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Abstract

Self-supervised models of how the brain represents and categorises the causes of its sensory input can be divided into two classes: those
that minimise the mutual information (i.e. redundancy) among evoked responses and those that minimise the prediction error. Although
these models have similar goals, the way they are attained, and the functional architectures employed, can be fundamentally different. This
review describes the two classes of models and their implications for the functional anatomy of sensory cortical hierarchies in the brain.
We then consider how empirical evidence can be used to disambiguate between architectures that are sufficient for perceptual learning and
synthesis.

Most models of representational learning require prior assumptions about the distribution of sensory causes. Using the notion of empirical
Bayes, we show that these assumptions are not necessary and that priors can be learned in a hierarchical context. Furthermore, we try to
show that learning can be implemented in a biologically plausible way. The main point made in this review is that backward connections,
mediating internal or generative models of how sensory inputs are caused, are essential if the process generating inputs cannot be inverted.
Because these processes are dynamical in nature, sensory inputs correspond to a non-invertible nonlinear convolution of causes. This
enforces an explicit parameterisation of generative models (i.e. backward connections) to enable approximate recognition and suggests
that feedforward architectures, on their own, are not sufficient. Moreover, nonlinearities in generative models, that induce a dependence
on backward connections, require these connections to be modulatory; so that estimated causes in higher cortical levels can interact to
predict responses in lower levels. This is important in relation to functional asymmetries in forward and backward connections that have
been demonstrated empirically.

To ascertain whether backward influences are expressed functionally requires measurements of functional integration among brain
systems. This review summarises approaches to integration in terms of effective connectivity and proceeds to address the question posed
by the theoretical considerations above. In short, it will be shown that functional neuroimaging can be used to test for interactions between
bottom–up and top–down inputs to an area. The conclusion of these studies points toward the prevalence of top–down influences and the
plausibility of generative models of sensory brain function.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In concert with the growing interest in contextual and
extra-classical receptive field effects in electrophysiology
(i.e. how the receptive fields of sensory neurons change ac-
cording to the context a stimulus is presented in), a sim-
ilar paradigm shift is emerging in imaging neuroscience.
Namely, the appreciation that functional specialisation ex-
hibits similar extra-classical phenomena in which a cortical
area may be specialised for one thing in one context but
something else in another. These extra-classical phenom-
ena have implications for theoretical ideas about how the
brain might work. This review uses the relationship among
theoretical models of representational learning as a vehicle
to illustrate how imaging can be used to address important
questions about functional brain architectures.

We start by reviewing two fundamental principles of
brain organisation, namelyfunctional specialisationand
functional integrationand how they rest upon the anatomy
and physiology of cortico-cortical connections in the brain.
Section 3deals with the nature and learning of represen-
tations from a theoretical or computational perspective.
This section reviewssupervised(e.g. connectionist) ap-
proaches,information theoreticapproaches and those pred-
icated onpredictive codingand reprises their heuristics
and motivation using the framework ofgenerative models.

The key focus of this section is on the functional architec-
tures implied by each model of representational learning.
Information theory can, in principle, proceed using only
forward connections. However, it turns out that this is only
possible when processes generating sensory inputs are in-
vertible and independent. Invertibility is precluded when
the cause of a percept and the context in which it is en-
gendered interact. These interactions create a problem of
contextual invariance that can only be solved using internal
or generative models. Contextual invariance is necessary
for categorisation of sensory input (e.g. category-specific
responses) and represents a fundamental problem in per-
ceptual synthesis. Generative models based on predictive
coding solve this problem with hierarchies of backward and
lateral projections that prevail in the real brain. In short,
generative models of representational learning are a natural
choice for understanding real functional architectures and,
critically, confer a necessary role on backward connections.

Empirical evidence, from electrophysiological studies
of animals and functional neuroimaging studies of human
subjects, is presented inSections 4 and 5to illustrate the
context-sensitive nature of functional specialisation and
how its expression depends upon integration among remote
cortical areas.Section 4 looks at extra-classical effects
in electrophysiology, in terms of the predictions afforded
by generative models of brain function. The theme of
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context-sensitive evoked responses is generalised to a cor-
tical level and human functional neuroimaging studies in
the subsequent section. The critical focus of this section is
evidence for the interaction of bottom–up and top–down
influences in determining regional brain responses. These
interactions can be considered signatures of backward
connections. The final section reviews some of the impli-
cations of the forgoing sections for lesion studies and neu-
ropsychology. ‘Dynamic diaschisis’, is described, in which
aberrant neuronal responses can be observed as a conse-
quence of damage to distal brain areas providing enabling
or modulatory afferents. This section uses neuroimaging in
neuropsychological patients and discusses the implications
for constructs based on the lesion-deficit model.

2. Functional specialisation and integration

2.1. Background

The brain appears to adhere to two fundamental princi-
ples of functional organisation, functional integration and
functional specialisation, where the integration within and
among specialised areas is mediated by effective connectiv-
ity. The distinction relates to that between ‘localisationism’
and ‘(dis)connectionism’ that dominated thinking about
cortical function in the nineteenth century. Since the early
anatomic theories of Gall, the identification of a particular
brain region with a specific function has become a central
theme in neuroscience. However, functional localisation per
se was not easy to demonstrate: for example, a meeting that
took place on 4 August 1881, addressed the difficulties of
attributing function to a cortical area, given the dependence
of cerebral activity on underlying connections (Phillips
et al., 1984). This meeting was entitled “Localisation of
function in the cortex cerebri”. Goltz, although accepting
the results of electrical stimulation in dog and monkey
cortex, considered that the excitation method was inconclu-
sive, in that the behaviours elicited might have originated
in related pathways, or current could have spread to dis-
tant centres. In short, the excitation method could not be
used to infer functional localisation because localisationism
discounted interactions, or functional integration among
different brain areas. It was proposed that lesion studies
could supplement excitation experiments. Ironically, it was
observations on patients with brain lesions some years later
(seeAbsher and Benson, 1993) that led to the concept of
‘disconnection syndromes’ and the refutation of localisa-
tionism as a complete or sufficient explanation of cortical
organisation. Functional localisation implies that a function
can be localised in a cortical area, whereas specialisation
suggests that a cortical area is specialised for some aspects
of perceptual or motor processing where thisspecialisation
can be anatomicallysegregatedwithin the cortex. The cor-
tical infrastructure supporting a single function may then
involve many specialised areas whose union is mediated by

the functional integration among them. Functional special-
isation and integration are not exclusive, they are comple-
mentary. Functional specialisation is only meaningful in the
context of functional integration and vice versa.

2.2. Functional specialisation and segregation

The functional role, played by any component (e.g. cor-
tical area, sub-area, neuronal population or neuron) of the
brain, is defined largely by its connections. Certain pat-
terns of cortical projections are so common that they could
amount to rules of cortical connectivity. “These rules re-
volve around one, apparently, overriding strategy that the
cerebral cortex uses—that of functional segregation” (Zeki,
1990). Functional segregation demands that cells with com-
mon functional properties be grouped together. This archi-
tectural constraint in turn necessitates both convergence and
divergence of cortical connections. Extrinsic connections,
between cortical regions, are not continuous but occur in
patches or clusters. This patchiness has, in some instances,
a clear relationship to functional segregation. For example,
the secondary visual area V2 has a distinctive cytochrome
oxidase architecture, consisting of thick stripes, thin stripes
and inter-stripes. When recordings are made in V2, direc-
tionally selective (but not wavelength or colour selective)
cells are found exclusively in the thick stripes. Retrograde
(i.e. backward) labelling of cells in V5 is limited to these
thick stripes. All the available physiological evidence sug-
gests that V5 is a functionally homogeneous area that is spe-
cialised for visual motion. Evidence of this nature supports
the notion that patchy connectivity is the anatomical infras-
tructure that underpins functional segregation and speciali-
sation. If it is the case that neurons in a given cortical area
share a common responsiveness (by virtue of their extrinsic
connectivity) to some sensorimotor or cognitive attribute,
then this functional segregation is also an anatomical one.
Challenging a subject with the appropriate sensorimotor at-
tribute or cognitive process should lead to activity changes
in, and only in, the areas of interest. This is the model upon
which the search for regionally specific effects with func-
tional neuroimaging is based.

2.3. The anatomy and physiology of cortico-cortical
connections

If specialisation rests upon connectivity then important
organisational principles should be embodied in the neu-
roanatomy and physiology of extrinsic connections. Extrin-
sic connections couple different cortical areas whereas in-
trinsic connections are confined to the cortical sheet. There
are certain features of cortico-cortical connections that pro-
vide strong clues about their functional role. In brief, there
appears to be a hierarchical organisation that rests upon the
distinction betweenforwardandbackwardconnections. The
designation of a connection as forward or backward depends
primarily on its cortical layers of origin and termination.
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Table 1
Some key characteristics of extrinsic cortico-cortical connections in the brain

Hierarchical organisation
The organisation of the visual cortices can be considered as a hierarchy (Felleman and Van Essen, 1991)
The notion of a hierarchy depends upon a distinction between forward and backward extrinsic connections
This distinction rests upon different laminar specificity (Rockland and Pandya, 1979; Salin and Bullier, 1995)
Backward connections are more numerous and transcend more levels
Backward connections are more divergent than forward connections (Zeki and Shipp, 1988)

Forwards connections Backwards connections
Sparse axonal bifurcations Abundant axonal bifurcation
Topographically organised Diffuse topography
Originate in supragranular layers Originate in bilaminar/infragranular layers
Terminate largely in layer VI Terminate predominantly in supragranular layers
Postsynaptic effects through fast AMPA (1.3–2.4 ms decay)

and GABAA (6 ms decay) receptors
Modulatory afferents activate slow (50 ms decay)

voltage-sensitive NMDA receptors

Some characteristics of cortico-cortical connections are pre-
sented below and are summarised inTable 1. The list is not
exhaustive, nor properly qualified, but serves to introduce
some important principles that have emerged from empirical
studies of visual cortex.

• Hierarchical organisation
The organisation of the visual cortices can be consid-

ered as a hierarchy of cortical levels with reciprocal ex-
trinsic cortico-cortical connections among the constituent
cortical areas (Felleman and Van Essen, 1991). The no-
tion of a hierarchy depends upon a distinction between
forward and backward extrinsic connections.

• Forwards and backwards connections—laminar speci-
ficity

Forwards connections (from a low to a high level)
have sparse axonal bifurcations and are topographically
organised; originating in supragranular layers and termi-
nating largely in layer VI. Backward connections, on the
other hand, show abundant axonal bifurcation and a dif-
fuse topography. Their origins are bilaminar/infragranular
and they terminate predominantly in supragranular layers
(Rockland and Pandya, 1979; Salin and Bullier, 1995).

• Forward connections are driving and backward connec-
tions are modulatory

Reversible inactivation (e.g.Sandell and Schiller,
1982; Girard and Bullier, 1989) and functional neu-
roimaging (e.g.Büchel and Friston, 1997) studies suggest
that forward connections are driving, whereas backward
connections can be modulatory. The notion that forward
connections are concerned with the promulgation and
segregation of sensory information is consistent with: (i)
their sparse axonal bifurcation; (ii) patchy axonal termi-
nations; and (iii) topographic projections. In contradis-
tinction, backward connections are generally considered
to have a role in mediating contextual effects and in the
co-ordination of processing channels. This is consistent
with: (i) their frequent bifurcation; (ii) diffuse axonal
terminations; and (iii) non-topographic projections (Salin
and Bullier, 1995; Crick and Koch, 1998).

• Modulatory connections have slow time constants
Forward connections meditate their post-synaptic ef-

fects through fast AMPA (1.3–2.4 ms decay) and GABAA
(6 ms decay) receptors. Modulatory afferents activate
NMDA receptors. NMDA receptors are voltage-sensitive,
showing nonlinear and slow dynamics (50 ms decay).
They are found predominantly in supragranular layers
where backward connections terminate (Salin and Bullier,
1995). These slow time-constants again point to a role in
mediating contextual effects that are more enduring than
phasic sensory-evoked responses.

• Backwards connections are more divergent than forward
connections

Extrinsic connections show an orderly convergence
and divergence of connections from one cortical level to
the next. At a macroscopic level, one point in a given
cortical area will connect to a region 5–8 mm in diameter
in another. An important distinction between forward and
backward connections is that backward connections are
more divergent. For example, the divergence region of
a point in V5 (i.e. the region receiving backward affer-
ents from V5) may include thick and inter-stripes in V2,
whereas its convergence region (i.e. the region providing
forward afferents to V5) is limited to the thick stripes
(Zeki and Shipp, 1988). Reciprocal interactions between
two levels, in conjunction with the divergence of back-
ward connections, renders any area sensitive to the vicar-
ious influence of other regions at the same hierarchical
level even in the absence of direct lateral connections.

• Backward connections are more numerous and transcend
more levels

Backward connections are more abundant then forward
connections. For example, the ratio of forward efferent
connections to backward afferents in the lateral genic-
ulate is about 1:10/20. Another important distinction is
that backward connections will traverse a number of hi-
erarchical levels, whereas forward connections are more
restricted. For example, there are backward connections
from TE and TEO to V1 but no monosynaptic connec-
tions from V1 to TE or TEO (Salin and Bullier, 1995).
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In summary, the anatomy and physiology of cortico-
cortical connections suggest that forward connections are
driving and commit cells to a pre-specified response given
the appropriate pattern of inputs. Backward connections, on
the other hand, are less topographic and are in a position
to modulate the responses of lower areas to driving inputs
from either higher or lower areas (seeTable 1). Backwards
connections are abundant in the brain and are in a position
to exert powerful effects on evoked responses, in lower
levels, that define the specialisation of any area or neuronal
population. The idea pursued below is that specialisa-
tion depends upon backwards connections and, due to the
greater divergence of the latter, can embody contextual ef-
fects. Appreciating this is important for understanding how
functional integration can dynamically reconfigure the spe-
cialisation of brain areas that mediate perceptual synthesis.

