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Learning Generalizable Control Programs
Stephen Hart and Roderic Grupen

Abstract—In this paper we present a framework for guiding
autonomous learning in robot systems. The paradigm we in-
troduce allows a robot to acquire new skills according to an
intrinsic motivation function that finds behavioral affordances.
Affordances—in the sense of Gibson [6]—describe the latent
possibilities for action in the environment and provide a direct
means of organizing functional knowledge in embodied systems.
We begin by showing how a robot can assemble closed-loop
action primitives from its sensory and motor resources and
then show how these primitives can be sequenced into multi-
objective policies. We then show how these policies can be
assembled hierarchically to support incremental and cumulative
learning. The main contribution of this paper demonstrates how
the proposed intrinsic motivator for affordance discovery can
cause a robot to both acquire such hierarchical policies using
reinforcement learning and then to generalize these policies to
new contexts. As the framework is described, its effectiveness
and applicability is demonstrated through a longitudinal learning
experiment on a bimanual robot.

Index Terms—Cognitive Architectures, Incremental Learning,
Generalization, Schema, Intrinsic Motivation, Reinforcement
Learning

I. INTRODUCTION

Humans demonstrate a remarkable ability in finding dex-
terous solutions to new problems quickly and efficiently. Part
of this ability lies in the capacity to re-use skills previously
learned in one context to solve related problems in different
contexts. Rather than trying to solve each new problem by
approaching it with a blank slate, a large amount of knowledge
is brought to bear every time an action is taken. As a result,
human development tends to be incremental and gradual;
rarely are large leaps made. In contrast, the robotics and
machine learning communities often approach each new task
with exactly this sort of blank slate. Much attention is given to
finding clever representations and algorithms that create just
these types of large leaps, acquiring great amounts of task-
specific knowledge for each new problem in one go, even if
that knowledge has little applicability in other situations.

One key limitation that has prevented robot programmers
from re-using knowledge in different contexts has been that
there are no commonly agreed on representations for grounded
behavior that facilitate efficient integration between com-
ponents. Although attempts have been made at code-level
modularity (e.g., applying good software engineering practices
and object-oriented programming), little attention has been
given to creating a formal substrate by which adaptive behavior
can be assembled in a principled way to provide strong
performance guarantees. We argue that such an approach is
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Fig. 1. The System Architecture.

necessary in any artificial system that must explore its envi-
ronment autonomously to ensure safe and reliable operation.
Furthermore, we hypothesize that this type of approach is
inherently scalable, in that acquiring new skills and knowledge
will be less likely to result in unwieldy situations where
integration is difficult or impossible.

In this paper we advocate a novel approach to behav-
ioral programming in robots. This approach uses a general
representation for behavior that is robot-centric, rather than
task-centric. Behavioral competency is evaluated through an
intrinsic motivation function that encourages the robot to orga-
nize its sensory and motor systems into co-articulated control
programs that couple to the dynamics of the environment. The
dynamic status of these coupled dynamical systems are used
to define environmental affordances. Hierarchical programs
are assembled from the bottom-up as the robot finds new
ways to combine these programs and uncover new affordances
and generalized from the top-down as the robot learns about
how these programs apply in novel contexts. This approach is
consistent with Piaget’s notions of accommodation, in which
an organism finds new ways to “mold” itself to its environment
as new situations present themselves, and assimilation, in
which resulting knowledge structures are fit to new situations
with robust contingency plans [24]. Due to this relationship to
Piaget, we call the generalizable knowledge structures in the
proposed framework “schema.”

Figure 1 shows an overview of the proposed architecture.
Through a process of accommodation, a robot assembles
control programs by finding combinations of its sensory and
motor resources and “native” control fields (not specific to
any one task) that couple the dynamics of the robot with the
dynamics of the environment. Through a process of assimila-
tion, these programs are transformed into schema as the robot
discovers resource re-parameterizations that provide solutions
in different (but related) environmental contexts. Both of
these processes are governed by the robot’s intrinsic drive for
discovering affordances. Schema may be re-used hierarchically
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as atomic actions in higher-level control programs, bringing
with them all their contingency plans and supporting open-
ended behavior acquisition.

The remainder of this paper is structured as follows. Sec-
tion II introduces the combinatorial basis for control—the
control basis—and demonstrates how a robot’s sensory and
motor resources can be combined with native control fields
to form co-articulated actions. Section III demonstrates how
hierarchical control programs are acquired in an adaptive
learning framework and introduces a novel intrinsic reward
function for uncovering behavioral affordances. In Section IV,
we show how these programs are transformed into schema
and applied to novel contexts. Finally, Section V concludes
with a discussion of the benefits of the proposed approach. In
Sections III and IV, a longitudinal learning experiment per-
formed on the bimanual robot “Dexter” is presented. In each
stage of learning, Dexter either accommodates a new program
or assimilates an existing skill in a new context. While the
context provided to the robot at each stage is structured by
the programmer, the strategies the robot discovers to deal with
that context are learned through the robot’s intrinsic motivator.

