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Towards an Understanding of
Hierarchical Architectures

Christian Goerick, Member, IEEE

Abstract—Cognitive systems research aims to understand how
cognitive abilities can be created in artificial systems. One key
issue is the architecture of the system. It organizes the interplay
between the different system elements and thus, determines the
principle limits for the performance of the system. In this contri-
bution, we focus on important properties of hierarchical cognitive
systems. Therefore, we first present a framework for modeling
hierarchical systems. Based on this framework, we formulate and
discuss some crucial issues that should be treated explicitly in
the design of a system. On this basis, we analyze and compare
several well-established cognitive architectures with respect to
their internal structure.

Index Terms—Behavior space, cognitive architecture, hierar-
chical architecture, sensor space, system design.

I. INTRODUCTION

C OGNITIVE systems are gaining substantial interest in the
cognitive and developmental robotics community. The

underlying hypothesis is that the organization of the internal
processing architecture is the key element in understanding and
building intelligent artifacts. Several proposals of such cogni-
tive architectures are overviewed in [1]. We share the view that
the internal processing architecture is one of the most crucial
research issues. However, most current research activities focus
more on the construction of artifacts rather than on the under-
standing and the condensation of insights gained thereby.

Hierarchical architectures are an important subclass of cogni-
tive architectures, for which we provide a better understanding.
We present and elaborate Systematica, a framework for mod-
eling hierarchical architectures. Based on this framework, we
discuss some important properties of hierarchical architectures
in general and analyze more concretely some established ones.

II. RELATED WORK

The body of related work can be subdivided into three dif-
ferent groups. The first group is concerned with the analysis
of architectures, mainly from the formal standpoint of software
validation. An example from this group is [2], where a compo-
nent-based framework for modeling systems is proposed with
the aim to establish flexible systems that are global deadlock-
free, individual deadlock-free on the component level, and safe
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in interaction. This type of approach is formal verification ori-
ented, focusing less on architectural aspects necessary for estab-
lishing cognitive functions.

The next group is concerned with proposing concrete archi-
tectures for contributing to the advancement of robotic system
instances. Noteworthy examples of this group are [3]–[6], and
the overview from [1]. Most contributions from this group make
concrete proposals that address some properties of cognitive
systems. This ranges from specific items to comprehensive ar-
chitecture proposals for complete artifacts.

The final group comprises of research on software architec-
tural issues for large scale intelligent systems, see, for example,
[7]–[10]. The emphasis here is on the construction of software
environments that facilitate the implementation of several dif-
ferent cognitive architectures. The proposals differ in the con-
straints the software environments incorporate. They range from
very general tools to software packages with a specific archi-
tectural bias. In most contributions, the bias is rather implicit
with respect to the targeted cognitive abilities. A different ap-
proach is presented in [11] and related publications, where the
link between the cognitive architecture concepts and the soft-
ware framework implementation is more explicit.

Our aim is to have a general and explicit discussion of ar-
chitectural issues closely linked to the properties of cognitive
systems for advancing the understanding of architectures and
principles. We neither address formal stability analysis nor im-
plementation oriented software environments. Rather, we focus
on modeling hierarchical system architectures for a deeper un-
derstanding and explicit comparison of their internal structures
for the first time.

III. SYSTEMATICA

We introduce the framework for modeling hierarchical archi-
tectures. The pure nomenclature has been presented in [12], here
we now present the comprehensive framework including math-
ematical modeling and an elaboration of cognitive architecture
properties. Systems formulated in Systematica are subdivided
into units or loops. Each identifiable processing unit or loop

is described by a set of features and spaces (see Fig. 1 for
reference).

Definition 1: denotes the internal dynamics or process
of unit . It processes independently and asynchronously of all
other units.

Definition 2: The input space of the full systems is a vector
space spanned by the exteroception and proprioception.

Definition 3: The sensory space of unit is a projec-
tion of a subspace of the full sensory space .
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Fig. 1. Generic example of a Systematica schematic showing a system with three layers.

Definition 4: The motor space is a vector space spanned
by the motor commands of unit .

Definition 5: The priority space is a vector space spanned
by the priorities of the motor commands of unit .