2.4. Functional integration and effective connectivity

Electrophysiology and imaging neuroscience have firmly
established functional specialisation as a principle of brain
organisation in man. The functional integration of spe-
cialised areas has proven more difficult to assess. Functional
integration refers to the interactions among specialised neu-
ronal populations and how these interactions depend upon
the sensorimotor or cognitive context. Functional integration
is usually assessed by examining the correlations among
activity in different brain areas, or trying to explain the
activity in one area in relation to activities elsewhere.Func-
tional connectivityis defined as correlations between remote
neurophysiological events. However, correlations can arise
in a variety of ways. For example, in multi-unit electrode
recordings they can result from stimulus-locked transients
evoked by a common input or reflect stimulus-inducedos-
cillations mediated by synaptic connections (Gerstein and
Perkel, 1969). Integration within a distributed system is
usually better understood in terms ofeffective connectivity.
Effective connectivity refers explicitly to the influence that
one neuronal system exerts over another, either at a synaptic
(i.e. synaptic efficacy) or population level (Friston, 1995a).
It has been proposed that “the (electrophysiological) no-
tion of effective connectivity should be understood as the
experiment- and time-dependent, simplest possible circuit
diagram that would replicate the observed timing relation-
ships between the recorded neurons” (Aertsen and Preißl,
1991). This speaks to two important points: (i) effective
connectivity is dynamic, i.e. activity- and time-dependent;
and (ii) it depends upon a model of the interactions. An im-
portant distinction, among models employed in functional
neuroimaging, is whether these models are linear or nonlin-
ear. Recent characterisations of effective connectivity have
focussed on nonlinear models that accommodate the mod-
ulatory or nonlinear effects mentioned above. A more de-
tailed discussion of these models is provided inSection 5.2,
after the motivation for their application is established in
the next section. In this review the terms modulatory and

nonlinear are used almost synonymously. Modulatory ef-
fects imply the post-synaptic response evoked by one input
is modulated, or interacts, with another. By definition this
interaction must depend on nonlinear synaptic mechanisms.

In summary, the brain can be considered as an ensemble
of functionally specialised areas that are coupled in a nonlin-
ear fashion by effective connections. Empirically, it appears
that connections from lower to higher areas are predomi-
nantly driving whereas backwards connections, that medi-
ate top–down influences, are more diffuse and are capable
of exerting modulatory influences. In the next section we
describe a theoretical perspective, provided by ‘generative
models’, that highlights the functional importance of back-
wards connections and nonlinear interactions.

3. Representational learning

This section compares and contrasts the heuristics behind
three prevalent computational approaches to representational
learning and perceptual synthesis,supervised learning, and
two forms ofself-supervised learningbased on information
theory and predictive coding. These approaches will then
be reconciled within the framework ofgenerative models.
This article restricts itself to sensory processing in cortical
hierarchies. This precludes a discussion of other important
ideas (e.g. reinforcement learning (Sutton and Barto, 1990;
Friston et al., 1994), neuronal selection (Edelman, 1993) and
dynamical systems theory (Freeman and Barrie, 1994)).

The relationship between model and real neuronal archi-
tectures is central to cognitive neuroscience. We address this
relationship, in terms ofrepresentations, starting with an
overview of representations in which the distinctions among
various approaches can be seen clearly. An important focus
of this section is the interaction among ‘causes’ of sensory
input. These interactions posit the problem ofcontextual
invariance. In brief, it will be shown that the problem of
contextual invariance points to the adoption of generative
models where interactions among causes of a percept are
modelled explicitly. Within the class of self-supervised
models, we will compare classical information theoretic
approaches and predictive coding. These two schemes use
different heuristics which imply distinct architectures that
are sufficient for their implementation. The distinction rests
on whether an explicit model, of the way sensory inputs are
generated, is necessary for representational learning. If this
model is instantiated in backwards connections, then theo-
retical distinctions may shed light on the functional role of
backward and lateral connections that are so prevalent in
the brain.

3.1. The nature of representations

What is a representation? Here a representation is taken to
be a neuronal event that represents some ‘cause’ in the senso-
rium. Causes are simply the states of the process generating
sensory data. It is not easy to ascribe meaning to these states
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without appealing to the way that we categorise things, per-
ceptually or conceptually. High-level conceptual causes may
be categorical in nature, such as the identity of a face in
the visual field or the semantic category a perceived ob-
ject belongs to. In a hierarchical setting, high-level causes
may induce priors on lower-level causes that are more para-
metric in nature. For example, the perceptual cause “mov-
ing quickly” may show a one-to-many relationship with
over-complete representations of different velocities in V5
(MT) units. An essential aspect of causes is their relation-
ship to each other (e.g. ‘is part of’) and, in particular, their
hierarchical structure. This ontology is often attended by
ambiguous many-to-one and one-to-many mappings (e.g. a
table has legs but so do horses; a wristwatch is a watch irre-
spective of the orientation of its hands). This ambiguity can
render the problem of inferring causes from sensory infor-
mation ill-posed (as we will see further).

Even though causes may be difficult to describe, they
are easy to define operationally. Causes are the variables or
states that are necessary to specify the products of a process
(or model of that process) generating sensory information.
In very general terms, let us frame the problem of repre-
senting real world causess(t) in terms of the system of
deterministic equations

ẋ = f (x, s)

u = g(x)
(1)

wheres is a vector of underlying causes in the environment
(e.g. the velocity of a particular object, direction of radiant
light, etc.) andu represents sensory inputs.ẋ means the rate
of change ofx, which here denotes some unobserved states
of the world that form our sensory impression of it. The
functionsf andg can be highly nonlinear and allow for both
the current state of the world and the causes of changes in
those states to interact, when evoking responses in sensory
units. Sensory input can be shown to be a function of, and
only of, the causesand their recent history.

u=G(s) =
∞∑
i=1

∫ t

0
. . .

∫ t

0

∂iu(t)

∂s(t − σ1) · · · ∂s(t − σi)

× s(t − σ1) · · · s(t − σi)dσ1 · · · dσi (2)

G(s) is a functional (function of a function) that generates
inputs from the causes.Eq. (2)is simply a functional Taylor
expansion covering dynamical systems of the sort implied
by Eq. (1). This expansion is called a Volterra series and can
be thought of as a nonlinear convolution of the causes to give
the inputs (see Box 1). Convolution is like smoothing, in this
instance over time. A key aspect of this expansion is that it
does not refer to the many hidden states of the world, only
the causes of changes in states, that we want to represent.
Furthermore,Eq. (1)does not contain any noise or error. This
is becauseEqs. (1) and (2)describe a real world process.
There is no distinction between deterministic and stochas-
tic behaviour until that process is observed. At the point
the process is modelled, this distinction is invoked through

notions of deterministic or observation noise. This section
deals with how the brain might construct such models.

The importance of this formulation is that it highlights: (i)
the dynamicalaspects of sensory input; and (ii) the role of
interactionsamong the causes of the sensory input. Dynamic
aspects imply that the current state of the world, registered
through our sensory receptors, depends not only on the ex-
tant causes but also on their history. Interactions among these
causes, at any time in the past, can influence what is cur-
rently sensed. The second-order terms withi = 2 in Eq. (2)
represent pairwise interactions among the causes. These
interactions are formally identical to interaction terms in
conventional statistical models of observed data and can be
viewed as contextual effects, where the expression of a par-
ticular cause depends on the context induced by another. For
example, the extraction of motion from the visual field de-
pends upon there being sufficient luminance or wavelength
contrast to define the surface moving. Another ubiquitous
example, from early visual processing, is the occlusion of
one object by another. In the absence of interactions, we
would see a linear superposition of both objects, but the
visual input caused by the nonlinear mixing of these two
causes render one occluded by the other. At a more cognitive
level, the cause associated with the word ‘HAMMER’ will
depend on the semantic context (that determines whether
the word is a verb or a noun). These contextual effects are
profound and must be discounted before the representations
of the underlying causes can be considered veridical.

The problem the brain has to contend with is to find a
function of the inputu(t) that recognises or represents the
underlying causes. To do this, the brain must effectively
undo the convolution and interactions to expose contextu-
ally invariant causes. In other words, the brain must perform
some form of nonlinear unmixing of ‘causes’ and ‘context’
without knowing either. The key point here is that this non-
linear mixing may not be invertible and that the estimation
of causes from input may be fundamentally ill posed. For
example, no amount of unmixing can discern the parts of
an object that are occluded by another. The mappingu = s2

provides a trivial example of this non-invertibility. Knowing
u does not uniquely determines.

Nonlinearities are not the only source of non-invertibility.
Because sensory inputs are convolutions of causes, there
is a potential loss of information during the convolution
or smoothing that may have been critical for a unique
determination of the causes. The convolution implied by
Eq. (2) means the brain has to de-convolve the inputs to
obtain these causes. In estimation theory this problem is
sometimes called ‘blind de-convolution’ because the esti-
mation is blind to the underlying causes that are convolved
to give the observed variables. To simplify the presenta-
tion of the ideas below we will assume that the vectors of
causess, and their estimatesv, include a sufficient history
to accommodate the dynamics implied byEq. (1).

All the schemas considered below can be construed as
trying to effect a blind de-convolution of sensory inputs to
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Box 1. Dynamical systems and Volterra kernels.

Input-state–output systems and Volterra series
Neuronal systems are inherently nonlinear and lend themselves to modelling by nonlinear dynamical systems. How-

ever, due to the complexity of biological systems it is difficult to find analytic equations that describe them adequately.
Even if these equations were known the state variables are often not observable. An alternative approach to identifica-
tion is to adopt a very general model (Wray and Green, 1994) and focus on the inputs and outputs. Consider the single
input–single output (SISO) system

ẋ(t) = f (x(t), u(t))

y(t) = g(x(t))

The Fliess fundamental formula (Fliess et al., 1983) describes the causal relationship between the outputs and the recent
history of the inputs. This relationship can be expressed as a Volterra series, in which the outputy(t) conforms to a
nonlinear convolution of the inputsu(t), critically without reference to the state variablesx(t). This series is simply a
functional Taylor expansion ofy(t).

y(t) = ∑∞
i=1

∫ t

0 · · · ∫ t

0κi(σ1, · · · σi)u(t − σ1) · · · u(t − σi)dσ1 · · · dσi

κi(σ1, · · · , σi) = ∂iy(t)

∂u(t − σ1) · · · ∂u(t − σi)

whereκi(σ1, . . . , σi) is the ith-order kernel. Volterra series have been described as a ‘power series with memory’ and
are generally thought of as a high-order or ‘nonlinear convolution’ of the inputs to provide an output. SeeBendat (1990)
for a fuller discussion. This expansion is used in a number of places in the main text. When the inputs and outputs are
measured neuronal activity the Volterra kernels have a special interpretation.

Volterra kernels and effective connectivity
Volterra kernels are useful for characterising the effective connectivity or influences that one neuronal system exerts

over another because they represent the causal characteristics of the system in question. Neurobiologically they have a
simple and compelling interpretation—they are synonymous with effective connectivity.

κ1(σ1) = ∂y(t)

∂u(t − σ1)
, κ2(σ1, σ2) = ∂2y(t)

∂u(t − σ1)∂u(t − σ2)
, . . .

It is evident that the first-order kernel embodies the response evoked by a change in input att −σ 1. In other words it
is a time-dependant measure ofdriving efficacy. Similarly the second-order kernel reflects themodulatoryinfluence of
the input att −σ 1 on the response evoked att −σ 2. And so on for higher orders.

estimate the causes with a recognition function.

v = R(u, φ, θ) (3)

Herev represents an estimate of the causes and could corre-
spond to the activity of neuronal units (i.e. neurons or popu-
lations of neurons) in the brain. The parametersφ andθ de-
termine the transformations that sensory input is subject to
and can be regarded as specifying the connection strengths
and architecture of a neuronal network model or effective
connectivity (see Box 1). For reasons that will become ap-
parent later, we make a distinction between parameters for
forward connectionsφ and backward connectionsθ .

The problem of recognising causes reduces to finding the
right parameters such that the activity of the representational
unitsv have some clearly defined relationship to the causes
s. More formally, one wants to find the parameters that max-
imise the mutual information or statistical dependence be-
tween the dynamics of the representations and their causes.
Models of neuronal computation try to solve this problem

in the hope that the ensuing parameters can be interpreted
in relation to real neuronal infrastructures. The greater the
biological validity of the constraints under which these
solutions are obtained, the more plausible this relationship
becomes. In what follows, we will consider three modelling
approaches: (i) supervised models; (ii) models based on
information theory; and (iii) those based on predictive cod-
ing. The focus will be on the sometimes hidden constraints
imposed on the parameters and the ensuing implications for
connectivity architectures and the representational proper-
ties of the units. In particular, we will ask whether backward
connections, corresponding to the parametersθ , are nec-
essary. And if so what is their role? The three approaches
are reprised at the end of this section by treating them as
special cases of generative models. Each subsection below
provides the background and heuristics for each approach
and describes its implementation using the formalism
above.Fig. 1 provides a graphical overview of the three
schemes.
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Fig. 1. Schematic illustrating the architectures implied by supervised, information theory-based approaches and predictive coding. The circles represent
nodes in a network and the arrows represent a few of the connections. See the main text for an explanation of the equations and designation of the
variables each set of nodes represents. The light grey boxes encompass connections and nodes within the model. Connection strengths are determined by
the free parameters of the modelφ (forward connections) andθ (backward connections). Nonlinear effects are implied when one arrow connects with
another. Nonlinearities can be construed as the modulation of responsiveness to one input by another (see Box 1 for a more formal account). The broken
arrow in the lower panel denotes connections that convey an error signal to the higher level from the input level.

3.2. Supervised models

Connectionism is an approach that has proved very use-
ful in relating putative cognitive architectures to neuronal
ones and, in particular, modelling the impact of brain lesions
on cognitive performance. Connectionism is used here as
a well-known example of supervised learning in cognitive
neuroscience. We start by reviewing the role played by con-
nectionist models in the characterisation of brain systems
underlying cognitive functions.

3.2.1. Category specificity and connectionism
Semantic memory impairments can result from a variety

of pathophysiological insults, including Alzheimer’s dis-
ease, encephalitis and cerebrovascular accidents (e.g.Nebes,
1989; Warrington and Shallice, 1984). The concept of cat-
egory specificity stems from the work of Warrington and
colleagues (Warrington and McCarthy, 1983; Warrington
and Shallice, 1984) and is based on the observation that
patients with focal brain lesions have difficulties in recog-
nising or naming specific categories of objects. Patients
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can exhibit double dissociations in terms of their residual
semantic capacity. For example, some patients can name ar-
tifacts but have difficulty with animals, whereas others can
name animals with more competence than artifacts. These
findings have engendered a large number of studies, all
pointing to impairments in perceptual synthesis, phonolog-
ical or lexico-semantic analysis that is specific for certain
categories of stimuli. There are several theories that have
been posited to account for category specificity. Connec-
tionist models have been used to adjudicate among some
of them.