II. A COMBINATORIAL BASIS FOR CONTROL

The control basis was originally introduced by Huber
and Grupen as a means for robot systems to explore the
combinatorics of sensory and motor control circuits in an
autonomous learning framework [13]. These combinatorics
provide a definition for action that, as discussed in the next
sections, is useful for organizing knowledge into structures
that facilitate generalization and transfer. The control basis
formulates robot learning in a discrete event dynamic sys-
tems (DEDS) framework [23] to control the complexity of
state/action spaces and to ensure that safety and performance
specifications are satisfied during on-line exploration.

In the control basis, state and actions spaces are constructed
from feedback controllers by combining elements of a set
of artificial potential functions, φ ∈ Ωφ, with subsets of the
robot’s sensory and motor resources, σ ⊆ Ωσ and τ ⊆ Ωτ ,
respectively. Reinforcement learning techniques are applied in
these spaces to adaptively build value functions, Φ ∈ ΩΦ,
that define discrete action policies. These policies are the
hierarchical generalization of the primitive control laws that
comprise the control basis. The result is a naturally recursive
description of knowledge in terms of functions that underlie
behavior.

All control expressions constructed from the control basis
provide force or position reference commands to lower-level
closed-loop motor units that actuate the robot (Figure 2). The
control basis exploits the fact that a small alphabet of primitive
control elements Ωφ × Ωσ × Ωτ can yield a large variety
of hierarchical control circuits. The process of assembling
feedback control loops from potential fields is discussed in
the remainder of this section. How to assemble higher-level
programs on top of these feedback controllers is discussed in
the next section.
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Fig. 2. The hierarchical control basis architecture. Control actions de-
scend potential functions by submitting reference inputs to lower-levels and
ultimately, to embedded motor circuits. H and G represent feedback and
feedforward transfer functions, respectively.

A. Artificial Potential Functions

We now examine a set of artificial potential functions Ωφ
that have formal constraints that are of general use in adaptive
control systems. All of the control actions employed in this
paper can be characterized by these potential functions, as
can many other control actions for mobile robots or robot
manipulators. The control basis provides a general and unified
approach for assembling feedback control laws when these
potential functions are combined with sensory and motor
resources.

Potential function methods for control require constraints
on the shape of the function in order to guarantee asymptot-
ically stable behavior and to avoid common problems cited
in the literature (e.g., local minima). Rimon and Koditschek
enumerated the conditions for a class of navigation functions
that can formally be used as control functions [14], [27]:
• Analytic - Potential φ is analytic if it is infinitely

differentiable (i.e., it can be written as a Taylor series),
and thus has a gradient that points toward a minimum.

• Polar - The gradient of polar functions create streamlines
that terminate at a unique minimum.

• Admissible - The gradient ∇φ of a navigation function
must be bounded so that it can serve as a realistic control
input without gain scheduling or scaling.

• Morse - Navigation functions are Morse if they contain
no degenerate critical points (e.g., saddle points).

We next examine a number of artificial potential functions
that can form a basis for a wide variety of robot behavior
and describe the conditions under which they can be used to
construct closed-loop controllers.

1) Quadratic Potential Functions: Hooke’s law is an ex-
ample of a quadratic potential field that describes the strain
energy stored in a spring. It can be employed in the control
basis to induce virtual spring-like properties on feedback errors
observed in many domains. In this context, Hooke’s law is
defined as:

φs(σref , σact) =
1
2

(σref − σact)T (σref − σact) (1)

where the difference between the actual and the reference
feedback signals, σact, σref ⊆ Ωσ , captures errors between
two features of the same type. This function is convex and,
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if the input error is bounded, then it is also a navigation
function and can be used for control. We use this kind of
primitive “intention” repeatedly in the control basis framework
to, for instance, build tracking controllers in force and position
domains.

2) Harmonic Functions for Collision-Free Motion: Artifi-
cial potential field approaches have also been developed for
robot path planning that make efficient use of sensor feedback.
Harmonic functions describe many physical processes that rely
on minimum energy configurations such as soap films, laminar
fluid flow, the temperature dissipation in thermally conductive
media, and the voltage distribution in resistive networks.
They have been applied in robot systems to find path plans
without local minima and that minimize the probability of
collisions [4]. Goals and obstacles define the boundaries of the
navigatable free space in this approach. A harmonic potential
field φh has no local extrema points in the interior of this
space. Numerical relaxation methods (e.g., Successive Over-
Relaxation (SOR), Jacobi iteration, or Gauss-Seidel iteration)
can be used to compute harmonic functions quickly in tasks
for low-dimensional systems.

Harmonic functions, unfortunately, do not meet all four of
the criteria for navigation functions (they are not admissible
and are not analytic at goals). As a result, they produce paths
that minimize the likelihood of collisions with obstacles, but
are not asymptotically stable. This limitation can be overcome
by allowing the system to follow the direction of the potential’s
gradient, but shaping its magnitude before sending it to the
plant.