Definition 6: The representation space of unit is a vector
space spanned by all publicly observable states of the unit .
is observable for all units with . If unit observes the
representation space of unit we denote this by appending the
subscript to the representation space .

Definition 7: The top–down information space between
unit and unit is a vector space spanned by the information
that can be communicated between those two units initiated by
unit . It is only defined for .

Definition 8: The behavior space is a vector space spanned
by behavior characterizing variables of unit .

Definition 9: The processing may depend on the respec-
tive sensory space , all top–down information for

and all representation for .
Definition 10: The conflict resolution decides based on the

priorities which motor command to execute in case of con-
flicting motor commands.

Definition 11: The behavior space of the entire system is
defined as the vector product .

The definitions given above characterize the system and its
elements. All defined entities may depend on time. The index

represents the level in the hierarchy. In a developmental sense,
it can be associated to an order of creation.

Definition 9 defines the full set of possible dependencies for
unit within the system. The dependency on only a subsets is
possible and corresponds to the character of the overall system
as discussed in Section VI.

There are two ways for exchanging information between two
units within the systems. In Definition 6, it is stated that
is observable by the unit itself and all units with .
This means all units on a higher level of the hierarchy can ob-
serve the representations of all lower levels. This observation
does not require an involvement of the observed module, and
therefore does not influence its internal processing. The infor-
mation is actively collected by unit . This way of accessing
information allows for a loose coupling in the bottom–up direc-
tion between communicating units. In contrast to this, Definition
7 states an active sending of information from unit towards
unit with . This may have an immediate effect on the
process , and all depending entities like the representations
and the behavior. Those definitions together give the hierarchy a
clear direction by defining two different mechanisms for upward
and downward oriented communication, respectively. Without
such a direction the order of units would be arbitrary. See also
Section V-D for a continuative discussion of the coupling be-
tween units.
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The combination and conflict resolution as stated here is not
to be understood as the primary instance for such cases but rather
as the last resort. Conflicts and combinations must be treated as
priority issues between and within of the units of the architec-
ture, e.g., according to the biological principles of inhibition and
disinhibition.

The rational for introducing of a motor space and a behavior
space for each unit may seem redundant at the first glance. In
Section IV-F, we discuss the importance of this subdivision.

IV. MODELING MOTIVATION

Systematica is aiming at a minimal, but meaningful frame-
work for characterizing hierarchical systems and describing the
internal dependencies. Therefore, we describe systems by the
means given by the Definitions 1 to 11.

A. Processing Hierarchies

Processing hierarchies are common to many models of arti-
ficial cognitive architectures as already reviewed in [1]. They
are also one common means of describing the internal mecha-
nisms of the brain from a neurobiological point of view [13],
[14]. From an early psychologist point of view, hierarchies and
especially the transition between different levels in hierarchies
for building abstractions, has been of major interest [15].

We assume a hierarchy consists of units, the most general case
is that units work independently of each other. Any kind of syn-
chronization can be introduced later by means of communica-
tion. This is captured in Definition 1.

B. Sensory Spaces

The next basic question that has to be addressed is “How does
the unit perceive the external world and its own embodiment?”
This is addressed by the sensory spaces as stated in Definition 2.
Sensors transfer physical or chemical properties of the system or
the world into a form that is suited for the internal processing of
the system. Based on this definition of the sensor, as well as its
actual manifestation, internal representations will have certain
characteristic properties. Besides selectivity to specific signal
modalities sensors are in general direction and location depen-
dent, or exhibit a certain resolution of the signals they measure.
The space of all extero- and proprioception is denoted by ,
the corresponding subspace a specific unit is working on as
input is denoted by . The transition from to may
involve processing like subsampling or projecting for creating
derived entities. This clarifies the character of the input to the
internal dynamics of the corresponding unit. Different sensory
spaces can contribute to the measurement of the same physical
entity in a complementary manner, i.e., they can provide dif-
ferent “views” of the same physical or chemical entity. This is
for example known from the magno-, parvo-, and konio-cellular
visual pathway in the brain, where each pathways focuses on
different aspects of a scene like color, motion, or texture with
different resolutions [16]. We consider the possibility of a di-
rect access also of higher levels to their own views of the world
as important in order to understand abstractions and cognition,
see also Section V-A on confinement. A similar type of mod-
eling has also been put forward in [17].