Connectionist (e.g. parallel distributed processing or PDP)
techniques use model neuronal architectures that can be
lesioned to emulate neuropsychological deficits. This in-
volves modelling semantic networks using connected units
or nodes and suitable learning algorithms to determine a
set of connection strengths (Rumelhart and McClelland,
1986). Semantic memory impairments are then sim-
ulated by lesioning the model to establish the nature
of the interaction between neuropathology and cog-
nitive deficit (e.g. Hinton and Shallice, 1991; Plaut
and Shallice, 1993). A compelling example of this sort of ap-
proach is the connectionist model ofFarah and McClelland
(1991): patterns of category-specific deficits ledWarrington
and McCarthy (1987)to suggest that an animate/inanimate
distinction could be understood in terms of a differential
dependence on functional and structural (perceptual) fea-
tures for recognition. For example, tools have associated
motor acts whereas animals do not, or tools are easier to
discriminate based upon their structural descriptions than
four-legged animals.Farah and McClelland (1991)incor-
porated this difference in terms of the proportion of the two
types of semantic featural representations encoding a partic-
ular object, with perceptual features dominating for animate
objects and both represented equally for artifacts. Damage to
visual features led to impairment for natural kinds and con-
versely damage to functional features impaired the output
for artifacts. Critically the model exhibited category-specific
deficits in the absence of any category-specific organisa-
tion. The implication here is that an anatomical segregation
of structural and functional representations is sufficient
to produce category-specific deficits following focal brain
damage. This example serves to illustrate how the connec-
tionist paradigm can be used to relate neuronal and cogni-
tive domains. In this example, connectionist models were
able to posit a plausible anatomical infrastructure wherein
the specificity of deficits, induced by lesions, is mediated
by differential dependence on either the functional or struc-
tural attributes of an object and not by any (less plausible)
category-specific anatomical organisation per se.

3.2.2. Implementation
In connectionist models causes or ‘concepts’ like

“TABLE” are induced by patterns of activation over
units encoding semantic primitives (e.g. structural—“has
four legs” or functional—“can put things on it”). These

primitives are simple localist representations “that are as-
sumed to be encoded by larger pools of neurons in the brain”
(Devlin et al., 1998). Irrespective of their theoretical bias,
connectionist models assume the existence of fixed repre-
sentations (i.e. units that represent a structural, phonological
or lexico-semantic primitive) that are activated by some
input. These representational attributions are immutable
where each unit has its ‘label’. The representation of a con-
cept, object or ‘cause’ in the sensorium is defined in terms
of which primitives are active.

Connectionist models employ some form ofsupervised
learningwhere the model parameters (connection strengths
or biases) change to minimise the difference between the ob-
served and required output. This output is framed in terms
of a distributed profile or pattern of activity over the (output)
units v = R(u, φ) which arises from sensory inputu cor-
responding to activity in (input) primitives associated with
the stimulus being simulated. There are often hidden units
interposed between the input and output units. The initial
input (sometimes held constant or ‘clamped’ for a while) is
determined by a generative function of theith stimulus or
causeui = G(si). Connectionist models try to find the free
parametersφ that minimise some function or potentialV of
the error or difference between the output obtained and that
desired

φ = min
φ

V (ε, φ)

εi = R(ui, φ) − si

(4)

The potential is usually the (expected) sum of squared differ-
ences. Although the connectionist paradigm has been very
useful in relating cognitive science and neuropsychology, it
has a few limitations in the context of understanding how
the brain learns to represent things:

• First, one has to know the underlying causesi and the
generative function, whereas the brain does not. This is
the conventional criticism of supervised algorithms as a
model of neuronal computation. Neural networks, of the
sort used in connectionism, are well known to be flexi-
ble nonlinear function approximators. In this sense they
can be used to approximate the inverse of any genera-
tive functionui = G(si) to give model architectures that
can be lesioned. However, representational learning in the
brain has to proceed without any information about the
processes generating inputs and the ensuing architectures
cannot be ascribed to connectionist mechanisms.

• Secondly, the generative mappingui = G(si) precludes
nonlinear interactions among stimuli or causes, dynamic
or static. This is a fundamental issue because one of the
main objectives of neuronal modelling is to see how rep-
resentations emerge with the nonlinear mixing and con-
textual effects prevalent in real sensory input. Omitting
interactions among the causes circumvents one of the most
important questions that could have been asked; namely
how does the brain unmix sensory inputs to discount con-
textual effects and other aspects of nonlinear mixing? In
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short, the same inputs are activated by a given cause, irre-
spective of the context. This compromises the plausibility
of connectionist models when addressing the emergence
of representations.

In summary, connectionist models specify distributed
profiles of activity over (semantic) primitives that are in-
duced by (conceptual) causes and try to find connectivity
parameters that emulate the inverse of these mappings. They
have been used to understand how the performance (stor-
age and generalisation) of a network responds to simulated
damage, after learning is complete. However, connection-
ism has a limited role in understanding representational
learning per se. In the next subsection we will look at
self-supervised approaches that do not require the causes for
learning.

3.3. Information theoretic approaches

There have been many compelling developments in theo-
retical neurobiology that have used information theory (e.g.
Barlow, 1961; Optican and Richmond, 1987; Linsker, 1990;
Oja, 1989; Foldiak, 1990; Tovee et al., 1993; Tononi et al.,
1994). Many appeal to the principle of maximum informa-
tion transfer (e.g.Linsker, 1990; Atick and Redlich, 1990;
Bell and Sejnowski, 1995). This principle has proven ex-
tremely powerful in predicting some of the basic receptive
field properties of cells involved in early visual processing
(e.g.Atick and Redlich, 1990; Olshausen and Field, 1996).
This principle represents a formal statement of the com-
mon sense notion that neuronal dynamics in sensory systems
should reflect, efficiently, what is going on in the environ-
ment (Barlow, 1961). In the present context, the principle
of maximum information transfer (infomax;Linsker, 1990)
suggests that a model’s parameters should maximise the mu-
tual information between the sensory inputu and the evoked
responses or outputsv = R(u, φ). This maximisation is usu-
ally considered in the light of some sensible constraints, e.g.
the presence of noise in sensory input (Atick and Redlich,
1990) or dimension reduction (Oja, 1989) given the smaller
number of divergent outputs from a neuronal population than
convergent inputs (Friston et al., 1992).

Intuitively, mutual information is like the covariance or
correlation between two variables but extended to cover
multivariate observations. It is a measure of statistical de-
pendence. In a similar way, entropy can be regarded as the
uncertainty or variability of an observation (cf. variance of
a univariate observation). The mutual information between
inputs and outputs underφ is given by

I (u, v;φ)=H(u) + H(v;φ) − H(u, v;φ)

=H(v;φ) − H(v|u) (5)

whereH(v|u) is the conditional entropy or uncertainty in
the output, given the input. For a deterministic system there

is no such uncertainty and this term can be discounted (see
Bell and Sejnowski, 1995). More generally

∂

∂φ
I (u, v;φ) = ∂

∂φ
H(v;φ) (6)

It follows that maximising the mutual information is the
same as maximising the entropy of the responses. The in-
fomax principle (maximum information transfer) is closely
related to the idea of efficient coding. Generally speaking,
redundancy minimisation and efficient coding are all varia-
tions on the same theme and can be considered as the info-
max principle operating under some appropriate constraints
or bounds. Clearly it would be trivial to conform to the in-
fomax principle by simply multiplying the inputs by a very
large number. What we would like to do is to capture the
information in the inputs using a small number of output
channels operating in some bounded way. The key thing
that distinguishes among the various information theoretic
schemas is the nature of the constraints under which entropy
is maximised. These constraints render infomax a viable ap-
proach to recovering the original causes of data, if one can
enforce the outputs to conform to the same distribution as
the causes (seeSection 3.3.1). One useful way of looking at
constraints is in terms of efficiency.

3.3.1. Efficiency, redundancy and information
The efficiency of a system can be considered as the com-

plement of redundancy (Barlow, 1961), the less redundant,
the more efficient a system will be. Redundancy is reflected
in the dependencies or mutual information among the out-
puts. (cf.Gawne and Richmond, 1993).

I (v;φ) =
∑

H(vi;φ) − H(v;φ) (7)

HereH(vi;φ) is the entropy of theith output.Eq. (7)implies
that redundancy is the difference between the joint entropy
and the sum of the entropies of the individual units (com-
ponent entropies). Intuitively this expression makes sense if
one considers that the variability in activity of any single unit
corresponds to its entropy. Therefore, an efficient neuronal
system represents its inputs with the minimal excursions
from baseline firing rates. Another way of thinking about
Eq. (7)is to note that maximising efficiency is equivalent to
minimising the mutual information among the outputs. This
is the basis of approaches that seek to de-correlate or orthog-
onalise the outputs. To minimise redundancy one can either
minimise the entropy of the output units or maximise their
joint entropy, while ensuring the other is bounded in some
way. Olshausen and Field (1996)present a very nice analy-
sis based on sparse coding. Sparse coding minimises redun-
dancy using single units with low entropy. Sparse coding
implies coding by units that fire very sparsely and will, gen-
erally, not be firing. Therefore, one can be relatively certain
about their (quiescent) state, conferring low entropy on them.

Approaches that seek to maximise the joint entropy of the
units include principal component analysis (PCA) learning
algorithms (that sample the subspace of the inputs that have
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the highest entropy) (e.g.Foldiak, 1990) and independent
component analysis (ICA). In PCA the component entropies
are bounded by scaling the connection strengths of a simple
recognition modelv = R(u, φ) = φu so that the sum of the
variances ofvi is constant. ICA finds nonlinear functions of
the inputs that maximise the joint entropy (Common, 1994;
Bell and Sejnowski, 1995). The component entropies are
constrained by the passing the outputs through a sigmoid
squashing functionv = R(u, φ) = σ(φu) so that the outputs
lie in a bounded interval (hypercube). SeeSection 3.6.1for
a different perspective on ICA in which the outputs are not
bounded but forced to have cumulative density functions that
conform to the squashing function.

An important aspect of the infomax principle is that it goes
a long way to explaining functional segregation in the cortex.
One perspective on functional segregation is that each corti-
cal area is segregating its inputs into relatively independent
functional outputs. This is exactly what infomax predicts.
SeeFriston (2000and references therein) for an example of
how infomax can be used to predict the segregation of pro-
cessing streams from V2 to specialised motion, colour and
form areas in extrastriate cortex.

3.3.2. Implementation
In terms of the above formulation, information theoretic

approaches can be construed as finding the parameters of
a forward recognition function that maximise the efficiency
or minimise the redundancy

φ = min
φ

I (v;φ)
v = R(u, φ)

(8)

But when are the outputs of an infomax model veridical
estimates of the causes of its inputs? This is assured when:
(i) the generating process is invertible; and (ii) the real world
causes are independent such thatH(s) = ∑

H(si). This can
be seen by noting

I (v;φ)=
∑

H(vi;φ) − H(v;φ)
=

∑
H(Ri(G(s), φ)) −

∑
H(si)

−
〈
ln

∣∣∣∣∂R(G(s), φ)∂v

∣∣∣∣
〉

≥ 0 (9)

with equality whenv = R(u, φ) = G−1(u) = s. Compared
to the connectionist scheme this has the fundamental advan-
tage that the algorithm is unsupervised by virtue of the fact
that the causes and generating process are not needed by
Eq. (8). Note that the architectures inFig. 1, depicting con-
nectionist and infomax schemes, are identical apart from the
nodes representing desired output (unfilled circles in the up-
per panel). However, there are some outstanding problems:

• First, infomax recovers causes only when the generating
process is invertible. However, as we have seen above the
nonlinear convolution of causes generating inputs may not
be invertible. This means that the recognition enacted by

forward connections may not be defined in relation to the
generation of inputs.

• Second, we have to assume that the causes are indepen-
dent. While this may be sensible for simple systems it
is certainly not appropriate for more realistic hierarchical
processes that generate sensory inputs (seeSection 3.5.1).
This is because correlations among causes at any level
are induced by, possibly independent, casual changes at
supraordinate levels.

Finally, the dynamical nature of evoked neuronal tran-
sients is lost in many information theoretic formulations
which treat the inputs as a stationary stochastic process,
not as the products of a dynamical system. This is because
the mutual information and entropy measures, that govern
learning, pertain to probability distributions. These densities
do not embody information about the temporal evolution
of states, if they simply describe the probability the system
will be found in a particular state when sampled over time.
Indeed, in many instances, the connection strengths are
identifiable given just the densities of the inputs, without
any reference to the fact that they were generated dynam-
ically or constituted a time-series (cf. principal component
learning algorithms that need only the covariances of the in-
puts). Discounting dynamics is not a fundament of infomax
schemas. For example, our own work using ICA referred
to above (Friston, 2000) expanded inputs using tempo-
ral basis functions to model the functional segregation of
motion, colour and form in V2. This segregation emerged
as a consequence of maximising the information trans-
fer between spatio-temporal patterns of visual inputs and
V2 outputs.

In summary ICA and like-minded approaches, that try to
find some deterministic function of the inputs that maximises
information transfer, impose some simplistic and strong con-
straints on the generating process that must be met before
veridical representations emerge. In the final approach, con-
sidered here, we discuss predictive coding models that do
not require invertibility or independence and, consequently,
suggest a more natural form for representational learning.

3.4. Predictive coding and the inverse problem

Over the past years predictive coding and generative mod-
els have supervened over other modelling approaches to
brain function and represent one of the most promising
avenues, offered by computational neuroscience, to under-
standing neuronal dynamics in relation to perceptual cate-
gorisation. In predictive coding the dynamics of units in a
network are trying to predict the inputs. As with infomax
schemas, the representational aspects of any unit emerge
spontaneously as the capacity to predict improves with learn-
ing. There is no a priori ‘labelling’ of the units or any su-
pervision in terms of what a correct response should be (cf.
connectionist approaches). The only correct response is one
in which the implicit internal model of the causes and their
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nonlinear mixing is sufficient to predict the input with min-
imal error.

Conceptually, predictive coding and generative models
(see further) are related to ‘analysis-by-synthesis’ (Neisser,
1967). This approach to perception, from cognitive psy-
chology, involves adapting an internal model of the world
to match sensory input and was suggested byMumford
(1992) as a way of understanding hierarchical neuronal
processing. The idea is reminiscent of MacKay’s episte-
mological automata (MacKay, 1956) which perceive by
comparing expected and actual sensory input (Rao, 1999).
These models emphasise the role of backward connections
in mediating the prediction, at lower or input levels, based
on the activity of units in higher levels. The connection
strengths of the model are changed so as to minimise the er-
ror between the predicted and observed inputs at any level.
This is in direct contrast to connectionist approaches were
connection strengths change to minimise the error between
the observed anddesiredoutput. In predictive coding there
is no ‘output’ because the representational meaning of the
units is not pre-specified but emerges during learning.