3) Kinodynamic Conditioning Functions: Conditioning ac-
tions are useful in multi-objective control tasks and can pro-
vide a natural way for an embodied system to get the most out
of its sensory and motor resources [8]. Several conditioning
fields have been devised for use in the control basis—each
of which captures some independent prerogative of a system.
Three such fields are discussed next.

a) Range Limits: It is often useful to bias a manipulator
away from joint range limits in order to provide a greater
likelihood that global objectives are met. One possible choice
for an n-dimensional system is to create an n-dimensional
cosine field around the center of each joint’s range of motion.
For a set of joint angles θ ∈ Cn, we define

φr(θ) = n−
n∑
i

cos

(
θi − θ̄i

θi,max − θi,min
π

)
. (2)

In this equation, θi,max and θi,min represent the upper and
lower limits of joint i’s range of motion, and θ̄i represents the
joint center. This field is a navigation function that provides a
convex potential centered in the center of the robot’s range of
motion over all degrees of freedom.

b) Manipulability: Yoshikawa’s measure of manipulability
(MoM) field moves a kinematic mechanism into configurations
that allow for a tradeoff in the ability to perceive (input)
errors and to impart (output) movements [36]. Informally, it
conditions the manipulator Jacobian in a manner that preserves
flexibility and least commitment for unknown future circum-
stances. Such a methodology is useful when programming
dexterous robots that must behave well in uncertain real-world

environments. In addition, it provides a natural kinematic
“sweet-spot” in the system, and pushes the manipulator away
from undesirable singular locations. Whether the manipulabil-
ity field for a particular robot is a navigation function or not
depends on that robot’s specific configuration. It, however, is
often a useful objective to maximize in practice to provide
smooth and natural movements for redundant manipulators.
The manipulability field is defined as:

φm(θ) = −
√
det(J(θ)J(θ)T ) (3)

where θ ∈ Cn is an n-dimensional subset of joints that form
a kinematic chain and J(θ) is the manipulator Jacobian.

c) Localizability: Kinematic conditioning can be applied
to any linear transformation and has been generalized to
control viewpoint quality in a stereo vision system in order
to maximize localization precision [34], [8]. Let us define a
measure of localizability (MoL) field to achieve this objective.
This field is defined in terms of the oculomotor Jacobian
J(γl,γr), where γl and γr represent the headings toward
a feature viewed by both the left and right cameras of the
stereo system. The oculomotor Jacobian transforms visual
displacements into Cartesian displacements. The localizability
field is defined as:

φl(γl,γr) =
1√

det(J(γl,γr)J(γl,γr)T )
. (4)

This potential field describes how the Jacobian of the stereo
triangulation equations amplifies imprecision. Optimizing for
localizability allows for high precision in stereo-triangulation
tasks where the objective is to recover the Cartesian location
of a feature from its visual appearance.

The collection of potential functions presented in this
section, Ωφ = {φs, φh, φr, φm, φl}, provides a number of
ways for a robot to re-code its sensory signals into artificial
gradients that precipitate behavior. We argue that this set of
potentials can support a rich set of behavioral prerogatives in
an embodied system. In the remainder of this paper, we support
this argument with demonstrations in which a bimanual robot
employing only this set of “native” potentials learns how to
perform a number of hierarchical manipulation tasks.

B. Sensory and Motor Signals

A robot’s sensory and motor signals provide the specific
means for an embodied system to observe and interact with
its environment. In the control basis, these signals form the
sensor and effector sets, Ωσ and Ωτ , that, along with a set
of potential functions Ωφ, define the primitive actions of the
control basis framework.

Although any given set of sensory resources, Ωσ , is par-
ticular to a specific robot, many standard types of signals
are used in the robotics literature to govern behavior. Sensor
signals may come directly from “raw” physical devices (e.g.,
encoders, cameras, microphones, force/torque strain gauges,
etc.), they may arise through mathematical transformations ap-
plied to the information returned by multiple of these devices
(e.g., via forward kinematics functions, functions for signal
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TABLE I
TYPES OF SENSORY INFORMATION.

Type Space
Configuration variables Cn

Cartesian coordinates SE(3)
Cartesian positions R3

Cartesian orientations SO(3)
Wrench coordinates SE∗(3)
Force vectors R3

Torques SO∗(3)
Headings SO(2)

localization, etc.), or they may be sampled from statistical
models that the robot builds as it learns about its world. Table I
shows some common types of sensory information available
to a complex sensorimotor system such as a humanoid robot.

A robot’s set of motor signals, Ωτ , is defined by the degrees
of freedom that accept command inputs. Typically, this set
consists of configuration variables or motor torques, but may
consist of “virtual” DOFs defined by sensory transformations
(e.g., the position of a robot’s hand calculated from the
forward kinematics). It is often useful to group subsets of
a robot’s effector variables together into “synergies” that are
controlled concurrently. For example, the motor variables that
control a robot’s arm form a synergy that can allow for
reaching movements. Forming motor synergies alleviates some
of the challenges of the “degrees of freedom” problem, and is
consistent with Bernstein’s theories of motor control [2].