C. Motor Commands and Priorities

Motor commands are common in every modeling of archi-
tectures that can emit actions of the embodiment. Every unit
may in principle emit motor commands as stated in Definition
4. This is common to the modeling in behavioral robotics like
in [17]–[21] and less pronounced in internal processing oriented
modeling like [22] and [23]. In biology, there is also evidence for
direct access from higher levels of the hierarchy to the motors
and actuators, see for example [24]. This may not correspond to
the predominant signal flows, but is in some cases necessary for
the acquisition of completely new motions. The difference be-
tween lower and higher levels is mainly that lower levels act on
a coarser level of the sensory signals and do not allow for a fine
control of actuators. A very fine analysis of sensory signals and
a corresponding fine control of, e.g., finger motions is subject to
cortical and not subcortical regions of the brain [14].

D. Representations

In Definition 6, all publicly observable internal states and data
of a unit are formalized. It is assumed that those represen-
tations are useful for the internal processing of the respective
unit, i.e., that is meaningful in the context of unit . Within
the system, the representations of one unit might additionally
be useful for other units, as they can rely on those “interme-
diate” processing results for their own processing. The involved
communication and the gain in performance is a crucial issue
in the research of cognitive systems, it may be the key to un-
derstanding abstractions in artificial systems. The importance
of this issue is reflected in the debate about central representa-
tions versus decentral representations as started with the advent
of behavioral robotics [18]. In biology, there is evidence for the
reuse of representations as for example in the relation of the
visual cortex to the superior colliculus. The target for the next
gaze direction as determined by the superior colliculus is ob-
served by the cortex for preparing internal representations for
the gaze shift [25]. A similar reasoning applies to the area AIP,
where the coarse information about graspable objects is main-
tained, which is observed by the premotor cortex and used for
configuring and target setting of the motor cortex [26]. Since
we are dealing with hierarchical systems, we do not model the
full access of any unit to any representation as already argued
in Section III.

E. Top–Down Information

The representations model the use of the intermediate pro-
cessing results of a unit as useful information for other units
in the system. As stated in Definition 6 the observation of this
information by other units has no influence on the unit it-
self. The top–down information modeling as stated in Defini-
tion 7 addresses the injection of data from unit into unit .
It models the employment or the control of the processing
of unit by unit . This is common in the modeling of archi-
tectures that control physical actions, like, e.g., [18] and [27].
This concept of top–down information can be characterized by
indirectly controlling a process rather than directly controlling
an actuator. Another concept of top–down information is the
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goal-oriented modulation of lower–level stabilization mecha-
nisms. Control processes in the brain perform a basic stabiliza-
tion and allow higher areas to modulate those stabilizations ac-
cording to some goal. This is, e.g., the case for the balance and
the upright standing of the human body that is maintained by the
brain stem (mid brain, hind brain, and medulla oblongata) [28].
The higher areas in the brain rely on those functional loops. A
third form of top–down information is the biasing of processing
in perception, like priming a visual search. The control of human
gaze relies in bottom–up, as well as this kind of top–down in-
formation [29].

F. Behavior Space

It is important to clarify the relations between internal and ex-
ternally observable state changes of the system. There may be
internal state changes that are not observable, e.g., prediction
and subsequent selection before execution. The state changes
of one unit are governed by internal dynamics. The internal dy-
namics emit signals to the physical actuators. Those signals are
called motor commands. The motor commands yield physical
actions of the system that can externally be observed. The phys-
ical actions have a time course. This can be a trajectory of an
end effector or an audible sound signal. Those time series are
not arbitrary, but do exhibit a character that depends on the in-
ternal dynamics.

The behavior space is spanned by the variables describing this
character. If a unit modulates another unit by top–down
information , then the original behavior space of unit is
expanded by the portion of the behavior space of unit that is
controllable via . See also Section V-A on confinement for
another important aspect of the behavior space of units. In other
words, the behavior space characterizes the effects a unit can
cause in a more abstract way than the local motor commands
and in a more comprehensive way by including the effects that
top–down information can cause.

