joints J1 and J2 employed in both
direct and inverse transformations are provided in Table I. A
further complication in the comparison between distributions is
that different neuron placements and different transformations
are optimized with different number of neurons and amplitudes.
We tried to normalize the various solutions as much as possible
in order to make them comparable. The number of neurons
of the pure oculomotor and joint space distributions were 49
(7 7), to repeat the population of the first network, whilst
for the mixed distribution we employed 50 neurons (5 5 2)
to match the total number of neurons as close as possible,
obtaining the placement shown in Fig. 8. For each configura-
tion we searched for the values of the spreads which provide
the smallest errors, to compare their best performances. The
learning process did not differ from the visual to oculomotor
case, and the same equations apply.

The results of the different tested configurations are shown in
Table II. As it can be observed, the joint space distribution of
neurons is reasonably good in both transformations, from ocu-
lomotor to joint space and inverse, whilst the vergence/version
distribution is good only for the joint to oculomotor transfor-
mation, which in general seems to be easier to learn than its in-
verse. A mixed distribution, with both types of neurons, allows
to obtain the best results in both transformations, much better
than either distribution alone. As a further experiment, we tried

TABLE II
PERFORMANCE OF RBF NETWORKS WITH NEURONS DISTRIBUTED ACCORDING

TO A VERGENCE/VERSION OCULOMOTOR SPACE (V), ARM JOINT SPACE (J),
AND MIXED SPACE (M), FOR BOTH DIRECT AND INVERSE

TRANSFORMATIONS OCULOMOTOR� ARM–JOINT

Fig. 9. Typical learning curve of the � � � transformation during the adap-
tation to the new parameters after the kinematics of the robot model has been
changed.

to distribute the neurons according to a forward selection algo-
rithm, that automatically place the centers to best fit the training
data. As shown in Table II, the results are better than the single
criterion distribution but not better than the mixed one. The stop
condition for the forward select algorithm was to have 50 neu-
rons, to allow for a fair comparison with the other methods.

Apart for the shear improvement in performance, the use
of the mixed distribution should be especially suitable for
modifying working conditions. To test this hypothesis, and
to estimate the sort of results we could expect applying the
computational framework to the robotic setup, we changed the
kinematic parameters of the robot model, and start training
the network with the old weights from the new configuration.
The parameters included in the model are five: lengths of
arm and forearm , interocular distance , and relative
position of shoulder and eyes (two parameters, supposing they
are aligned in the coordinate). Considering for example the
more demanding oculomotor to joint-space transformation,
we modified the first three of the above parameters, leaving
unchanged the relative position of shoulder and eyes. Changing

and both from 700 to 650 mm and from 270 to 240
mm, the error first rises up to 40 mm, and drops back almost
to the original precision only after about 50 trials, as shown in
Fig. 9. This behavior shows the adaptability of the system to
changes in working conditions, and supports its suitability for
implementation on the robot. Moreover, this test shows that
the RBF architecture constitutes a simple body-schema for the



CHINELLATO et al.: IMPLICIT SENSORIMOTOR MAPPING OF THE PERIPERSONAL SPACE BY GAZING AND REACHING 51

robot [33], as it implicitly represents its internal parameters,
and is able to plastically adapts to modified conditions and
altered body parts.

Recent experiments [P.Fattori, unpublished data] show that
the receptive fields of many V6A neurons seem to be indeed
distributed according a vergence/version criterion. Less clear is
the effect of arm joints, also because of our simplification of
the actual joint space. In any case, our simulation supports the
hypothesis that a mixed population of neurons such as that ob-
served in V6A is especially suitable for a cortical area which
contextually codes for different reference frames. From a prag-
matic point of view, through the use of basis function neurons
set according to what suggested by neuroscience data, we were
able to learn very accurately direct and inverse transformations
between oculomotor and joint space, in a way suitable for their
application to the robotic setup.

V. ROBOTIC SETUP AND EXPERIMENTAL FRAMEWORK

On the robotics side, the final goal of this work is to provide
the robot with advanced skills in its interaction with the envi-
ronment, namely in the purposeful exploration of the periper-
sonal space and the contextual coding and control of eye and
arm movements. On the other hand, the implementation on an
actual sensorimotor setup is a potential source of additional in-
sights for the computational model, hardly achievable with sim-
ulated data. Extensive experimentation with the robot is not yet
available, and constitutes the bulk of our current work, which
methodology is outlined below.