Predictive coding schemes can also be regarded as aris-
ing from the distinction between forward and inverse mod-
els adopted in machine vision (Ballard et al., 1983; Kawato
et al., 1993). Forward models generate inputs from causes,
whereas inverse models approximate the reverse transfor-
mation of inputs to causes. This distinction embraces the
non-invertibility of generating processes and the ill-posed
nature of inverse problems. As with all underdetermined in-
verse problems the role of constraints becomes central. In
the inverse literature a priori constraints usually enter in
terms of regularised solutions. For example; “Descriptions
of physical properties of visible surfaces, such as their dis-
tance and the presence of edges, must be recovered from
the primary image data. Computational vision aims to un-
derstand how such descriptions can be obtained from inher-
ently ambiguous and noisy data. A recent development in
this field sees early vision as a set of ill-posed problems,
which can be solved by the use of regularisation methods”
(Poggio et al., 1985). The architectures that emerge from
these schemes suggest that “feedforward connections from
the lower visual cortical area to the higher visual cortical
area provides an approximated inverse model of the imaging
process (optics), while the backprojection connection from
the higher area to the lower area provides a forward model
of the optics” (Kawato et al., 1993).

3.4.1. Implementation
Predictive, or more generally, generative, models turn

the inverse problem on its head. Instead of trying to find
functions of the inputs that predict the causes they find
functions of causal estimates that predict the inputs. As
in approaches based on information theory, the causes do
not enter into the learning rules, which are therefore unsu-
pervised. Furthermore, they do not require the convolution
of causes, engendering the inputs, to be invertible. This is

because the generative or forward model is instantiated ex-
plicitly. Here the forward model is the nonlinear mixing of
causes that, by definition must exist. The estimation of the
causes still rests upon constraints, but these are now framed
in terms of the forward model and have a much more direct
relationship to casual processes in the real world. The en-
suing mirror symmetry between the real generative process
and its forward model is illustrated in the architecture in
Fig. 1. Notice that the connections within the model are
now going backwards. In the predictive coding scheme
these backward connections, parameterised byθ form pre-
dictions from some estimate of the causesv to provide a
prediction error. The parameters now change to minimise
some function of the prediction error cf.Eq. (4).

θ = min
θ
V (ε, θ)

ε = u − G(v, θ)
(10)

The differences betweenEqs. (10) and (4)are that the er-
rors are at the input level, as opposed to the output level
and the parameters now pertain to a forward model instan-
tiated in backward connections. This minimisation scheme
eschews the real causess but where do their estimates come
from? These casual estimates or representations change in
the same way as the other free parameters of the model.
They change to minimise prediction error subject to some a
priori constraint, modelled by a regularisation termλ(v, θ),
usually through gradient ascent.1

v̇ = −∂V (ε, θ)

∂v
+ ∂λ(v, θ)

∂v
(11)

The error is conveyed from the input layer to the output
layer by forward connections that are rendered as a bro-
ken line in the lower panel ofFig. 1. This component of
the predictive coding scheme has a principled (Bayesian)
motivation that is described in the next subsection. For
the moment, consider what would transpire after training
and prediction error is largely eliminated. This implies the
brain’s nonlinear convolution of the estimated causes reca-
pitulates the real convolution of the real causes. In short,
there is a veridical (or at least sufficient) representation of
both the causes and the dynamical structure of their mixing
through the backward connectionsθ .

The dynamics of representational units or populations
implied by Eq. (11)represents the essential difference be-
tween this class of approaches and those considered above.
Only in predictive coding are the dynamics changing to
minimise the same objective function as the parameters. In
both the connectionist and infomax schemes the represen-
tations of a given cause can only be changed vicariously
through the connection parameters. Predictive coding is a
strategy that has some compelling (Bayesian) underpinnings
(see further) and is not simply using a connectionist archi-
tecture in auto-associative mode or using error minimisation

1 For simplicity, time constants have been omitted from expressions
describing the ascent of states or parameters on objective functions.
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to maximise information transfer. It is a real time, dynam-
ical scheme that embeds two concurrent processes. (i) The
parameters of the generative or forward model change to
emulate the real world mixing of causes, using the current
estimates; and (ii) these estimates change to best explain the
observed inputs, using the current forward model. Both the
parameters and the states change in an identical fashion to
minimise prediction error. The predictive coding scheme es-
chews the problems associated with earlier schemes. It can
easily accommodate nonlinear mixing of causes in the real
world. It does not require this mixing to be invertible and
needs only the sensory inputs. However, there is an outstand-
ing problem:

• To finesse the inverse problem, posed by non-invertible
generative models, regularisation constraints are required.
These resolve the problem of non-invertibility that con-
founds simple infomax schemes but introduce a new prob-
lem. Namely one needs to know the prior distribution of
the causes. This is because, as shown next, the regulari-
sation constraints are based on these priors.

In summary, predictive coding treats representational
learning as an ill-posed inverse problem and uses an explicit
parameterisation of a forward model to generate predictions
of the observed input. The ensuing error is then used to re-
fine the forward model. This component of representational
learning is dealt with below (Section 3.6). The predictions
are based on estimated causes that also minimise predic-
tive error, under some constraints that resolve the generally
ill-posed estimation problem. We now consider these con-
straints from a Bayesian point of view.

3.4.2. Predictive coding and Bayesian inference
One important aspect of predictive coding and generative

models (see further) is that they portray the brain as an infer-
ential machine (Dayan et al., 1995). From this perspective,
functional architectures exist, not to filter the input to obtain
the causes, but to estimate causes and test the predictions
against the observed input. A compelling aspect of predic-
tive coding schemas is that they lend themselves to Bayesian
treatment. This is important because it can be extended using
empirical Bayes and hierarchical models. In what follows
we shall first describe the Bayesian view of regularisation
in terms of priors on the causes. We then consider hierar-
chical models in which priors can be derived empirically.
The key implication, for neuronal implementations of pre-
dictive coding, is that empirical priors eschew assumptions
about the independence of causes (cf. infomax schemes) or
the form of constraints in regularised inverse solutions.

Suppose we knew the a priori distribution of the causes
p(v), but wanted the best estimate given the input. This max-
imum a posteriori (MAP) estimate maximises the posterior
p(v|u). The two probabilities are related through Bayes rule
which states that the probability of the cause and input oc-
curring together is the probability of the cause given the in-
put times the probability of the input. This, in turn, is the

same as the probability of the input given the causes times
the prior probability of the causes.

p(u, v) = p(v|u)p(u) = p(u|v)p(v) (12)

The MAP estimator of the causes is the most likely given
the data.

vm = max
v

lnp(v|u) = max
v

[lnp(u|v) + lnp(v)] (13)

The first term on the right is known as the log likelihood or
likelihood potential and the second is the prior potential. A
gradient ascent to findvm would take the form

v̇ = ∂�

∂v
�(u) = lnp(u|v; θ) + lnp(v; θ)

(14)

where the dependence of the likelihood and priors on the
model parameters has been made explicit. The likelihood
is defined by the forward modelu = G(v, θ) + ε where
p(u|v; θ) ∝ exp(−V (ε, θ)). V now plays the role of a
Gibb’s potential that specifies ones distributional assump-
tions about the prediction error. Now we have

v̇ = −∂V (ε, θ)

∂v
+ ∂ lnp(v; θ)

∂v
(15)

This is formally identical to the predictive coding scheme
Eq. (11), in which the regularisation termλ(v, θ) =
lnp(v; θ) becomes a log prior that renders the ensuing
estimation Bayesian. In this formulation the state of the
brain changes, not to minimise error per se, but to attain an
estimate of the causes that maximises both the likelihood
of the input given that estimate and the prior probability of
the estimate being true. The implicit Bayesian estimation
can be formalised from a number of different perspectives.
Rao and Ballard (1998)give a very nice example using
the Kalman filter that goes some way to dealing with the
dynamical aspect of real sensory inputs.

3.5. Cortical hierarchies and empirical Bayes

The problem withEq. (15)is that the brain cannot con-
struct priors de novo. They have to be learned along with the
forward model. In Bayesian estimation priors are estimated
from data usingempiricalBayes. Empirical Bayes harnesses
the hierarchical structure of a forward model, treating the
estimates of causes at one level as prior expectations for the
subordinate level (Efron and Morris, 1973). This provides a
natural framework within which to treat cortical hierarchies
in the brain, each providing constraints on the level below.
Fig. 2depicts a hierarchical architecture that is described in
more detail below. This extension models the world as a hi-
erarchy of (dynamical) systems where supraordinate causes
induce, and moderate, changes in subordinate causes. For
example, the presence of a particular object in the visual field
changes the incident light falling on a particular part of the
retina. A more abstract example, that illustrates the brain’s
inferential capacities, is presented inFig. 3. On reading the
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Fig. 2. Schematic depicting a hierarchical extension to the predictive coding architecture, using the same format asFig. 1. Here hierarchical arrangements
within the model serve to provide predictions or priors to representations in the level below. The open circles are the error units and the filled circles are
the representations of causes in the environment. These representations change to minimise both the discrepancy between their predicted value and the
mismatch incurred by their own prediction of the representations in the level below. These two constraints correspond to prior and likelihood potentials,
respectively (see main text).

first sentence ‘Jack and Jill went up the hill’ we perceive the
word ‘event’ as ‘went’. In the absence of any hierarchical
inference the best explanation for the pattern of visual stimu-
lation incurred by the text is ‘event’. This would correspond
to the maximum likelihood estimate of the word and would
be the most appropriate in the absence of prior information
about which is the most likely word. However, within hier-
archical inference the semantic context provides top–down

Fig. 3. Schematic illustrating the role of priors in biasing towards one
representation of an input or another.Left: The word ‘event’ is selected
as the most likely cause of the visual input.Right: The word ‘went’ is
selected as the most likely word that is: (i) a reasonable explanation for
the sensory input; and (ii) conforms to prior expectations induced by
semantic context.

predictions to which the posterior estimate is accountable.
When this prior biases in favour of ‘went’ we tolerate a
small error as a lower level of visual analysis to minimise
the overall prediction error at the visual and lexical level.
This illustrates the role of higher level estimates in provid-
ing predictions or priors for subordinate levels. These priors
offer contextual guidance towards the most likely cause of
the input. Note that predictions at higher levels are subject
to the same constraints, only the highest level, if there is
one in the brain, is free to be directed solely by bottom–up
influences (although there are always implicit priors). If the
brain has evolved to recapitulate the casual structure of its
environment, in terms of its sensory infrastructures, it is in-
teresting to reflect on the possibility that our visual cortices
reflect the hierarchical casual structure of our environment.

The hierarchical structure of the real world is literally re-
flected by the hierarchical architectures trying to minimise
prediction error, not just at the level of sensory input but at
all levels of the hierarchy (notice the deliberate mirror sym-
metry inFig. 2). The nice thing about this architecture is that
the dynamics of casual representations at theith levelvi re-
quire only the error for the current level and the immediately
preceding level. This follows from the Markov property of
hierarchical systems where one only needs to know the im-
mediately supraordinate causes to determine the density of
causes at any level in question, i.e.p(vi |vi+1, . . . , vn) =
p(vi |vi+1). The fact that only error from the current and
lower level is required to drive the dynamics ofvi is impor-
tant because it permits a biologically plausible implementa-
tion, where the connections driving the error minimisation
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have only to run forward from one level to the next (see
Section 3.5.1andFig. 2).

3.5.1. Empirical Bayes in the brain
The biological plausibility of the scheme depicted inFig. 2

can be established fairly simply. To do this a hierarchical
predictive scheme is described in some detail. A more thor-
ough account of this scheme, including simulations of var-
ious neurobiological and psychophysical phenomena, will
appear in future publications. For the moment, we will re-
view neuronal implementation at a purely theoretical level,
using the framework developed above.

Consider any leveli in a cortical hierarchy containing
units (neurons or neuronal populations) whose activityvi
is predicted by corresponding units in the level abovevi+1.
The hierarchical form of the implicit generative model is

u = G1(v2, θ1) + ε1
v2 = G2(v3, θ2) + ε2
v3 = · · ·

(16)

with v1 = u. Technically, these models fall into the class
of conditionally independent hierarchical models when the
error terms are independent at each level (Kass and Steffey,
1989). These models are also calledparametric empirical
Bayes(PEB) models because the obvious interpretation of
the higher-level densities as priors led to the development
of PEB methodology (Efron and Morris, 1973). We require
units in all levels to jointly maximise the posterior probabil-
ities of vi+1 givenvi . We will assume the errors are Gaus-
sian with covariance

∑
i = ∑

(λi). Therefore,θi and λi
parameterise the means and covariances of the likelihood at
each level.

p(vi |vi+1 ) = N(vi : G(vi+1, θi),
∑

i )

∝ ∣∣∑
i

∣∣−1/2 exp
(
−1

2ε
T
i

∑−1
i εi

) (17)

This is also the prior density for the level below. Although
θi andλi are both parameters of the forward modelλi are
sometimes referred to as hyperparameters and in classical
statistics correspond to variance components. We will pre-
serve the distinction between parameters and hyperparam-
eters because minimising the prediction error with respect
to the estimated causes and parameters is sufficient to max-
imise the likelihood of neuronal states at all levels. This is
the essence of predictive coding. For the hyperparameters
there is an additional term that depends on the hyperparam-
eters themselves (see further).

In this hierarchical setting, the objective function com-
prises a series of log likelihoods

�(u) = lnp(u|v1) + ln(v1|v2) + · · ·
= −1

2ξ
T
1 ξ1 − 1

2ξ
T
2 ξ2 − · · ·

−1
2ln

∣∣∑
1

∣∣ − 1
2ln

∣∣∑
2

∣∣ − · · ·
ξi = vi − Gi(vi+1, θ) − λiξi

= (1 + λi)
−1εi

(18)

Here
∑

(λi)
1/2 = 1 + λi . The likelihood at each level

corresponds top(vi |vi+1) which also plays the role of a
prior on vi that is jointly maximised with the likelihood
of the level belowp(vi−1|vi). In a neuronal setting the
(whitened) prediction error is encoded by the activities of
units denoted byξ i . These error units receive a prediction
from units in the level above2 and connections from the
principal unitsvi being predicted. Horizontal interactions
among the error units serve to de-correlate them (cf.Foldiak,
1990), where the symmetric lateral connection strengthsλi
hyper-parameterise the covariances of the errors

∑
i which

are the prior covariances for leveli − 1.
The estimatorsvi+1 and the connection strength parame-

ters perform a gradient ascent on the compound log proba-
bility.

v̇i+1 = ∂�

∂vi+1
= − ∂ξTi

∂vi+1
ξi − ∂ξTi+1

∂vi+1
ξi+1

θ̇i = ∂�

∂θi
= −∂ξTi

∂θi
ξ

λ̇i = ∂�

∂λi
= −∂ξTi

∂λi
ξ − (1 + λi)

−1

(19)

WhenGi(vi+1, θ) models dynamical processes (i.e. is ef-
fectively a convolution operator) this gradient ascent is more
complicated. In a subsequent paper we will show that, with
dynamical models, it is necessary to maximise both� and
its temporal derivatives (e.g.̇�). An alternative is to assume
a simple hidden Markov model for the dynamics and use
Kalman filtering (cf.Rao and Ballard, 1998). For the mo-
ment, we will assume the inputs change sufficiently slowly
for gradient ascent not to be confounded.