A specific behavior is a point or a trajectory in the behavior
space. This is an observer independent characterization of the
externally observable effect elicited by the internal dynamics of
the system. There may be different meanings or semantics that
can be attributed to the behaviors. Conversely, the same seman-
tics can be attributed to different internal dynamics and behavior
spaces. This is for example the case if a desirable state of the
world and the system can be achieved by different units. The
description of the behaviors is unit centric and depends solely
on the internal dynamics and the corresponding parameters.

In summary, the are the immediate local descriptions of
the actions of the unit ; the describe more comprehensive
skills or effects from the perspective of the artifact. The unit
may cause effects not just by sending direct motor commands

, but also by sending top–down information to other
units. The effects may be applicable in more than one con-
text which implies that one behavior may have different se-
mantics depending on the context. The unit may not need
to model its own semantics, but higher levels may do so. See
Section V-B for a discussion about the relation between behav-
iors and semantics.

This distinction between motor command space, behavior
space, and semantics allows for a clear separation of physical

effects, system oriented skills, and their meanings. We con-
sider this to be important if we would like to understand how
cognitive systems make abstractions and acquire meanings.

V. ARCHITECTURAL PROPERTIES

The system modeling capability of Systematica permits ad-
dressing some architectural biases explicitly as subsequently de-
scribed. We consider those properties as crucial for cognitive
architectures.

A. Behavioral and Sensory Confinement

Consider a system where only the lowest level has
motor commands and spans a behavior space . All the
higher level units employ only top–down information for
evoking certain behaviors of the system. As a consequence, the
behavior space of the full system is confined to . This applies
to all kinds of learning and development that might take place
at higher levels. As a consequence, is either sufficiently rich
for being able to cope with all future requirements or it has to
change over time. A structured approach to overcome this limi-
tation is to have higher levels that can directly emit motor com-
mands bypassing all lower levels. Especially in the case of con-
tinuously developing artifacts exploring new behavior spaces
this possibility is important.

Similar to behavioral confinement, sensory confinement may
occur for all levels that do not have a unique sensory space

, but rather rely on representations for . This
limits the perception of the higher levels to the sensory spaces
of the lower levels.

B. Separation of Behaviors and Semantics

In Section IV-F, we have discussed the terms behavior and
semantics and have made a clear separation between them. For
the behaviors and the behavior space, we have argued that they
are unit centered entities. For the semantics, we have argued so
far that they can be attributed to the behavior of a unit, but that
they can be external to the respective unit. We now elaborate
two distinctive points of semantics. First, the semantics are
still external to the respective unit but internal to the system,
i.e., explicitly modeled within another unit observing the be-
havior generating unit. And second, the semantics are modeled
completely outside the system by the (human) observer. For a
reactive system that consists of units mapping sensory percep-
tions directly to motor commands or corresponding top–down
information, there is no necessity to have an internal model of
the semantics of the contributing units. Nevertheless, external
observers can still label the observed behaviors in semantic
terms rather than in terms related to the internal dynamics.
Additionally, the observed system can be constructed according
to those external models, but there is no explicit representation
containing the semantics internal to the system. Most existing
hierarchical artificial systems fall in this category.

The first category is of higher importance to us because they
address the internal acquisition and treatment of semantics.
Systems falling in this category contain units that explicitly
model the meanings or semantics of lower level units and
the lower level units are to a large extent semantics free or
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semantically polyvalent. Why should a system exhibit such
kind of an internal structure? The decisive reason is because
it should be beneficial for its existence. The instances usually
associated with this benefit within living beings or artifacts are
needs, which drive the development towards an improved satis-
faction of those needs. In this sense, needs represent a general
internal absolute evaluation. Explicit semantic units emerge
as stereotypical building blocks (or concepts) for satisfying
the needs of the system. Having them represented explicitly
makes them accessible for prediction and planning. Having
those elements represents the step from a reactive system to
a prospective system having a higher probability to satisfy its
needs than merely reacting.