C. Composite Control Laws

A closed-loop controller in the control basis, c(φ, σ, τ),
where φ ∈ Ωφ, σ ⊆ Ωσ , and τ ⊆ Ωτ , describes a circuit
that iteratively computes reference inputs to low-level motor
units. The sensitivity of the potential to changes in the value
of motor variables is captured in the Jacobian J = ∂φ(σ)/∂τ ,
where J# is its Moore-Penrose pseudoinverse [21]. Control
signals are computed by the expression:

∆τ = −J#φ(σ)κ, (5)

where κ is a positive gain. In all of the experiments in
this document κ = 1 for simplicity. Under this control law,
the system follows the negative gradient of the potential
toward stable attractor states where ∇τφ(σ) = 0. By this
definition, all controllers in the control basis framework define
linear dynamical systems that suppress disturbances from the
environment.

Multi-objective control actions are constructed by com-
bining control primitives in a prioritized fashion. Consider
two control actions, a higher priority controller c1 and a
lower priority controller c2. To ensure that the lower priority
objective does not destructively interfere with the progress of
the higher priority objective, control objectives are combined
using nullspace projection [21]. For a two-fold control rela-
tionship, the prioritized composite control law is

∆τ = −J#
1 φ1(σ1)κ1 − N1

(
J#

2 φ2(σ2)κ2

)
, (6)

where N1 represents the nullspace of the higher priority
controller, N1 = (I − J#

1 J1). Equation 6 can be extended
to combinations of n-fold concurrency relationships between
control basis actions. We use the “subject-to” operator “/” to

represent the prioritized combination between any two such
control actions [13]. The control expression c2 /c1—read, “c2
subject-to c1”—provides a useful shorthand notation for such
relationships.

D. Typing

Control actions assembled from combining elements of Ωφ,
Ωσ , and Ωτ , require strict adherence to typing constraints
between input and output signals to behave as intended. In
particular, specific potential fields may only be evaluated with
respect to certain types of feedback signals while it may only
be possible to compute gradients with respect to certain output
variables. Typing is important for guaranteeing correct control
expressions as well as for enabling behavioral abstraction.
For example, kinematic conditioning metrics, such as those
presented in Section II-A3, can be applied to any collection
of configuration variables in Cn, regardless of the specific
mechanism they represent. Similarly, “reaching” tasks that
move a robot’s end-effector to a Cartesian position defined
by triangulation can be implemented for any combination of
visual features visible by two (or more) cameras.

Sensory signals of one type can sometimes be
transformed—or typecast—into signals of a different
type; for example, through the forward kinematics or stereo
triangulation equations (or their inverses). Typecasting creates
dexterous alternatives for controlling robots, and allows
combinations of control tasks to be constructed in different
state spaces and combined in some joint space.

Enforcing typing constraints and allowing automatic type-
casting between signals makes it possible to implement a
formal programming specification for the control basis that can
facilitate code re-use and control construction, and can gener-
ate search spaces for machine learning algorithms. A Control
Basis Applications Programming Interface (or CBAPI) [11]
has been implemented using both Microsoft Robotics Devel-
oper’s Studio [19] and YARP [18].

E. Example: Kinematically Conditioned Reaching

We now provide an example in which co-articulated control
basis expressions are implemented on the robot Dexter (Fig-
ure 3) to improve the quality of a reaching task. Dexter has a
two degree of freedom pan/tilt head equipped with two Sony
color cameras and two 7-DOF Whole-Arm Manipulators (Bar-
rett Technologies, Cambridge MA). Each WAM is equipped
with a 3-finger Barrett Hand with a 6-axis F/T load-cell on
each fingertip. Each hand has four degrees of freedom (one
for each finger, and one for the spread angle between two of
these fingers).

The control expressions discussed in this example are
assembled from Dexter’s task-independent resource sets, but
used in the context of performing the task of reaching out
and making contact with an object. This example emphasizes
the utility of “uncommitted” conditioning actions in task-
directed behavior. Another example, demonstrating the ability
of the control basis in increasing the performance at a visual
classification task is provided in [8].
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Consider three controllers assembled from Dexter’s native
control basis:

PosturalBias is a kinematic conditioning control action that
biases the posture of a robot mechanism toward the middle of
its range of motion via φr. In this example, it is employed for
the robot’s right arm and is defined as

POSTURALBIAS(RIGHTARM) , c(φr,θr,arm,θr,arm). (7)

where θr,arm ∈ C7 represents Dexter’s right arm
Configuration-space motor synergy.