Despite the complicated nature of the hierarchical model
and the abstract theorising, three simple and biologically
plausible things emerge:

• Reciprocal connections
The dynamics of representational unitsvi+1 are subject

to two, locally available, influences. A likelihood term
mediated by forward afferents from the error units in the
level below and an empirical prior term conveyed by er-
ror units in the same level. This follows from the condi-
tional independence conferred by the hierarchical struc-
ture of the model. Critically, the influences of the error
units in both levels are meditated by linear connections
with a strength that is exactly the same as the (negative)
effective connectivity of the reciprocal connection from
vi+1 to ξ i andξ i+1 (see Box 1 for definition of effective
connectivity). In short, the lateral, forwards and backward
connections are all reciprocal, consistent with anatomi-
cal observations. Lateral connections, within each level
decorrelate the error units allowing competition between

2 Clearly, the backward connections are not inhibitory but, after media-
tion by inhibitory interneurons, their effective influence could be rendered
inhibitory.
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prior expectations with different precisions (precision is
the inverse of variance).

• Functionally asymmetric forward and backward connec-
tions

The forward connections are the reciprocal (nega-
tive transpose) of the backward effective connectivity
∂ξi/∂vi+1 from the higher level to the lower level, ex-
tant at that time. However, the functional attributes of
the forward and backward influences are different. The
influences of units on error units in the lower level me-
diate the forward modelξi = −Gi(vi+1, θ)+ . . . . These
can be nonlinear, where each unit in the higher levelmay
modulate or interact with the influence of others(accord-
ing to the nonlinearities inG). In contradistinction,the
influences of units in lower levels do not interactwhen
producing changes in the higher level because their ef-
fects are linearly separablėvi+1 = −∂ξi/∂vi+1ξi − · · · .
This is a key observation because the empirical evidence,
reviewed in the previous section, suggests that backward
connections are in a position to interact (e.g. though
NMDA receptors expressed predominantly in the supra-
granular layers receiving backward connections) whereas
forward connections are not. It should be noted that,
although the implied forward connections∂ξi/∂vi+1 me-
diate linearly separable effects ofξ i on vi+1, these con-
nections might be activity- and time-dependent because
of their dependence onvi+1.

• Associative plasticity
Changes in the parameters correspond to plasticity in

the sense that the parameters control the strength of back-
ward and lateral connections. The backward connections
parameterise the prior expectations of the forward model
and the lateral connections hyper-parameterise the prior
covariances. Together they parameterise the Gaussian
densities that constitute the priors (and likelihoods) of
the model. The motivation for these parameters maximis-
ing the same objective function� as the neuronal states
is discussed in the next subsection. For the moment, we
are concerned with the biological plausibility of these
changes. The plasticity implied is seen more clearly
with an explicit parameterisation of the connections. For
example, letGi(vi+1, θi) = θivi+1. In this instance

θ̇i = (1 + λi)
−1ξiv

T
i+1

λ̇i = (1 + λi)
−1(ξiξ

T
i − 1)

(20)

This is just Hebbian or associative plasticity where the
connection strengths change in proportion to the product of
pre and post-synaptic activity. An intuition aboutEq. (20)
obtains by considering the conditions under which the ex-
pected change in parameters is zero (i.e. after learning).
For the backward connections this implies there is no com-
ponent of prediction error that can be explained by casual
estimates at the higher level〈ξivTi+1〉 = 0. The lateral con-
nections stop changing when the prediction error has been
whitened〈ξiξTi 〉 = 1.

Non-diagonal forms forλi complicate the biological in-
terpretation because changes at any one connection depend
on changes elsewhere. The problem can be finessed slightly
by rewriting the equations as

θ̇i = ξiv
T
i+1 − λi θ̇i

λ̇i = ξiξ
T
i − λiλ̇i − 1

(21)

where the decay terms are mediated by integration at the cell
body in a fashion similar to that described inFriston et al.
(1993).

The overall scheme implied byEq. (19)sits comfortably
the hypothesis (Mumford, 1992). “On the role of the recip-
rocal, topographic pathways between two cortical areas, one
often a ‘higher’ area dealing with more abstract information
about the world, the other ‘lower’, dealing with more con-
crete data. The higher area attempts to fit its abstractions
to the data it receives from lower areas by sending back to
them from its deep pyramidal cells a template reconstruction
best fitting the lower level view. The lower area attempts to
reconcile the reconstruction of its view that it receives from
higher areas with what it knows, sending back from its su-
perficial pyramidal cells the features in its data which are
not predicted by the higher area. The whole calculation is
done with all areas working simultaneously, but with order
imposed by synchronous activity in the various top–down,
bottom–up loops”.

In summary, the predictive coding approach lends itself
naturally to a hierarchical treatment, which considers the
brain as an empirical Bayesian device. The dynamics of the
units or populations are driven to minimise error at all levels
of the cortical hierarchy and implicitly render themselves
posterior estimates of the causes given the data. In contradis-
tinction to connectionist schemas, hierarchical prediction
does not require any desired output. Indeed predictions of
intermediate outputs at each hierarchical level emerge spon-
taneously. Unlike information theoretic approaches they do
not assume independent causes and invertible generative
processes. In contrast to regularised inverse solutions (e.g. in
machine vision) they do not depend on a priori constraints.
These emerge spontaneously as empirical priors from higher
levels. The Bayesian considerations above pertain largely to
the estimates of the causes. In the final subsection we con-
sider the estimation of model parameters using the frame-
work provided by density learning with generative models.

3.6. Generative models and representational learning

In this section we bring together the various schema
considered above using the framework provided by density
estimation as a way of fitting generative models. This sec-
tion follows Dayan and Abbot (2001)to which the reader
is referred for a fuller discussion. Generative models rep-
resent a generic formulation of representational leaning in
a self-supervised context. There are many forms of genera-
tive models that range from conventional statistical models
(e.g. factor and cluster analysis) and those motivated by
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Bayesian inference and learning (e.g.Dayan et al., 1995;
Hinton et al., 1995). Indeed many of the algorithms dis-
cussed under the heading of information theory can be
formulated as generative models. The goal of generative
models is “to learn representations that are economical to
describe but allow the input to be reconstructed accurately”
(Hinton et al., 1995). In current treatments, representational
learning is framed in terms of estimating probability den-
sities of the inputs and outputs. Although density learning
is formulated at a level of abstraction that eschews many
issues of neuronal implementation (e.g. the dynamics of
real-time learning), it does provide a unifying framework
that connects the various schemes considered so far.

The goal of generative models is to make the density of
the inputs, implied by the generative modelp(u; θ ), as close
as possible to those observedp(u). The generative model is
specified in terms of the prior distribution over the causes
p(v; θ) and the conditionalgenerativedistribution of the
inputs given the causesp(u|v; θ) which together define the
marginal distribution that has to be matched to the input
distribution

p(u; θ) =
∫

p(u|v; θ)p(v; θ)dv (22)

Once the parameters of the generative model have been es-
timated, through this matching, the posterior density of the
causes, given the inputs are given by the recognition model
defined in terms of therecognitiondistribution

p(v|u; θ) = p(u|v; θ)p(v; θ)
p(u; θ) (23)

However, as considered in depth above, the generative
model may not be invertible and it may not be possible to
compute the recognition distribution fromEq. (23). In this
instance, an approximate recognition distribution can be
usedq(v; u, φ) that we try to approximate to the true one.
The distribution has some parametersφ that need to be
learned, for example, the strength of forward connections.
The question addressed in this review is whether forward
connections are sufficient for representational leaning. For a
moment, consider deterministic models that discount prob-
abilistic or stochastic aspects. We have been asking whether
we can find the parameters of a deterministic recognition
model that renders it the inverse of a generating process

R(u, φ) = G−1(u, θ) (24)

The problem is thatG(v, θ) is a nonlinear convolution and
is generally not invertible. The generative model approach
posits that it is sufficient to find the parameters of an (ap-
proximate) recognition modelφ and the generative model
θ that predict the inputs

G(R(u, φ), θ) = u (25)

under the constraint that the recognition model is (approxi-
mately) the inverse of the generative model.Eq. (25)is the

same asEq. (24)after applyingG to both sides. The impli-
cation is that one needs an explicit parameterisation of the
(approximate) recognition (inverse) model and generative
(forward) models that induces the need for both forward and
backward influences. Separate recognition and generative
models resolve the problem caused by the non-invertibility
of generating processes. The corresponding motivation, in
probabilistic learning, rests on finessing the combinatorial
explosion of ways in which stochastic generative models
can generate input patterns (Dayan et al., 1995). The com-
binatorial explosion represents another perspective on the
uninvertible ‘many to one’ relationship between causes and
inputs.

In the general density learning framework, representa-
tional learning has two components that can be seen in terms
of expectation maximisation (EM,Dempster et al., 1977). In
theE-Step the approximate recognition distribution is modi-
fied to match the density implied by the generative model pa-
rameters, so thatq(v; u, φ) ≈ p(v|u; θ) and in theM-Step
these parameters are changed to renderp(u; θ) ≈ p(u). In
other words, theE-Step ensures the recognition model ap-
proximates the generative model and theM-Step ensures that
the generative model can predict the observed inputs. If the
model is invertible theE-Step reduces to settingq(v; u, φ) =
p(v|u; θ) usingEq. (23). Probabilistic recognition proceeds
by usingq(v; u, φ) to determine the probability thatv caused
the observed sensory inputs. This recognition becomes de-
terministic whenq(v; u, φ) is a Diracδ-function over the
MAP estimator of the causesvm. The distinction between
probabilistic and deterministic recognition is important be-
cause we have restricted ourselves to deterministic models
thus far but these are special cases of density estimation in
generative modelling.

3.6.1. Density estimation and EM
EM provides a useful procedure for density estimation

that helps relate many different models within a framework
that has direct connections with statistical mechanics. Both
steps of the EM algorithm involve maximising a function of
the densities that corresponds to the negative free energy in
physics.

F(φ, θ)=
〈∫

q(v; u, φ) ln
p(v, u; θ)
q(v; u, φ) dv

〉
u

= 〈lnp(u; θ)〉u−〈KL(q(v; u, φ), p(v|u; θ)〉u (26)

This objective function comprises two terms. The first is the
expected log likelihood of the inputs, under the generative
model, over the observed inputs. Maximising this term im-
plicitly minimises the Kullback–Leibler (KL) divergence3

between the actual input density and that implied by the gen-
erative model. This is equivalent to maximising the log like-
lihood of the inputs. The second term is the KL divergence
between the approximating and true recognition densities. In

3 A measure of the discrepancy between two densities.
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short, maximisingF encompasses two components of rep-
resentational learning: (i) it increases the likelihood that the
generative model could have produced the inputs; and (ii)
minimises the discrepancy between the approximate recog-
nition model and that implied by the generative model. The
E-Step increasesF with respect to the recognition parame-
tersφ through minimising the KL term, ensuring a veridical
approximation to the recognition distribution implied byθ .
TheM-Step increasesF by changingθ , enabling the gener-
ative model to reproduce the inputs.

E : φ = min
φ

F (φ, θ)

M : θ = min
θ

F (φ, θ)
(27)

This formulation of representational leaning is critical for the
thesis of this review because it shows that backward connec-
tions, parameterising a generative model, are essential when
the model is not invertible. If the generative model is invert-
ible then the KL term can be discounted and learning reduces
to theM-Step (i.e. maximising the likelihood). In principle,
this could be done using a feedforward architecture corre-
sponding to the inverse of the generative model. However,
when processes generating inputs are non-invertible (due to
nonlinear interactions among, and temporal convolutions of,
the causes) a parameterisation of the generative model (back-
ward connections) and approximate recognition model (for-
ward connections) is required that can be updated inM- and
E-Steps, respectively. In short, non-invertibility enforces an
explicit parameterisation of the generative model in repre-
sentational learning. In the brain this parameterisation may
be embodied in backward and lateral connections.

The EM scheme enables exact and approximate maxi-
mum likelihood density estimation for a whole variety of
generative models that can be specified in terms of priors
and generative distributions.Dayan and Abbot (2001)work
through a series of didactic examples from cluster analy-
sis to independent component analyses, within this unifying
framework. For example, factor analysis corresponds to the
generative model

p(v; θ) = N(v : 0,1)

p(u |v ; θ) = N(u : θv,
∑

)
(28)

Namely, the underlying causes of inputs are independent
normal variates that are mixed linearly and added to Gaus-
sian noise to form inputs. In the limiting case of

∑ → 0
the generative and recognition models become deterministic
and the ensuing model conforms to PCA. By simply assum-
ing non-Gaussian priors one can specify generative models
for sparse coding of the sort proposed byOlshausen and
Field (1996).

p(v; θ) = ∏
p(vi; θ)

p(u |v ; θ) = N(u : θv,
∑

)
(29)

where p(vi; θ) are chosen to be suitably sparse (i.e.
heavy-tailed) with a cumulative density function that

corresponds to the squashing function inSection 3.3.1. The
deterministic equivalent of sparse coding is ICA that obtains
when

∑ → 0. The relationships among different models
are rendered apparent under the perspective of generative
models. It is useful to revisit the schemes above to examine
their implicit generative and recognition models.

3.6.2. Supervised representational learning
In supervised schemes the generative model is already

known and only the recognition model needs to be esti-
mated. The generative model is known in the sense that the
desired output determines the input either deterministically
or stochastically (e.g. the input primitives are completely
specified by their cause, which is the desired output). In this
case only theE-Step is required in which the parameters
φ that specifyq(v; u, φ) change to maximiseF. The only
term in Eq. (26)that depends onφ is the divergence term,
such that learning reduces to minimising the expected differ-
ence between the approximate recognition density and that
required by the generative model. This can proceed proba-
bilistically (e.g. Contrastive Hebbian learning in stochastic
networks (Dayan and Abbot, 2001, p. 322)) or deterministi-
cally. In the deterministic modeq(v; u, φ) corresponds to a
δ-function over the point estimatorvm = R(u, φ). The con-
nection strengthsφ are changed, typically using the delta
rule, such that the distance between the modes of the approx-
imate and desired recognition distributions are minimised
over all inputs. This is equivalent to nonlinear function ap-
proximation; a perspective that can be adopted on all super-
vised learning of deterministic mappings with neural nets.

Note, again, that any scheme, based on supervised learn-
ing, requires the processes generating inputs to be known a
priori and as such cannot be used by the brain.