C. Hierarchical Internal Representations and Grounding

The principal schematic depicted in Fig. 1 may suggest an
intent to implement an incremental hierarchy of units that all
access the sensors directly and issue motor commands also quite
directly. The possibility to represent this case is certainly nec-
essary, but one major aim here is to understand how higher
layers can perform based on representations already created
by lower layers, or vice versa, how the behaviorally relevant
structuring introduced by lower layers provides the fundament
for higher level processing in later layers. Formally, for higher
layers this implies and . By using an internal
behaviorally relevant representation as the basis of internal
processing, we ensure that all derived abstractions are grounded.

The representations are initially the internal states of the
dynamics . Being embedded in the hierarchy they are observ-
able for all higher levels , and they may be modulated by
higher levels via the top–down modulation . What is the
benefit of such kind of representations? It is the decomposition
of the outside world and the system dynamics in a behaviorally
relevant way. In this sense, they provide a meaningful platform
for all higher levels that can directly benefit from this
decomposition in terms of enriched processing results in addi-
tion to the direct sensory spaces. An example is the incremental
refinement of perceptions. Lower levels can provide rough per-
ceptions and corresponding representations that can be used by
higher levels as initial starting points for a refined analysis. For
our understanding this is one of the key elements in hierarchical
systems.

D. Temporal Dependencies

Temporal dependencies, or the necessity for synchronization,
are a major issue in complex systems. Every processing stage
provides its results with a specific latency, i.e., all representa-
tions or motor commands have a delay with respect to the
corresponding sensory stimulus. Those delays can add up with
increasing levels of hierarchies within a system. If the overall
system performance is sufficiently high those delays may not
matter and the issue is solved in a trivial way. For a better un-
derstanding, we want to explicitly deal with the problem of tem-
poral dependencies.

It is a general design goal to avoid temporal dependencies
in the system design and consider the different levels as au-
tonomous entities. They might exchange information by ob-

serving lower level representations or sending top–down infor-
mation, but they do not depend on that information in a tightly
coupled way. This approach of loose coupling maintains the au-
tonomous character of the units, but allows for an exchange of
information. It can be explicitly addressed by the modeling in-
troduced by Systematica.

Definition 12: The coupling between unit and unit via
representation is loose if, and only if (iff) the process
is not blocking on a specific timing of .

This type of coupling is for unit loose by definition. In other
words, the coupling is loose if the observing process is not
waiting for a specific update of information in .

Definition 13: The coupling between unit and unit via
top–down information is loose iff the process is not
blocking on a specific timing of .

This type of coupling is for unit loose by definition, since
there is no feedback information in the top–down information.

Both conditions aim at maintaining the inherent temporal au-
tonomy of the respective processes. This does not contradict
a possible prompt reaction to temporal changes in or .
One possible means for realizing a loose coupling even if spe-
cific information is necessary at a specific time is to employ
predictions.

E. Plasticity and Learning

Plasticity and learning are major issues in cognitive systems.
Here, we want to clarify the effects of plasticity on the overall
system, i.e., the dependencies that have to be considered.

Definition 14: The strict condition for local plasticity of unit
is that no top–down information space for is changed,
no top–down information space for is changed, and
no unit with is observing the representation .

If the condition as stated in Definition 14 is met, the effects
of all changes to , , , , and are local to unit
. We call this intraunit plasticity. The overall behavior space

may still change according to Definition 11. Changing the
priority will also have a global effect, but the causes can
clearly be attributed to one specific unit. If condition 14 is not
met, the coupling between the units introduces global effects of
local changes that depend on the relations of units. We call this
interunit plasticity. A third form of changes is structural plas-
ticity. Units may be deleted or created by some developmental
process. This can be modeled by comparing the description of
the system before and after the insertion or deletion of a unit.
We consider the separation into the categories of plasticity and
learning beneficial because they have different structural im-
pacts on the system. They can help understanding the internal
dependencies of different architectures as discussed in VI.