Manipulability is a kinematic conditioning control action
that optimizes the manipulability metric according to φm.
In this example, we optimize this metric with respect to the
robot’s right arm, defined as

MANIPULABILITY(RIGHTARM) , c(φm,θr,arm,θr,arm).
(8)

Reach is a spatial tracking control action that uses the virtual
spring potential function φs to reduce the Cartesian error
between the end-effector and a reference position. In this
example, the REACH action is implemented to move Dexter’s
right arm synergy, θr,arm, toward the position of a highly-
saturated object xsat (computed by triangulating the headings
toward highly saturated visual cues (γlsat,γ

r
sat) viewable on

both of Dexter’s left and right camera images), and is defined
as:

REACH(SAT,RIGHTARM) , c(φs, (xsat, xr,arm),θr,arm).
(9)

Let us define an error vector ε=(xsat − xr,arm). Using
Equation 5, effector variable displacements for REACH are
computed as follows:

∆θr,arm = −
(
∂φs(xsat, xr,arm)

∂θr,arm

)#

φs(xsat, xr,arm)

= −
(
∂φs(xsat, xr,arm)

∂xr,arm
∂xr,arm
∂θr,arm

)#

φs(xsat, xr,arm)

=
(
εT Jr,arm

)#(1
2
εT ε

)
=

1
2
(
J#
r,armε

)
, (10)

where Jr,arm is the manipulator Jacobian of the right arm.

In the following demonstration, a highly-saturated object
was placed in twenty-five uniformly distributed locations on
the table in front of Dexter in a 0.4m × 0.8m square. Three
composite control laws were constructed and executed, each
with the reaching controller as the superior objective. For
one control law, this was the only controller employed. The
other two laws employed each of the kinematic conditioning
controllers as an inferior objective. These three laws are

(a) (b)

Fig. 3. Frames (a) and (b) show the robot before and after reaching to a
highly-saturated object with its right arm.

defined as:

c0 , REACH(SAT,RIGHTARM) (11)
c1 , POSTURALBIAS(RIGHTARM)

/ REACH(SAT,RIGHTARM) (12)
c2 , MANIPULABILITY(RIGHTARM)

/ REACH(SAT,RIGHTARM) (13)

The change in potentials for all three controllers under all
three laws were recorded over the twenty-five reach actions
(even if they were not optimized by the control law being
executed). Figure 3 shows an example reach in which the robot
makes contact with the object. The robot begins in the center
of its range of motion.

Figure 4(a) shows the average potential φs for the reaching
action over all runs. We see how the quadratic error function
causes the system to decrease steadily to the goal. Figure 4(b)
shows the average value of the postural bias potential, φr, over
the course of the reaching actions performed under control
laws c0 and c1. Because the robot begins each action at
the minima of this field, the potential only increases as the
reaching action is performed. However, in the case where the
range of motion controller is optimized in the nullspace, the
increase in this metric grows less, on average, than the case
where this objective is not optimized, thus staying further
away from joint limits. Figure 4(c) shows the manipulability
potential, φm, over the course of the reaching actions per-
formed under control laws c0 and c2. In the case where the
manipulability controller is optimized in the nullspace, the
increase in this metric grows less, on average, than the case
where this objective is not optimized, thus keeping the robot
further away from undesirable singular configurations.

III. LEARNING CONTROL PROGRAMS

This discrete nature of controller composition makes the
control basis framework amenable to stochastic search. In
this section, we describe how machine learning algorithms
such as reinforcement learning [32] can explore the structured
control basis in order to create domain-general behavioral
programs. We present (1) a novel definition of state that
captures convergence events in the run-time dynamics of
control actions, and (2) an intrinsic motivator that rewards the
discovery of environment affordances.
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Fig. 4. Frame (a) shows the potential of the Cartesian movement controller averaged over the 25 trials. Frame (b) shows the potential for the postural bias
controller for the same 25 trials when that controller is run as a subordinate control action to the Cartesian reach controller compared to the same metric
when that controller is not run. Frame (c) shows the same comparison for the manipulability controller run as the secondary objective to the reach action.

The proposed definitions of state, action, and reward allow
a robot to learn hierarchical control basis programs through a
process of accommodation as described in Section I. Hierar-
chical representations provide efficient encoding of complex
behavioral programs in a manner that hides complexity and
bounds the size of the state and action spaces. They also
encourage behavioral re-use by providing temporally extended
policies as single, invokable actions. In the proposed frame-
work, hierarchical programs are built from the bottom up.
When a robot learns a new program, it creates an addi-
tional means for exploring its environment and enhancing
its behavioral capabilities. As a result, behavior is learned
incrementally and in stages, forcing a robot to only address
learning problems that are just beyond the limits of its current
development.

A. A State Representation for Dynamic Processes

Complex systems that must learn from on-line experience
are best served by efficient state representations that capture
real-valued sensory and motor signals in compact forms.
Useful structure arises when this data is represented as a
series of interacting dynamical systems either generated by
the robot (e.g., control processes), or observed by the robot’s
sensors (e.g., environmental forcing functions). The discrete
event dynamic systems (DEDS) approach leverages this fact
by capturing state in terms of discrete events observed in the
continuous data [23].

In control processes, the dynamics (φ, φ̇) created when a
controller interacts with the world provides a natural discrete
abstraction of the underlying continuous state space. Huber
provided a binary state representation in which the predicate
p(φ, φ̇) associated with a controller c(φ, σ, τ) is 0 during the
transient response of the controller and transitions to 1 when
the controller converges to an attractor [13]. The change in
potential, φ̇, is the observed, time-based derivative and is not
to be confused with the gradient of the field at that point, ∇τφ.