3.6.3. Information theory
In this section on information theory we had considered

whether infomax principles were sufficient to specify deter-
ministic recognition architectures, in the absence of back-
ward connections. They were introduced in terms of finding
some function of the inputs that produces an output den-
sity with maximum entropy. Maximisation ofF attains the
same thing through minimising the discrepancy between the
observed input distributionp(u) and that implied by a gen-
erative model with maximum entropy priors. Although the
infomax and density learning approaches have the same ob-
jective their heuristics are complementary. Infomax is moti-
vated by maximising the mutual information betweenu and
v under some constraints. The generative model approach
takes its heuristics from the assumption that the causes of in-
puts are independent and possibly non-Gaussian. This results
in a prior with maximum entropyp(v; θ) = ∏

p(vi; θ). The
reason for adopting non-Gaussian priors (e.g. sparse cod-
ing and ICA) is that the central limit theorem implies mix-
tures of causes will have Gaussian distributions and there-
fore something that is not Gaussian is unlikely to be a
mixture.
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For invertible deterministic modelsv = R(u, φ) =
G−1(u, θ) the KL component ofF disappears leaving only
the likelihood term.

F = 〈lnp(u; θ)〉u = 〈lnp(v; θ)〉u + 〈lnp(u|v; θ)〉u
=

〈
ln

∏
p(vi; θ)

〉
u

+
〈
ln

∣∣∣∣∂R(u, φ)∂u

∣∣∣∣
〉
u

= −
∑

H(vi; θ) + H(v;φ) − H(u) (30)

This has exactly the same dependence on the parameters
as the objective function employed by infomax inEq. (7).
In this context, the free energy and the information differ
only by the entropy of the inputs−F = I + H(u). This
equivalence rests on uses maximum entropy priors of the
sort assumed for sparse coding.

Notice again that, in the context of invertible deterministic
generative models, the parameters of the recognition model
specify the generative model and only the recognition model
(i.e. forward connections meditatingv = R(u, φ)) needs to
be instantiated. If the generative modal cannot be inverted
the recognition model is not defined and the scheme above
is precluded. In this instance one has to parameterise both an
approximate recognition and generative model as required
by EM. This enables the use of nonlinear generative models,
such as nonlinear PCA (e.g.Kramer, 1991; Karhunen and
Joutsensalo, 1994; Dong and McAvoy, 1996; Taleb and
Jutten, 1997). These schemes typically employ a ‘bottleneck’
architecture that forces the inputs through a small number
of nodes. The output from these nodes then diverges to
produce the predicted inputs. The approximate recognition
model is implemented, deterministically in connections to
the bottleneck nodes and the generative model by connection
from these nodes to the outputs. Nonlinear transformations,
from the bottleneck nodes to the output layer, recapitulate
the nonlinear mixing of the real causes of the inputs. After
learning, the activity of the bottleneck nodes can be treated
as estimates of the causes. These representations obtain by
projection of the input onto a low-dimensional curvilin-
ear manifold (encompassing the activity of the bottleneck
nodes) by an approximate recognition model.

3.6.4. Predictive coding
In the forgoing, density learning is based on the expecta-

tions of probability distributions over the inputs. Clearly the
brain does not have direct access to these expectations but
sees only one input at any instant. In this instance represen-
tational learning has to proceed on-line, by sampling inputs
over time.

For deterministic recognition models,q(v; u, φ) is param-
eterised by its input-specific modev(u), whereq(v(u); u) =
1 and

�(u) = ∫
q(v; u, φ)lnp(v, u; θ)

q(v; u, φ) dv = lnp(v(u), u; θ)
= lnp(u|v(u); θ) + lnp(v(u); θ)

F = 〈�(u)〉u
(31)

�(u) is simply the log of the joint probability, under the
generative model, of the observed inputs and their cause,
implied by approximate recognition. This log probability
can be decomposed into a log likelihood and log prior and
is exactly the same objective function used to find the MAP
estimator in predictive coding cf.Eq. (14).

On-line representational learning can be thought of as
comprising two components, corresponding to theE and
M-Steps. The expectation (E) component updates the recog-
nition density, whose mode is encoded by the neuronal ac-
tivity v, by maximising�(u). Maximising�(u) is sufficient
to maximise its expectationF over inputs because it is max-
imised for each input separately. The maximisation (M)
component corresponds to an ascent of these parameters,
encoded by the connection strengths, on the same log prob-
ability

E : φ̇ = v̇ = ∂�

∂v

M : θ̇ = ∂�

∂θ

(32)

such that the expected change approximates4 an ascent on
F; 〈θ̇〉 ≈ 〈∂�/∂θ〉u = ∂F/∂θ . Eq. (32) is formally identi-
cal to Eq. (19), the hierarchical prediction scheme, where
the hyperparameters have been absorbed into the param-
eters. In short, predictive coding can be regarded as an
on-line or dynamic form of density estimation using a de-
terministic recognition model and a stochastic generative
model. Conjoint changes in neuronal states and connection
strengths map to the expectation maximisation of the ap-
proximate recognition and generative models, respectively.
Note that there is no explicit parameterisation of the recog-
nition model; the recognition density is simply represented
by its mode for the inputu at a particular time. This affords
a very unconstrained recognition model that can, in princi-
ple, approximate the inverse of highly nonlinear generative
models.

3.7. Summary

In summary, the formulation of representational learn-
ing in terms of generative models embodies a number of
key distinctions: (i) the distinction between invertible versus
non-invertible models; (ii) deterministic versus probabilistic
representations; and (iii) dynamic versus density learning.

Non-invertible generative models require their explicit pa-
rameterisation and suggest an important role for backward
connections in the brain. Invertible models can, in princi-
ple be implemented using only forward connections because
the recognition model completely specifies the generative
model and vice versa. However, nonlinear and dynamic as-
pects of the sensorium render invertibility highly unlikely.

4 This approximation can be finessed by using traces, to approximate
the expectation explicitly, and changing the connections in proportion to
the trace.
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This section has focused on the conditions under which for-
ward connections are sufficient to parameterise a generative
model. In short, these conditions rest on invertibility and
speak to the need for backward connections in the context
of nonlinear and noninvertible generative models.

Most of the examples in this section have focused on de-
terministic recognition models where neuronal dynamics en-
code the most likely causes of the current sensory input. This
is largely because we have been concerned with how the
brain represents things. The distinction between determinis-
tic and probabilistic representation addresses a deeper ques-
tion about whether neuronal dynamics represent the state of
the world or the probability densities of those states. From
the point of view of hierarchical models the state of the neu-
ronal units encodes the mode of the posterior density at any
given level. This can be considered a point recognition den-
sity. However, the states of units at any level also induce a
prior density in the level below. This is because the prior
mode is specified by dynamic top–down influences and the
prior covariance by the strength of lateral connections. These
covariances render the generative model a probabilistic one.

By encoding densities in terms of their modes, using neu-
ronal activity, the posterior and prior densities can change
quickly with sensory inputs. However, this does entail uni-
modal densities. From the point of view of a statistician this
may be an impoverished representation of the world that
compromises any proper inference, especially when the pos-
terior distribution is multimodal. However, it is exactly this
approximate nature of recognition that pre-occupies psy-
chophysicists and psychologists; The emergence of unitary,
deterministic perceptual representations in the brain is com-
monplace and is of special interest when the causes are am-
biguous (e.g. illusions and perceptual transitions induced by
binocular rivalry and ambiguous figures).

The brain is a dynamical system that samples inputs dy-
namically over time. It does not have instantaneous access to
the statistics of its inputs that are required for distinctE- and
M-Steps. Representational learning therefore has to proceed
under this constraint. In this review, hierarchical predictive
coding has been portrayed as a variant of density leaning
that conforms to these constraints.

We have seen that supervised, infomax and generative
models require prior assumptions about the distribution of
causes. This section introduced empirical Bayes to show that
these assumptions are not necessary and that priors can be
learned in a hierarchical context. Furthermore, we have tried
to show that hierarchical prediction can be implemented in
brain-like architectures using mechanisms that are biologi-
cally plausible.

4. Generative models and the brain

The arguments in the preceding section clearly favour
predictive coding, over supervised or information theoretic
frameworks, as a more plausible account of functional brain

architectures. However, it should be noted that the differ-
ences among them have been deliberately emphasised. For
example, predictive coding and the implicit error minimi-
sation results in the maximisation of information transfer.
In other words, predictive coding conforms to the princi-
ple of maximum information transfer, but in a distinct way.
Predictive coding is entirely consistent with the principle of
maximum information. The infomax principle is a principle,
whereas predictive coding represents a particular scheme
that serves that principle. There are examples of infomax
that do not employ predictive coding (e.g. transformations
of stimulus energy in early visual processing;Atick and
Redlich, 1990) that may be specified genetically or epigenet-
ically. However, predictive coding is likely to play a much
more prominent role at higher levels of processing for the
reasons detailed in the previous section.

In a similar way predictive coding, especially in its hier-
archical formulation, conforms to the same PDP principles
that underpin connectionist schemes. The representation of
any cause depends upon the internally consistent represen-
tations of subordinate and supraordinate causes in lower
and higher levels. These representations mutually induce
and maintain themselves, across and within all levels of
the sensory hierarchy, through dynamic and reentrant inter-
actions (Edelman, 1993). The same PDP phenomena (e.g.
lateral interactions leading to competition among represen-
tations) can be observed. For example, the lateral connection
strengths embody what has been learnt empirically about the
prior covariances among causes. A prior that transpires to be
very precise (i.e. low variance) will receive correspondingly
low strength inhibitory connections from its competing error
units (recall

∑
(λi)

1/2 = 1+λi). It will therefore supervene
over other error units and have a greater corrective impact
on the estimate causing the prediction error. Conversely,
top–down expectations that are less informative will induce
errors that are more easily suppressed and have less effect
on the representations. In predictive coding, these dynam-
ics are driven explicitly by error minimisation, whereas in
connectionist simulations the activity is determined solely
by the connection strengths established during training.

In addition to the theoretical bias toward generative mod-
els and predictive coding, the clear emphasis on backward
and reentrant (Edelman, 1993) dynamics make it a more
natural framework for understanding neuronal infrastruc-
tures. Fig. 1 shows the fundamental difference between
infomax and generative schemes. In the infomax schemes
the connections are universally forward. In the predictive
coding scheme the forward connections (broken line) drive
the prediction so as to minimise error whereas backwards
connections (solid lines) use these representations of causes
to emulate mixing enacted by the real world. The nonlinear
aspects of this mixing imply that only backward influ-
ences interact in the predictive coding scheme whereas the
nonlinearunmixing, in classical infomax schemas, is medi-
ated by forward connections.Section 2assembled some of
the anatomical and physiological evidence suggesting that
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backward connections are prevalent in the real brain and
could support nonlinear mixing through their modulatory
characteristics. It is pleasing that purely theoretical consider-
ations and neurobiological empiricism converge on the same
architecture. Before turning to electrophysiological and
functional neuroimaging evidence for backward connections
we consider the implications for classical views of receptive
fields and the representational capacity of neuronal units.

4.1. Context, causes and representations

The Bayesian perspective suggests something quite pro-
found for the classical view of receptive fields. If neuronal
responses encompass a bottom–up likelihood term and
top–down priors, then responses evoked by bottom–up in-
put should change with the context established by prior
expectations from higher levels of processing. Consider the
example inFig. 3 again. Here a unit encoding the visual
form of ‘went’ responds when we read the first sentence at
the top of this figure. When we read the second sentence
‘The last event was cancelled’ it would not. If we recorded
from this unit we might infer that our ‘went’ unit was, in
some circumstances, selective for the word ‘event’. Without
an understanding of hierarchical inference and the semantic
context the stimulus was presented in this might be difficult
to explain. In short, under a predictive coding scheme, the
receptive fields of neurons should be context-sensitive. The
remainder of this section deals with empirical evidence for
these extra-classical receptive field effects.

Generative models suggest that the role of backward con-
nections is to provide contextual guidance to lower levels
through a prediction of the lower level’s inputs. When this
prediction is incomplete or incompatible with the lower
area’s input, an error is generated that engenders changes
in the area above until reconciliation. When, and only
when, the bottom–up driving inputs are in harmony with
top–down prediction, error is suppressed and a consensus
between the prediction and the actual input is established.
Given this conceptual model a stimulus-related response
or ‘activation’ corresponds to some transient error signal
that induces the appropriate change in higher areas until a
veridical higher-level representation emerges and the error
is ‘cancelled’ by backwards connections. Clearly the pre-
diction error will depend on the context and consequently
the backward connections confer context-sensitivity on the
functional specificity of the lower area. In short, the activa-
tion does not just depend on bottom–up input but on the dif-
ference between bottom–up input and top–down predictions.

The prevalence of nonlinear or modulatory top–down ef-
fects can be inferred from the fact that context interacts with
the content of representations. Here context is established
simply through the expression of causes other than the one
in question. Backward connections from one higher area
can be considered as providing contextual modulation of the
prediction from another. Because the effect of context will
only be expressed when the thing being predicted is present

these contextual afferents will not elicit a response by them-
selves. Effects of this sort, which change the responsiveness
of units but do not elicit a response, are a hallmark of mod-
ulatory projections. In summary, hierarchical models offer a
scheme that allows for contextual effects; firstly through bi-
asing responses towards their prior expectation and secondly
by conferring a context-sensitivity on these priors through
modulatory backward projections. Next we consider the na-
ture of real neuronal responses and whether they are consis-
tent with this perspective.

4.2. Neuronal responses and representations

Classical models (e.g. classical receptive fields) assume
that evoked responses will be expressed invariably in the
same units or neuronal populations irrespective of the con-
text. However, real neuronal responses are not invariant but
depend upon the context in which they are evoked. For exam-
ple, visual cortical units have dynamic receptive fields that
can change from moment to moment (cf. the non-classical
receptive field effects modelled in (Rao and Ballard, 1998)).
Another example is attentional modulation of evoked re-
sponses that can change the sensitivity of neurons to different
perceptual attributes (e.g.Treue and Maunsell, 1996). The
evidence for contextual responses comes from neuroanatom-
ical and electrophysiological studies. There are numerous
examples of context-sensitive neuronal responses. Perhaps
the simplest is short-term plasticity. Short-term plasticity
refers to changes in connection strength, either potentiation
or depression, following pre-synaptic inputs (e.g.Abbot
et al., 1997). In brief, the underlying connection strengths,
that define what a unit represents, are a strong function of
the immediately preceding neuronal transient (i.e. preced-
ing representation). A second, and possibly richer, example
is that of attentional modulation. It has been shown, both
in single unit recordings in primates (Treue and Maunsell,
1996) and human functional fMRI studies (Büchel and
Friston, 1997), that attention to specific visual attributes
can profoundly alter the receptive fields or event-related
responses to the same stimuli.