F. Hierarchical Versus Incremental

If we describe systems as compositions of layers, we can
distinguish between hierarchical and incremental systems. Hi-
erarchical systems are composed of a stack of layers without
satisfying further constraints. Incremental systems are hierar-
chical systems where lower layers can already perform some
meaningful behaviors without input from higher layers. This
autonomy of lower layers is a major conceptual difference in
system architectures that should explicitly be addressed.
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VI. ARCHITECTURES CLASSES AND INSTANCES

We now describe and compare some architecture classes and
instances by means of Systematica. They represent some land-
marks in the spectrum of architectures. There are variants of
these architectures which may deviate from the formulation pre-
sented subsequently, but we adhere mainly to the originally in-
troduced concepts.

The architectures have been selected for the following
reasons: The subsumption architecture and the three layers
architectures represent two classical, but diametrically opposed
starting points for researching intelligent systems. One of
the original reasons to propose the subsumption architecture
was to show an alternative way to planning–based systems as
represented by the three layer architectures. The HCogAff and
the iCub architecture are currently very actively researched and
are sufficiently unique for being analyzed and discussed. The
architecture will be reformulated by means of our framework
and evaluated according to the aspects from Sections V-B–V-F.

A. Applying Systematica

The discussions in this section also serve as examples for the
modeling of systems with Systematica. The general question is
how to constructively apply the framework for modeling hier-
archical systems. The direct way is to design a system already
from the beginning by means of the framework. This has been
done based on a preliminary version of the framework in [30].
We will support this approach by a tool supporting this kind of
design, but this is beyond the scope of this paper. Analyzing
existing systems by means of the framework requires the iden-
tification of the elements according to the Definitions 1 to 11.
The most crucial part is the determination of the order in the hi-
erarchy. For systems already defined in a hierarchical pattern,
this is usually a one-to-one mapping. Systems which are intrin-
sically hierarchical, but are not explicitly formulated as such re-
quire the determination of the order. Since the order is given by
the dependencies by the top–down information and the rep-
resentations , they have to be determined first, the remaining
structure follows subsequently.

B. Subsumption Architecture

The subsumption architecture can shortly be summarized as
a composition of hierarchical control loops, where each loop
represents a direct link from perception to action [18], see
Fig. 2 for an abstracted form of this architecture. The loops are
therein called “layer of competence.” Higher–level loops have
a higher priority for issuing motor commands and can suppress
the sensing or the issuing of motor commands of lower levels.
More formally, the top–down information is either input
or output suppression of the module , or the substitution of the
input of module .

Each unit covers a clear subspace of the behaviors and
directly produces motor outputs, i.e., , and the corre-
sponding priorities are strictly hierarchical: for .
The behavior spaces do not have an explicit relation. There
may be an implicit relation between the sensory subspaces

as discussed in Section IV-B. The subsumption archi-
tecture does not suffer from sensory or behavioral confinement
as addressed in Section V-A since and .

Fig. 2. Schema of subsumption architectures, drawing after [21].

Fig. 3. Subsumption architecture formulated in Systematica.

This allows in principle for an open system wrt. the acquisition
of novel abilities, but those possibilities are not exploited as
discussed below.

As depicted in Fig. 2, the subsumption architecture incorpo-
rates primarily no publicly accessible representations . How-
ever, in the related literature the notion “modules inspecting
the data pathways of other modules” can be found, indicating
the existence of representations. Especially in [18], the phrase
“level 1 is able to examine data from the level 0 system” can be
found. This can be modeled by introducing the representation

. The concept of hierarchical representations as discussed
in Section V-C is nevertheless not pronounced within this ap-
proach. All internally produced data is grounded. Fig. 3 shows
the subsumption architecture formulated in Systematica.

The decomposition of the subsumption architecture is strictly
incremental since lower levels are independent of higher levels
and form a complete operational system (see Section V-F). This
independence is also underlined by the loose coupling according
to Definitions 12 and 13 since there is no handshaking between
levels of competence intended [18]. This is beneficial for an in-
cremental construction of lower levels independently from fu-
ture higher levels, but assigning the independence such a high
priority that hierarchical representations are excluded as dis-
cussed in Section V-C is a major drawback for cognitive or in-
telligent systems.