In this paper we use a similar discrete state representation as
Huber based on quiescence events capturing controller conver-
gence [10]. Quiescence events occur when either a controller
reaches an attractor state in its potential or when a lack

X 

- 

1 

0 

Fig. 5. This figure shows an iconic representation of the transitions in the
proposed state representation.

of progress along the gradient of that potential is observed.
Mathematically, we define a predicate p(φ, φ̇) associated with
controller c(φ, σ, τ), such that:

p(φ, φ̇) =


X : φ(σ) controller is not activated
− : φ(σ) undef. feedback reference
0 : |φ̇| > ε, transient response
1 : |φ̇| ≤ ε, quiescence,

(14)

where ε is a small positive constant. When the controller is
not activated, the state evaluates to “X.” If the controller is
activated, the state predicate will evaluate to “0” if there is a
target stimuli present in the feedback signal (and φ(σ) can be
computed), or “−” if there is not. The controller runs in the
transient state “0” until it loses the target stimuli or quiesces
in state “1.” Figure 5 shows an iconic representation of the
possible state transitions of a controller as it interacts with the
environment. Given a collection of n distinct primitive control
actions a discrete state space S can be formed where s ∈ S
is defined as s = (p1 . . . pn).

B. An Intrinsic Reward for Affordance Discovery

The state representation of Equation 14 registers conver-
gence events that occur in the dynamics of a robot’s control
circuits. When a convergence event occurs for a controller
that tracks an environmental forcing function measured by
elements of the subset Ωσ(env) ⊆ Ωσ , it creates a closed-
loop coupling between the robot and the world that has a
special designation. We call this coupling an environmental
affordance. Affordances are thus measured not only in terms
of perceptual stimuli, but also in terms of the robot’s ability
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to engage these stimuli with its motor resources in a stable
control configuration. By modeling affordances defined in this
way, a robot can gain a sense of what it can control and thus
increase its ability to perform tasks in its world. We argue that
a robot designed to learn adaptive behavior over the long-term
must be equipped with an imperative to seek out affordances
and the conditions in which they can be asserted.

We now define an intrinsic motivation function for affor-
dance discovery, adapted from [10]. In the control basis, the
discovery of an affordance is measured by the convergence
event

bti =
(
(pt−1
i 6= 1) ∧ (pti = 1)

)
, (15)

where pti is the state of a controller c(φi, σi, τi) at time t. The
intrinsic motivation function provides positive reward for all
controllers that converge at t according to the function

rti =
{

1 : if
(
bti ∧ (σi ⊆ Ωσ(env))

)
0 : otherwise (16)

rt =
∑
i

(
htir

t
i

)
, (17)

where hti is a habituation metric that modulates the level of
reward based on past experience. A complete description of
this metric is beyond the scope of this paper, but the interested
reader is directed towards [12], [7] for more details. For the
sake of the current discussion, we will not consider the effect
of habituation on learning and only address the simplified
situation in which hti = 1 for all t and i.

The restriction that the controller’s feedback signal σi must
be an element of Ωσ(env) prevents reward from occurring for
random movements, kinematic conditioning actions, actions
that track transformed signals, or actions that respond to
internal models the robot may have. As a result, the affordance
discovery reward function partitions control expressions de-
rived from the control basis into two disjoint subsets: those that
track forcing functions originating in external environmental
stimuli and those that do not.

What kinds of controllers produce rewarding events by the
affordance discovery motivator? For Dexter, controllers that
respond to feedback signals in the set of visual headings and
the set of force/torque measurements originating in external
environmental stimuli are rewarding. Consider a visual track-
ing controller that moves Dexter’s stereo pair of cameras to
foveate on a brightly colored object. A quiescence event for
this tracking controller will represent the discovery of a new
“trackable” affordance with respect to that object. If that object
also affords a controlled touch response using a controller that
tracks a force-domain signal when the robot reaches out to it
(and it does not roll away), that object also has a “touchable”
affordance. It is important to note that not all controllers
referenced to feedback signals in Ωσ(env) will always provide
control affordances. An affordance represents a tight coupling
between a perceptual stimulus and the robot’s body. If a visual
feature, for example, is moving too fast for the robot to track
given the limitations of its motor systems, the controller will
not produce a convergence event and thus not provide reward.