Our humanoid robot (Fig. 10) is endowed with a pan-tilt-ver-
gence stereo head with coordinated vergence/version control of
the eyes and a multijoint arm with a three finger Barrett Hand
(not used in this work). The sort of stimuli the robot is able to
recognize by visual processing are simple dots/crosses/blobs on
a computer monitor, or custom visual markers placed on a vis-
ible section of the robot arm, independently from their position
in the robot field of view. The workspace is first positioned at
eye level, so that only 2-D eye and arm movements are required.
After the 2-D transformation have been successfully applied
to the robot according to the model described in the previous
section, we plan to extend it to the 3-D space, introducing tilt
movements of the head and at least one more joint for the arm.
Preliminary studies with three-input RBF transformations were
successful in this regard.

As explained above, the actual map of the peripersonal space
is learned through active exploration, following the increas-
ingly demanding sequence of tasks described in Section III. The
training points for the visual to oculomotor transformation are
not collected as for the model, because of the robot limited skills
in the analysis of complex visual environments. The employed
solution is to visualize at each step a new visual target, to which
the robot has to try and perform a gazing movement using the
visual to oculomotor map itself. The gaze is very likely not to
land on the target, and the estimated residual distance of the
target from the new fixation point is used to train the network.
At the beginning, the residual error of the movement can be
very high, and this is one of the main reasons which justifies the
use of bootstrap learning with weights provided by the model,

Fig. 10. Humanoid robot with detail of pan/tilt/vergence head and arm with
hand.

in order to start with an acceptable gazing performance, that is
refined by online learning.

Once the robot has learned to perform the visual to oculo-
motor transformation according to the above schema, no addi-
tional skills are required to train the oculomotor to joint space
networks. The robot has only to be able to gaze toward the visual
marker placed on its arm, which is moved in a random position
at each step, using the first network. The eye/arm movement
pairs are then used to train both direct and inverse transforma-
tions between eye and arm motor representations.

Following the above principles, the robot keeps improving
its visuomotor and arm–motor skills in each gazing or reaching
movement towards nearby goals. The use of tactile feedback
upon object touching could finally constitute a master signal
that allows to infer the exact magnitude of visual and motor er-
rors. The adaptability of the RBF-based computational frame-
work, highlighted by experiments on saccadic adaptation and
with altered kinematics conditions, indicates that the learning
framework seems indeed appropriate to be transferred to the real
hardware.

VI. CONCLUSION

Experiments of concurrent reaching and gazing allow to
generate an implicit representation of the peripersonal space
obtained by matching head-center and arm-centered schemes.
Such representation remains implicit, and far from being an
actual map of the environment, it rather constitutes a skill of
the robot in interacting with it. As a first implementation of
the model, simulated experiments of coordinated reach/gaze
actions have been performed, in which there is visual tracking
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of the effector but not tactile feedback. The implemented RBF
framework is capable of bidirectional transformations between
stereo visual information and oculomotor (vergence/version)
space, and between oculomotor and arm joint space. For our
modeling purposes we used insights and functional indications
coming from monkey and human studies, especially regarding
the transformations and the contextual encoding of features in
the peripersonal space performed by area V6A. The computa-
tional structure which allows to jointly represent oculomotor
and joint space was defined in accordance to the above studies,
supporting the hypothesis that a mixed population of neurons
is the most suitable for performing different transformations.
Additionally, the system is able to adapt to altered conditions,
such as visual distortions or modified kinematic configurations,
and experiments were performed in which the agent had its
kinematics changed and was able to learn the correct actions
associated to the new parameters.

The final, integrated representation of the peripersonal space
emerges thanks to the simulated interaction of the agent with
the environment. Such implicit representation allows to contex-
tually represent the peripersonal space through different vision
and motor parameters. Very importantly, the oculomotor/arm
motor transformation is bidirectional, and the underlying repre-
sentations are both accessed and modified by each exploratory
action. The above schema is now being implemented on a real
humanoid torso, in which coordinated reach/gaze actions are
being used to integrate and match the sensorimotor maps. This
learning process is the normal behavior of the agent, constituting
the most fundamental component of its basic capability of inter-
acting with the world, and contextually updating its representa-
tion of it.
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