The subsumption architecture also does not comprise means
for plasticity as discussed in Section V-E except for structural
plasticity by adding new layers in a design process. There is
also no separation between the motor commands, behaviors and
the associated semantics (Section IV-F). Both aspects together
preclude the development of cognitive abilities.
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Fig. 4. Schema of three layer architectures taken from [27].

Fig. 5. Three-layer architecture formulated in Systematica.

The general character of the subsumption architecture is
clearly oriented towards incremental action generation rather
than the generation of hierarchical abstractions or semantics.
Originally proposed as an alternative route to intelligence it
clearly lacks means for abstractions and learning as required in
cognitive architecture.

C. Three Layer Architectures

Three-layered architectures (see Fig. 4) are a very general
class of architectures that usually consist of the controller, se-
quencer and deliberator layers (or similar name sets [27]). This
means . Only the lowest level (controller) is directly
interacting with the outside world, i.e., , ,

, , . They are strictly hierar-
chical in the sense that only adjacent layers communicate, i.e.,

, , . According to the rea-
soning in Section V-A, the behavior of the overall system is con-
fined to the behavior space spanned by the first layer. The
same applies for the sensory space: it is confined to the sensory
space of the first layer. See Fig. 5 for an illustration.

There is no general indication for plasticity and learning
(Section V-E) and no separation of behaviors and seman-
tics (Section V-B). A system organized according to this
architecture paradigm is clearly hierarchical, but not incre-
mental (Section V-F). The hierarchy of internal representations
(Section V-C) consists of low volume synchronization events
or data concerning success or failure of controller actions. In
this sense, the hierarchy is clearly action, but not abstraction

Fig. 6. Schematics of HCogAff taken from [31].

oriented. The possible benefits of hierarchies are limited to
benefits of top–down information as described in Section IV-E.
Depending on the implementation of the coupling it may be
loose according to Definitions 12 and 13. This may ease syn-
chronization problems, but does not contribute to the autonomy
of the layers. Except for the lowest layer autonomy would also
not make sense in this kind of architecture. A decomposition
in a classical three layer architecture does not promote abstrac-
tions in the sense of cognitive systems.

In summary, the major character of this class of architectures
is the achievement of a given task by a planned series of actions.
Major elements for cognitive architecture are clearly missing.
Considering the classical three layers as part of a larger cogni-
tive system would require additional layers on top with different
characteristics.

D. The HCogAff Architecture

The CogAff architecture was suggested by Sloman [31]. It is
a proposal for a class of architectures or framework rather than
a specific instance, with the aim to understand the role of affec-
tive phenomena in cognitive architectures. A more concrete pro-
posal developed from CogAff is the HCogAff. We will consider
the HCogAff architecture here since the CogAff is too general
for a purposeful discussion. For an overview of the architecture,
see Fig. 6.

It consists mainly of three layers [reactive mechanisms
, deliberative processes including motive activation ,

reflective processes ], but there are significant differ-
ences to the three layer architectures as discussed in the pre-
vious section. See Fig. 7 for an illustration of the modeling. All
levels have access to sensory modalities and emit
motor commands , hence there is no confinement as
discussed in Section V-A, which is beneficial for the develop-
ment of cognitive abilities. The representations of the reactive
layer and the deliberative layer ( , long term associative
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Fig. 7. HCogAff architecture formulated in Systematica.

memory) are accessed by the respective higher layers, but it is
not clear if they are intended to be hierarchical in the sense of
Section V-C. The same applies to the personae representation

. There is general rich top–down information flow from
all higher to all lower layers.

Nevertheless, it is not clear which kind of top–down infor-
mation (Section IV-E) is intended by the HCogAff framework.
A similar reasoning applies to the temporal dependencies
(Section V-D). It is not clearly stated what kind of dependen-
cies are considered or what kind of effect they will have on the
overall architecture.

Plasticity and learning (Section V-E) are discussed as one
major target of the affections and emotions within the system,
but not explicitly modeled. This applies also to some other is-
sues discussed in the text like the distinction between majorly
processing of external or internal information,
which are not explicitly modeled.