Algorithm 1 ACCOMMODATE(m, A, T )
1: Let A′ be the set of non-composite actions in A
2: Let S be the state space formed from the predicates of

the actions in A′
3: n← |A′|, γ = 0.8, α = 0.1, ε = 0.2
4: for i = 1 to m do
5: k ← 0, t← 0
6: reward← false
7: while (reward = false) ∧ (k < T ) do
8: st ← (pt1 . . . p

t
n)

9: a← π(st) (via ε-greedy selection)
10: repeat
11: execute a for one iteration
12: t← t+ 1
13: st ← (pt1 . . . p

t
n)

14: until st 6= st−1

15: k ← k + 1
16: evaluate rt according to Eq. 17
17: update Φ(s, a) using Q-Learning (Eq 18)
18: if rt > 0 then
19: reward← true
20: update Pr(τ |σ, reward) for all rewarding control

actions c(φ, σ, τ),
21: end if
22: end while
23: end for

C. Skill Accommodation

The procedure for estimating the state/action value function
Φ for a set of control basis actions A and the reward
function provided in Equation 17 is shown in Algorithm 1.
This procedure is called ACCOMMODATE() because it shapes
Φ to provide strategies for uncovering affordances in the
environment. It executes m reinforcement learning episodes
of no more than T state transitions over the state/action space
defined by A. Specifically, the algorithm uses Q-Learning [35]
to estimate the state-action value function, Φ(s, a). The Q-
learning update rule is defined as:

Φ(s, a)← Φ(s, a) + α
(
r + γ maxa′Φ(s, a′)− Φ(s, a)

)
. (18)

ACCOMMODATE() also estimates probability distributions of
the form Pr(τ |σ, reward) when rewarding conditions are
met (Line 19). Distributions of this form provide primitive
memory structures that encode configurations where the robot
has achieved reward in the past, and can be used as virtual
sensors to inform future searches.

D. Example: SearchTrack

We now present a simple program Dexter learned using
the affordance discovery reward function to find visual af-
fordances. This program, called SEARCHTRACK, was learned
using Algorithm 1. It moves Dexter’s pan/tilt head to locations
where the robot has previously observed highly-saturated pixel
regions on its cameras’ image planes, and then tracks these
regions to determine if they afford quiescence measured by
Equation 17. The acquisition of SEARCHTRACK represents the
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first stage of Dexter’s development it the longitudinal learning
experiment presented in this paper.

This learning problem orients the robot to uncover a
single rewarding control event and is taught to Dexter in a
simple, constrained environment designed to make that event
conspicuous. The training context focused exclusively on the
most highly-saturated pixels in the robot’s field of view. We
provide a comparison of learning results from two scenarios:
one in which the robot explored co-articulated control actions
and one in which it did not. This comparison demonstrates
the quantitative advantage of co-articulated policies over
sequential policies that execute only a single action at a time.
Both scenarios employed the following two primitive control
actions:

Track is a control action that pursues a saturation cue on the
robot’s left camera by changing the reference pan/tilt head
posture, θhead ∈ C2, according to the virtual spring potential
function φs. The goal is to keep the coordinate of a highly-
saturated visual cue, γlsat ∈ R2, at the left camera’s image
center, γl0 = [0 0]T . This controller is defined as:

TRACK(SAT) , c(φs, (γl0,γ
l
sat),θhead). (19)

Defining an error vector ε=(γl0 − γlsat), and plugging these
resources into Equation 5:

∆θhead =−
(
∂φs(γl0,γ

l
sat)

∂θhead

)#

φs(γl0,γ
l
sat)

=−
(
∂φs(γl0,γ

l
sat)

∂γlsat

∂γlsat
∂θhead

)#(1
2
εT ε

)
≈−

(
−εT I2×2

)#(1
2
εT ε

)
=

1
2
ε, (20)

where the Jacobian capturing how pan/tilt displacements effect
the view of headings perceived in the robot’s left camera is
approximately the identity matrix I2×2 due to the fact that
the pan and tilt axes intersect at the camera’s optical center.
Given this physical relationship, the perceived heading errors
in the image plane correspond proportionately to variations
in the robot’s pan and tilt configuration. The quiescence of
TRACK is rewarding according to the affordance discovery
intrinsic motivator because γlsat ∈ Ωσ(dir).

Search constructs and reduces a feedback error from two
signals—the current value of the head’s pan/tilt angles θhead,
and a head reference posture θhead,ref—according to the
gradient of the potential function φs. This controller is defined
as:

SEARCH(SAT) , c(φs, (θhead,ref ,θhead),θhead). (21)

θhead,ref is sampled from a probabilistic model of priors for
the search target in terms of pan and tilt head angles,

θhead,ref ∼ Pr(θhead|γlsat = γl0). (22)

θhead,ref ∈ C2 is thus sampled from a distribution of head
configurations where the environment is likely to have afforded
TRACK(SAT) quiescence in the past. It is easy to see that
Pr(θhead|γlsat = γl0) is closely related to Pr(τ |σ, reward)

for the TRACK controller that is updated at Line 19 of
the ACCOMMODATE() procedure. These distributions are thus
used interchangeably in this program.

SEARCH orients the head to postures where the target
saturation is likely to be found on the left camera image
plane. It is not rewarding by the affordance discovery intrinsic
motivator because the reference for the action is not derived
from the environment, but rather from probabilistic models
of past environments.