These sorts of effects are commonplace in the brain and
are generally understood in terms of the dynamic modula-
tion of receptive field properties by backward and lateral
afferents. There is clear evidence that lateral connections in
visual cortex are modulatory in nature (Hirsch and Gilbert,
1991), speaking to an interaction between the functional seg-
regation implicit in the columnar architecture of V1 and the
neuronal dynamics in distal populations. These observations,
suggests that lateral and backwards interactions may convey
contextual information that shapes the responses of any neu-
ron to its inputs (e.g.Kay and Phillips, 1996; Phillips and
Singer, 1997) to confer on the brain the ability to make con-
ditional inferences about sensory input. See alsoMcIntosh
(2000)who develops the idea from a cognitive neuroscience
perspective “that a particular region in isolation may not
act as a reliable index for a particular cognitive function.
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Instead, theneural contextin which an area is active may
define the cognitive function.” His argument is predicated
on careful characterisations of effective connectivity using
neuroimaging.

4.2.1. Examples from electrophysiology
In the next section we will illustrate the context-sensitive

nature of cortical activations, and implicit specialisation, in
the inferior temporal lobe using neuroimaging. Here we con-
sider the evidence for contextual representations in terms of
single cell responses, to visual stimuli, in the temporal cor-
tex of awake behaving monkeys. If the representation of a
stimulus depends on establishing representations of subor-
dinate and supraordinate causes at all levels of the visual
hierarchy, then information about the high-order attributes
of a stimulus, must be conferred by top–down influences.
Consequently, one might expect to see the emergence of se-
lectivity, for high-level attributes,after the initial visually
evoked response (it typically takes about 10 ms for volleys
of spikes to be propagated from one cortical area to another
and about a 100 ms to reach prefrontal areas). This is be-
cause the representations at higher levels must emerge be-
fore backward afferents can reshape the response profile of
neurons in lower areas. This temporal delay, in the emer-
gence of selectivity, is precisely what one sees empirically:
Sugase et al. (1999)recorded neurons in macaque temporal
cortex during the presentation of faces and objects. The faces
were either human or monkey faces and were categorised in
terms of identity (whose face it was) and expression (happy,
angry, etc.). “Single neurones conveyed two different scales
of facial information in their firing patterns, starting at dif-
ferent latencies. Global information, categorising stimuli as
monkey faces, human faces or shapes, was conveyed in the
earliest part of the responses. Fine information about iden-
tity or expression was conveyed later”, starting on average
about 50 ms after face-selective responses. These observa-
tions demonstrate representations for facial identity or ex-
pression that emerge dynamically in a way that might rely
on backward connections. These influences imbue neurons
with a selectivity that is not intrinsic to the area but depends
on interactions across levels of a processing hierarchy.

A similar late emergence of selectivity is seen in motion
processing. A critical aspect of visual processing is the inte-
gration of local motion signals generated by moving objects.
This process is complicated by the fact that local velocity
measurements can differ depending on contour orientation
and spatial position. Specifically, any local motion detector
can measure only the component of motion perpendicular
to a contour that extends beyond its field of view (Pack and
Born, 2001). This “aperture problem” is particularly relevant
to direction-selective neurons early in the visual pathways,
where small receptive fields permit only a limited view of
a moving object.Pack and Born (2001)have shown “that
neurons in the middle temporal visual area (known as MT
or V5) of the macaque brain reveal a dynamic solution to
the aperture problem. MT neurons initially respond primar-

ily to the component of motion perpendicular to a contour’s
orientation, but over a period of approximately 60 ms the re-
sponses gradually shift to encode the true stimulus direction,
regardless of orientation”.

The preceding examples were taken from electrophys-
iology. Similar predictions can be made, albeit at a less
refined level, about population responses elicited in func-
tional neuroimaging where functional specialisation (cf.
selectivity in unit recordings) is established by showing
regionally-specific responses to some sensorimotor attribute
or cognitive component. At the level of cortical responses
in neuroimaging the dynamic and contextual nature of
evoked responses means that regionally-specific responses
to a particular cognitive component may be expressed in
one context but not another. In the next section we look at
some empirical evidence from functional neuroimaging that
confirms the idea that functional specialisation is conferred
in a context-sensitive fashion by backwards connections
from higher brain areas.

5. Functional architectures assessed with
brain imaging

Information theory and predictive coding schemas sug-
gest alternative architectures that are sufficient for represen-
tational learning. Forward connections are sufficient for the
former, whereas the latter posits that most of the brain’s in-
frastructure is used to predict sensory input through a hierar-
chy of top–down projections. Clearly to adjudicate between
these alternatives the existence of backward influences must
be established. This is a slightly deeper problem for func-
tional neuroimaging than might be envisaged. This is be-
cause making causal inferences about effective connectivity
is not straightforward (seePearl, 2000). It might be thought
that showing regional activity was partially predicted by ac-
tivity in a higher level would be sufficient to confirm the ex-
istence of backward influences, at least at a population level.
The problem is that this statistical dependency does not per-
mit any causal inference. Statistical dependencies could eas-
ily arise in a purely forward architecture because the higher
level activity is predicated on activity in the lower level. One
resolution of this problem is to perturb the higher level di-
rectly using transmagnetic stimulation or pathological dis-
ruptions (seeSection 6). However, discounting these inter-
ventions, one is left with the difficult problem of inferring
backward influences, based on measures that could be cor-
related because of forward connections. Although there are
causal modelling techniques that can address this problem
we will take a simpler approach and note that interactions
between bottom–up and top–down influences cannot be ex-
plained by a purely feedforward architecture. This is because
the top–down influences have no access to the bottom–up
inputs. An interaction, in this context, can be construed as an
effect of backward connections on the driving efficacy of for-
ward connections. In other words, the response evoked by the
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same driving bottom–up inputs depends upon the context es-
tablished by top–down inputs. This interaction is used below
simply as evidence for the existence of backward influences.
However, there are some instances of predictive coding that
emphasises this phenomenon. For example, the “Kalman fil-
ter model demonstrates how certain forms of attention can be
viewed as an emergent property of the interaction between
top–down expectations and bottom–up signals” (Rao, 1999).

The remainder of this article focuses on the evidence
for these interactions. From the point of view of func-
tionally specialised responses these interactions manifest
as context-sensitive or contextual specialisation, where
modality-, category- or exemplar-specific responses, driven
by bottom up inputs are modulated by top–down influences
induced by perceptual set. The first half of this section
adopts this perceptive. The second part of this section uses
measurements of effective connectivity to establish inter-
actions between bottom–up and top–down influences. All
the examples presented below rely on attempts to establish
interactions by trying to change sensory-evoked neuronal
responses through putative manipulations of top–down in-
fluences. These include inducing independent changes in
perceptual set, cognitive (attentional) set and, in the last
section through the study of patients with brain lesions.

5.1. Context-sensitive specialisation

If functional specialisation is context-dependent then one
should be able to find evidence for functionally-specific
responses, using neuroimaging, that are expressed in one
context and not in another. The first part of this section
provides an empirical example. If the contextual nature of
specialisation is mediated by backwards modulatory affer-
ents then it should be possible to find cortical regions in
which functionally-specific responses, elicited by the same
stimuli, are modulated by activity in higher areas. The sec-
ond example shows that this is indeed possible. Both of
these examples depend on multifactorial experimental de-
signs that have largely replaced subtraction and categorical
designs in human brain mapping.

5.1.1. Categorical designs
Categorical designs, such as cognitive subtraction, have

been the mainstay of functional neuroimaging over the past
decade. Cognitive subtraction involves elaborating two tasks
that differ in a separable component. Ensuing differences
in brain activity are then attributed to this component. The
tenet of cognitive subtraction is that the difference between
two tasks can be formulated as a separable cognitive or sen-
sorimotor component and that the regionally specific differ-
ences in hemodynamic responses identify the corresponding
functionally specialised area. Early applications of subtrac-
tion range from the functional anatomy of word processing
(Petersen et al., 1989) to functional specialisation in extras-
triate cortex (Lueck et al., 1989). The latter studies involved
presenting visual stimuli with and without some sensory at-

tribute (e.g. colour, motion etc.). The areas highlighted by
subtraction were identified with homologous areas in mon-
keys that showed selective electrophysiological responses to
equivalent visual stimuli.

Consider a specific example; namely the difference be-
tween simply saying “yes” when a recognisable object is
seen, and saying “yes” when an unrecognisable non-object
is seen. Regionally specific differences in brain activity that
distinguish between these two tasks could be implicated in
implicit object recognition. Although its simplicity is appeal-
ing this approach embodies some strong assumptions about
the way that the brain implements cognitive processes. A
key assumption is ‘pure insertion’. Pure insertion asserts that
one can insert a new component into a task without effect-
ing the implementation of pre-existing components (for ex-
ample, how do we know that object recognition is not itself
affected by saying “yes”?). The fallibility of this assumption
has been acknowledged for decades, perhaps most explic-
itly by Sternberg’s revision of Donder’s subtractive method.
The problem for subtraction is as follows: if one develops a
task by adding a component then the new task comprises not
only the previous components and the new component but
the integration of the new and old components (for example,
the integration of phonology and object recognition). This
integration orinteractioncan itself be considered as a new
component. The difference between two tasks therefore in-
cludes the new component and the interactions between the
new component and those of the original task. Pure inser-
tion requires that all these interaction terms are negligible.
Clearly in many instances they are not. We next consider fac-
torial designs that eschew the assumption of pure insertion.

5.1.2. Multifactorial designs
Factorial designs combine two or more factors within a

task or tasks. Factorial designs can be construed as per-
forming subtraction experiments in two or more different
contexts. The differences in activations, attributable to the
effects of context, are simply the interaction. Consider re-
peating the above implicit object recognition experiment in
another context, for example naming (of the object’s name
or the non-object’s colour). The factors in this example are
implicit object recognition with two levels (objects versus
non-objects) and phonological retrieval (naming versus say-
ing “yes”). The idea here is to look at the interaction be-
tween these factors, or the effect that one factor has on the
responses elicited by changes in the other. Generally, in-
teractions can be thought of as a difference in activations
brought about by another processing demand. Dual task in-
terference paradigms are a clear example of this approach
(e.g.Fletcher et al., 1995).

Consider the above object recognition experiment again.
Noting that object-specific responses are elicited (by asking
subjects to view objects relative to meaningless shapes), with
and without phonological retrieval, reveals the factorial na-
ture of this experiment. This ‘two by two’ design allows one
to look specifically at the interaction between phonological
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Fig. 4. This example of regionally specific interactions comes from an experiment where subjects were asked to view coloured non-object shapes or
coloured objects and say “yes”, or to name either the coloured object or the colour of the shape.Left: A regionally specific interaction in the left
infero-temporal cortex. The SPM threshold isP < 0.05 (uncorrected) (Friston et al., 1995b). Right: The corresponding activities in the maxima of this
region are portrayed in terms of object recognition-dependent responses with and without naming. It is seen that this region shows object recognition
responses when, and only when, there is phonological retrieval. The ‘extra’ activation with naming corresponds to the interaction. These data were
acquired from 6 subjects scanned 12 times using PET.

retrieval and object recognition. This analysis identifies
not regionally specific activations but regionally specific
interactions. When we actually performed this experiment
these interactions were evident in the left posterior, inferior
temporal region and can be associated with the integration
of phonology and object recognition (seeFig. 4andFriston
et al., 1996for details). Alternatively this region can be
thought of as expressing recognition-dependent responses
that are realised in, and only in, the context of having to
name the object seen. These results can be construed as
evidence of contextual specialisation for object-recognition
that depends upon modulatory afferents (possibly from tem-
poral and parietal regions) that are implicated in naming a
visually perceived object. There is no empirical evidence in
these results to suggest that the temporal or parietal regions
are the source of this top–down influence but in the next
example the source of modulation is addressed explicitly
using psychophysiological interactions.

5.1.3. Psychophysiological interactions
Psychophysiological interactions speak directly to the

interactions between bottom–up and top–down influences,
where one is modelled as an experimental factor and the
other constitutes a measured brain response. In an analysis
of psychophysiological interactions one is trying to explain
a regionally specific response in terms of an interaction be-
tween the presence of a sensorimotor or cognitive process
and activity in another part of the brain (Friston et al., 1997).
The supposition here is that the remote region is the source
of backward modulatory afferents that confer functional
specificity on the target region. For example, by combining
information about activity in the posterior parietal cortex,
mediating attentional or perceptual set pertaining to a partic-
ular stimulus attribute, can we identify regions that respond

to that stimulus when, and only when, activity in the parietal
source is high? If such an interaction exists, then one might
infer that the parietal area is modulating responses to the
stimulus attribute for which the area is selective. This has
clear ramifications in terms of the top–down modulation of
specialised cortical areas by higher brain regions.

The statistical model employed in testing for psychophysi-
ological interactions is a simple regression model of effective
connectivity that embodies nonlinear (second-order or mod-
ulatory effects). As such, this class of model speaks directly
to functional specialisation of a nonlinear and contextual
sort. Fig. 5 illustrates a specific example (seeDolan et al.,
1997 for details). Subjects were asked to view (degraded)
faces and non-face (object) controls. The interaction between
activity in the parietal region and the presence of faces was
expressed most significantly in the right infero-temporal re-
gion not far from the homologous left infero-temporal re-
gion implicated in the object naming experiment above.
Changes in parietal activity were induced experimentally by
pre-exposure of the (un-degraded) stimuli before some scans
but not others to prime them. The data in the right panel
of Fig. 5 suggests that the infero-temporal region shows
face-specific responses, relative to non-face objects, when,
and only when, parietal activity is high. These results can be
interpreted as a priming-dependent face-specific response,
in infero-temporal regions that are mediated by interactions
with medial parietal cortex. This is a clear example of con-
textual specialisation that depends on top–down effects.

5.2. Effective connectivity

The previous examples demonstrating contextual special-
isation are consistent with functional architectures implied
by predictive coding. However, they do not provide defini-
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Fig. 5. Top: Examples of the stimuli presented to subjects. During the measurement of brain responses only degraded stimuli where shown (e.g. the right
hand picture). In half the scans the subject was given the underlying cause of these stimuli, through presentation of the original picture (e.g. left)before
scanning. This priming induced a profound difference in perceptual set for the primed, relative to non-primed, stimuli,Right: Activity observed in a
right infero-temporal region, as a function of (mean corrected) PPC activity. This region showed the most significant interaction between the presence
of faces in visually presented stimuli and activity in a reference location in the posterior medial parietal cortex (PPC). This analysis can be thought of
as finding those areas that are subject to top–down modulation of face-specific responses by medial parietal activity. The crosses correspond to activity
whilst viewing non-face stimuli and the circles to faces. The essence of this effect can be seen by noting that this region differentiates between faces
and non-faces when, and only when, medial parietal activity is high. The lines correspond to the best second-order polynomial fit. These data were
acquired from six subjects using PET.Left: Schematic depicting the underlying conceptual model in which driving afferents from ventral form areas
(here designated as V4) excite infero-temporal (IT) responses, subject to permissive modulation by PPC projections.

tive evidence for an interaction between top–down and
bottom–up influences. In this subsection we look for direct
evidence of these interactions using functional imaging.
This rests upon being able to measure effective connectivity
in a way that is sensitive to interactions among inputs. This
requires a plausible model of coupling among brain regions
that accommodates nonlinear and dynamical effects. We
have used a model that is based on the Volterra expansion
introduced inSection 3. Before turning to empirical evi-
dence for interactions between bottom–up and top–down
inputs the motivation for this particular model of effective
connectivity is presented briefly.