With the separation of deliberative processes from the re-
active ones, the subdivision between motor actions and their
meaning (Section IV-F) is addressed. The proposal is clearly hi-
erarchical (Section V-F), but not intended to be incremental as
a major design goal, i.e., the whole system has to be considered
from the beginning.

The HCogAff architecture was proposed as a framework for
the scientific treatment of cognitive architectures. As discussed
above, several elements are included or satisfied by the proposal
in order to allow for cognitive abilities. The open points (ma-
jorly the character of top–down information and the temporal
dependencies) need to be better specified in order to assess the
potential of this approach or to guide a practical approach within
this framework.

E. The iCub Cognitive Architecture

A first proposal of the iCub cognitive architecture is given in
[32]. It consists of three major layers, as can be seen in Fig. 8.
Fig. 9 illustrates the modeling in Systematica. The lowest layer

is constituted by the phylogenetically self-organized
perceptuomotor skills. Those are several parallel processes that
can compete or cooperate. In summary, those processes perform
all the sensing and all the actions of the body. Hence, the sensory
space and the behavior space spanned by this layer

Fig. 8. Schematics of the iCub cognitive architecture taken from [32].

Fig. 9. The iCub architecture formulated in Systematica.

confine all the sensing and all the behaviors of the overall sys-
tems as discussed in Section V-A. This layer also provides repre-
sentations that can be employed by the next layer. This next
layer is called the modulation circuit and performs a
homeostatic action selection by disinhibition of perceptuomotor
skills by providing top–down information to layer 1. The
autoassociative memory of this layer constitutes the representa-
tion which is used for both processing within this layer, as
well as in the next higher layer. The highest layer is
called prospective action simulation and performs predictions
based on two autoassociative memories forming the representa-
tion . The output of this layer is top–down information
influencing the processing of layer 2. There is no direct influ-
ence on layer 1, i.e., . For the two higher layers, all
sensory spaces and , as well as the motor com-
mands and are zero.

The proposed architecture is incremental in the sense of
Section V-F since the lower layer can perform without the
necessity of the higher layers. The architecture is also strictly
hierarchical since only neighboring layers communicate, which
also underlines the confinement of the sensor and behavior
spaces to the ones of layer 1. This also excludes any kind of
hierarchical sensory refinement as discussed in Section IV-B.
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Temporal dependencies (Section V-D) may be intended to be
loose, but they are not explicitly modeled. The representations

are truly hierarchical as discussed in Section V-C since they
depend on each other incrementally. The separation of motor
action, behaviors, and semantics (Section IV-F) is not explicitly
modeled, but could be realized by means of the hierarchical
representations.

Plasticity and learning (Section V-E) are a central point in
this proposal. The authors intend to consider all three kinds of
plasticity: intra, inter, and structural, whereas the last two are
not modeled explicitly.

The confinement requires the phylogenetically developed
skills to be sufficiently rich in order to have a sufficiently
rich behavior space at the lowest level or to rely on the
intramodule plasticity of level 1. It is surprising to find con-
finement in a biologically inspired architecture, because it
seems contradictory to what we can learn from biology (see
explanation in Section IV-B). One reason could be an implicit
focus on the learning in the higher layers, but this should be
clearly stated.

VII. DISCUSSION AND SUMMARY

The lack of means to explicitly understand hierarchical archi-
tectures is a major obstacle in the advancement of cognitive sys-
tems. Hence, we presented an explicit modeling of hierarchical
systems called Systematica. Based on this modeling, we stated
some important properties that should be explicitly addressed
by any architecture proposal.

Those elements (Systematica plus the properties) represent a
structured approach to modeling and discussing hierarchical ar-
chitectures as an important class of cognitive architectures. We
demonstrated this approach by applying it to several existing
architectures. This approach reveals the general characteristics
and properties of the respective architectures. These may in-
clude possible deficiencies that may require further investiga-
tion. We think that future work must focus on the explicit formal
aspects of architectures in order to gain scientific insight into
artificial cognition. In this sense, Systematica is an initial step
towards understanding cognitive systems. This should apply to
architecture classes, as well as concrete system instances that
are researched and implemented in order to show the current
level of understanding as well as to help formulating the next
research questions.
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