5.2.1. Effective connectivity and Volterra kernels
The problem faced, when trying to measure effective con-

nectivity, is that measurements of brain responses are usu-
ally very limited, either in terms of their resolution (in space
or time) or in terms of the neurophysiological or biophysi-
cal variable that is measured. Given the complicated nature

of neuronal interactions, involving a huge number of micro-
scopic variables, it may seem an impossible task to make
meaningful measurements of coupling among brain systems,
especially with measurements afforded by techniques like
fMRI. However, the problem is not as intractable as one
might think.

Suppose that the variablesx represented a complete and
self-consistent description of the state variables of a brain
region. In other words, everything needed to determine the
evolution of that region’s state, at a particular place and
time, was embodied in these measurements. If such a set of
variables existed they would satisfy some immensely com-
plicated nonlinear equations (cf.Eq. (1))

ẋ = f (s, u)

y = g(x)
(33)

u represents a set of inputs conveyed by projections from
other regions andx is a large vector of state variables which
range from depolarisation at every point in the dendritic tree
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to the phosphorylation status of every relevant enzyme; from
the biochemical status of every glial cell compartment to
every aspect of gene expression. The vast majority of these
variables are hidden and not measurable directly. However,
there are measurementsy that can be made, that, as we have
seen inSection 3, are simply a nonlinear convolution of the
inputs with some Volterra kernels. These measures usually
reflect the activity of whole cells or populations and are mea-
sured in many ways, for example firing at the initial segment
of an axon or local field potentials. The critical thing here
is that the output is casually related to the inputs,which are
the outputs of other regions. This means that we never need
to know the underlying and ‘hidden’ variables that describe

Fig. 6. Left: Brain regions and connections comprising the model.Right: Characterisation of the effects of V2 inputs on V5 and their modulation by
posterior parietal cortex (PPC). The broken lines represent estimates of V5 responses when PPC activity is zero, according to a second-order Volterra
model of effective connectivity with inputs to V5 from V2, PPC and the pulvinar (PUL). The solid curves represent the same response when PPC activity
is one standard deviation of its variation over conditions. It is evident that V2 has an activating effect on V5 and that PPC increases the responsiveness
of V5 to these inputs. The insert shows all the voxels in V5 that evidenced a modulatory effect (P < 0.05 uncorrected). These voxels were identified
by thresholding a SPM (Friston et al., 1995b) of the F statistic testing for the contribution of second-order kernels involving V2 and PPC (treating all
other terms as nuisance variables). The data were obtained with fMRI under identical stimulus conditions (visual motion subtended by radially moving
dots) whilst manipulating the attentional component of the task (detection of velocity changes).

the details of each region’s electrochemical status. We only
need to know the history of its inputs, which obtain from
the measurable outputs of other regions. In principle, a com-
plete description of regional responses could be framed in
terms of inputs and the Volterra kernels required to produce
the outputs. The nice thing about the kernels is that they can
be interpreted directly as effective connectivity (see Box 1).

Because the inputs (and outputs) are measurable one can
estimate the kernels empirically. The first-order kernel is
simply the change in response induced by a change in input
in the recent past. The second-order kernels are the change
in the first–order effective connectivity induced by changes
in a second (modulatory) input and so on for higher orders.
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Another nice thing about the Volterra formulation is that the
response is linear in the unknowns, which can be estimated
using standard least square procedures. In short, Volterra
kernels are synonymous with effective connectivity because
they characterise the measurable effect that an input has on
its target.

5.2.2. Nonlinear coupling among brain areas
Linear models of effective connectivity assume that the

multiple inputs to a brain region are linearly separable. This
assumption precludes activity-dependent connections that
are expressed in one context and not in another. The resolu-
tion of this problem lies in adopting nonlinear models like
the Volterra formulation that include interactions among in-
puts. These interactions can be construed as a context- or
activity-dependent modulation of the influence that one re-
gion exerts over another (Büchel and Friston, 1997). In the
Volterra model, second-order kernels model modulatory ef-
fects. Within these models the influence of one region on
another has two components: (i) the direct ordriving in-
fluence of input from the first (e.g. hierarchically lower)
region, irrespective of the activities elsewhere; and (ii) an
activity-dependent,modulatorycomponent that represents
an interaction with inputs from the remaining (e.g. hierar-
chically higher) regions. These are mediated by the first and
second-order kernels, respectively. The example provided in
Fig. 6addresses the modulation of visual cortical responses
by attentional mechanisms (e.g.Treue and Maunsell, 1996)
and the mediating role of activity-dependent changes in ef-
fective connectivity.

The right panel inFig. 6 shows a characterisation of this
modulatory effect in terms of the increase in V5 responses,
to a simulated V2 input, when posterior parietal activity is
zero (broken line) and when it is high (solid lines). In this
study subjects were studied with fMRI under identical stim-
ulus conditions (visual motion subtended by radially moving
dots) whilst manipulating the attentional component of the
task (detection of velocity changes). The brain regions and
connections comprising the model are shown in the upper
panel. The lower panel shows a characterisation of the ef-
fects of V2 inputs on V5 and their modulation by posterior
parietal cortex (PPC) using simulated inputs at different lev-
els of PPC activity. It is evident that V2 has an activating ef-
fect on V5 and that PPC increases the responsiveness of V5
to these inputs. The insert shows all the voxels in V5 that ev-
idenced a modulatory effect (P < 0.05 uncorrected). These
voxels were identified by thresholding statistical parametric
maps of theF statistic (Friston et al., 1995b) testing for the
contribution of second-order kernels involving V2 and PPC
while treating all other components as nuisance variables.
The estimation of the Volterra kernels and statistical infer-
ence procedure is described inFriston and Büchel (2000).

This sort of result suggests that backward parietal in-
puts may be a sufficient explanation for the attentional
modulation of visually evoked extrastriate responses. More
importantly, they are consistent with the functional archi-

tecture implied by predictive coding because they establish
the existence of functionally expressed backward connec-
tions. V5 cortical responses evidence an interaction between
bottom–up input from early visual cortex and top–down
influences from parietal cortex. In the final section the
implications of this sort of functional integration are ad-
dressed from the point of view of the lesion-deficit model
and neuropsychology.

6. Functional integration and neuropsychology

If functional specialisation depends on interactions among
cortical areas then one might predict changes in functional
specificity in cortical regions that receive enabling or modu-
latory afferents from a damaged area. A simple consequence
is that aberrant responses will be elicited in regions hierar-
chically below the lesion if, and only if, these responses de-
pend upon inputs from the lesion site. However, there may be
other contexts in which the region’s responses are perfectly
normal (relying on other, intact, afferents). This leads to the
notion of a context-dependent regionally-specific abnormal-
ity, caused by, but remote from, a lesion (i.e. an abnormal
response that is elicited by some tasks but not others). We
have referred to this phenomenon as ‘dynamic diaschisis’
(Price et al., 2000).

6.1. Dynamic diaschisis

Classical diaschisis, demonstrated by early anatomical
studies and more recently by neuroimaging studies of rest-
ing brain activity, refers to regionally specific reductions in
metabolic activity at sites that are remote from, but con-
nected to, damaged regions. The clearest example is ‘crossed
cerebellar diaschisis’ (Lenzi et al., 1982) in which abnormal-
ities of cerebellar metabolism are seen characteristically fol-
lowing cerebral lesions involving the motor cortex. Dynamic
diaschisis describes the context-sensitive and task-specific
effects that a lesion can have on theevoked responsesof a
distant cortical region. The basic idea behind dynamic di-
aschisis is that an otherwise viable cortical region expresses
aberrant neuronal responses when, and only when, those re-
sponses depend upon interactions with a damaged region.
This can arise because normal responses in any given region
depend upon inputs from, and reciprocal interactions with,
other regions. The regions involved will depend on the cog-
nitive and sensorimotor operations engaged at any particular
time. If these regions include one that is damaged, then ab-
normal responses may ensue. However, there may be situa-
tions when the same region responds normally, for instance
when its dynamics depend only upon integration with un-
damaged regions. If the region can respond normally in some
situations then forward driving components must be intact.
This suggests that dynamic diaschisis will only present it-
self when the lesion involves a hierarchically equivalent or
higher area.
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Fig. 7. (a)Top: These renderings illustrate the extent of cerebral infarcts in four patients, as identified by voxel-based morphometry. Regions of reduced
grey matter (relative to neurologically normal controls) are shown in white on the left hemisphere. The SPMs (Friston et al., 1995b) were thresholded
at P < 0.001 uncorrected. All patients had damage to Broca’s area. The first (upper left) patient’s left middle cerebral artery infarct was most extensive
encompassing temporal and parietal regions as well as frontal and motor cortex. (b)Bottom: SPMs illustrating the functional imaging results with regions
of significant activation shown in black on the left hemisphere. Results are shown for: (i) normal subjects reading words (left); (ii) activations common
to normal subjects and patients reading words using a conjunction analysis (middle-top); (iii) areas where normal subjects activate significantly more
than patients reading words, using the group times condition interaction (middle lower); and (iv) the first patient activating normally for a semantic task.
Context-sensitive failures to activate are implied by the abnormal activations in the first patient, for the implicit reading task, despite a normal activation
during a semantic task.

6.1.1. An empirical demonstration
We investigated this possibility in a functional imaging

study of four aphasic patients, all with damage to the left pos-
terior inferior frontal cortex, classically known as Broca’s
area (seeFig. 7, upper panels). These patients had speech
output deficits but relatively preserved comprehension. Gen-
erally functional imaging studies can only make inferences
about abnormal neuronal responses when changes in cogni-
tive strategy can be excluded. We ensured this by engaging
the patients in an explicit task that they were able to perform
normally. This involved a keypress response when a visually
presented letter string contained a letter with an ascending
visual feature (e.g.: h, k, l, or t). While the task remained
constant, the stimuli presented were either words or conso-
nant letter strings. Activations detected for words, relative
to letters, were attributed to implicit word processing. Each
patient showed normal activation of the left posterior mid-
dle temporal cortex that has been associated with seman-
tic processing (Price, 1998). However, none of the patients
activated the left posterior inferior frontal cortex (damaged
by the stroke), or the left posterior inferior temporal region

(undamaged by the stroke) (seeFig. 4). These two regions
are crucial for word production (Price, 1998). Examination
of individual responses in this area revealed that all the nor-
mal subjects showed increased activity for words relative to
consonant letter strings while all four patients showed the
reverse effect. The abnormal responses in the left posterior
inferior temporal lobe occurred even though this undamaged
region: (i) lies adjacent and posterior to a region of the left
middle temporal cortex that activated normally (see middle
column ofFig. 7b); and (ii) is thought to be involved in an
earlier stage of word processing than the damaged left in-
ferior frontal cortex (i.e. is hierarchically lower than the le-
sion). From these results we can conclude that, during the
reading task, responses in the left basal temporal language
area rely on afferent inputs from the left posterior inferior
frontal cortex. When the first patient was scanned again,
during an explicit semantic task, the left posterior inferior
temporal lobe responded normally. The abnormal implicit
reading related responses were therefore task-specific.

These results serve to illustrate the concept of dy-
namic diaschisis; namely the anatomically remote and
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context-specific effects of focal brain lesions. Dynamic
diaschisis represents a form of functional disconnection
where regional dysfunction can be attributed to the loss
of enabling inputs from hierarchically equivalent or higher
brain regions. Unlike classical or anatomical disconnection
syndromes its pathophysiological expression depends upon
the functional brain state at the time responses are evoked.
Dynamic diaschisis may be characteristic of many region-
ally specific brain insults and may have implications for
neuropsychological inference.

7. Conclusion

In conclusion, the representational capacity and inherent
function of any neuron, neuronal population or cortical area
in the brain is dynamic and context-sensitive. Functional in-
tegration, or interactions among brain systems, that employ
driving (bottom up) and backward (top–down) connections,
mediate this adaptive and contextual specialisation. A crit-
ical consequence is that hierarchically organised neuronal
responses, in any given cortical area, can represent different
things at different times. We have seen that most models of
representational learning require prior assumptions about the
distribution of causes. However, empirical Bayes suggests
that these assumptions can be relaxed and that priors can be
learned in a hierarchical context. We have tried to show that
this hierarchical prediction can be implemented in brain-like
architectures and in a biologically plausible fashion.

The main point made in this review is that backward
connections, mediating internal or generative models of
how sensory inputs are caused, are essential if the pro-
cesses generating inputs are non-invertible. Because these
generating processes are dynamical in nature, sensory input
corresponds to a non-invertible nonlinear convolution of
causes. This non-invertibility demands an explicit parame-
terisation of generative models (backward connections) to
enable approximate recognition and suggests that feedfor-
ward architectures, are not sufficient for representational
learning. Moreover, nonlinearities in generative models, that
induce dependence on backward connections, require these
connections to be modulatory; so that estimated causes
in higher cortical levels can interact to predict responses
in lower levels. This is important in relation to asymme-
tries in forward and backward connections that have been
characterised empirically.

The arguments in this article were developed under
prediction models of brain function, where higher-level
systems provide a prediction of the inputs to lower-level re-
gions. Conflict between the two is resolved by changes in the
higher-level representations, which are driven by the ensu-
ing error in lower regions, until the mismatch is ‘cancelled’.
From this perspective the specialisation of any region is de-
termined both by bottom–up driving inputs and by top–down
predictions. Specialisation is therefore not an intrinsic prop-
erty of any region but depends on both forward and backward

connections with other areas. Because the latter have access
to the context in which the inputs are generated they are in a
position to modulate the selectivity or specialisation of lower
areas. The implications for classical models (e.g. classical
receptive fields in electrophysiology, classical specialisation
in neuroimaging and connectionism in cognitive models) are
severe and suggest these models may provide incomplete ac-
counts of real brain architectures. On the other hand, predic-
tive coding in the context of hierarchical generative models
not only accounts for many extra-classical phenomena seen
empirically but also enforces a view of the brain as an infer-
ential machine through its empirical Bayesian motivation.
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