In conjunction, the SEARCH(SAT) and TRACK(SAT) con-
trollers support the construction of the state space Sst where
each state s ∈ Sst is evaluated such that s = (psearch ptrack),
and two possible action sets (dropping the parameter values for
notational simplicity) A1

st = {SEARCH, TRACK} and A2
st =

{SEARCH, TRACK, SEARCH / TRACK, TRACK / SEARCH},
depending on whether co-articulation is allowed. The fol-
lowing experiment compares policies for asserting the track
affordance using each of these candidate action sets. Dexter
learns policies for SEARCHTRACK according to the procedure
shown in Algorithm 1. Ten trials of 50 learning episodes
were performed for each experiment. At the beginning of each
trial, Φ(s, a) was initialized to zero. For evaluation purposes,
the average reward per state transition was recorded for each
episode and averaged over the trials. Each episode ended
when a rewarding event occurred (i.e., TRACK quiesced).
The distribution Pr(θhead|γlsat = γl0) was estimated as a
non-parametric distribution with a small Gaussian smoothing
kernel and was initialized at the beginning of each trial to a
uniform distribution.

In half of the episodes, the experimenter presented a highly-
saturated object at a position in front of the robot (in the
camera’s initial field of view), as seen in the image from
Dexter’s camera in Figure 6(a). In the other half of the training
episodes, no object was presented to the robot. However, other
saturation cues were available in the robot’s environment if the
robot “looked around” (e.g., toward the window to its left, as
seen in Figure 6(b)).

Figure 6(c) shows one of the learned non-parametric distri-
butions at the end of a trial for SEARCHTRACK estimating
Pr(θhead|γlsat = γl0). The large peak in the center of
the robot’s pan range corresponds to locations where the
experimenter held objects in front of the robot (Figure 6(a)),
the smaller peak corresponds to the configuration where the
saturated window region could be seen (Figure 6(b)). This
distribution reflects the robot’s knowledge at the end of the
trial concerning were TRACK affordances occur. This model
can thus be used as a prior by the SEARCH controller to inform
future executions to orient the robot to efficiently achieve
reward by the affordance discovery motivator.

For the case in which the action set did not include co-
articulated actions, the robot learned a policy that resulted in
the transitions shown in Figure 7(a). From the start state (XX),
the policy chooses action TRACK. If a saturation stimulus
is absent, the state transitions to (X−), thereafter entering a
loop that iteratively searches using SEARCH and then tests
for stimuli using TRACK. When a saturation cue is detected,
the robot enters state (X0) and then continues to execute
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Fig. 7. SEARCHTRACK transition diagrams for the policies acquired on Dexter in the first stage of learning. Transitions are shown if they occurred with a
probability greater than 20%. The diagrams are characterized by states s ∈ Sst where s = (psearch ptrack). The policy employs TRACK first, and SEARCH
is chosen only when no stimuli is immediately present. The state diagram in (a) shows the policy when only single actions are allowed in the action set. The
state diagram in (b) shows the policy when composite actions are allowed.
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Fig. 6. Frame (a) shows an image from Dexter’s left camera when a saturated
object is presented in front of the robot. Frame (b) shows an image from
Dexter’s camera while viewing window to its left. Frame (c) shows the non-
parametric distribution after 50 training episodes summarizing the pan/tilt
configurations where Dexter expects to observe a saturation cue.

TRACK until it quiesces in state (X1) and receives reward.
The average reward graph for these experiments is shown in
red in Figure 8(a).

For the case in which the action set included co-articulated
actions, the robot learned the policy that resulted in the
transitions shown in Figure 7(b). This policy allows the robot
to “interrupt” the search process if a saturated stimulus appears
as the robot moves to the reference location. The policy
suggests using action SEARCH / TRACK in all states, allowing
the higher priority action, TRACK, to dictate the robot’s
behavior if the stimuli is present, while performing successive
searches in the track controller’s nullspace, if it is not. The
resulting co-articulated policy requires fewer state transitions
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Fig. 8. Reward plots for the SEARCHTRACK policies learned on Dexter. Plot
(a) shows the learning curves for each experiment averaged over 10 trials of
50 episodes each (with 20% exploration). Plot (b) shows the reward for the
learned policies averaged over 50 trials of 10 additional episodes in which
there is no exploration and the stimuli is guaranteed to be found from the first
search. The error bars shows a clear statistical advantage of the co-articulated
policy (blue) over the sequential action policy (red).

on average than the sequential search-then-track policy seen in
Figure 7(a). This is apparent by the fact that the blue line (the
average reward for the co-articulation policy) in Figure 8(a)
seems to be slightly higher, on average, than the red line (the
average reward for the sequential policy).

Due to the high level of exploration in the learning episodes
(20%) and the stochasticity in the search process, the improve-
ment of the co-articulated policy over the single-action policy
is not statistically significant, despite an apparent advantage
seen in Figure 8(a). To show that the co-articulated policy is in
fact better, a simulation was performed in which both learned
policies were run under similar environmental conditions,
except that exploration was turned off, and in the 50% of
the cases where the robot had to employ SEARCH to find
the saturation stimuli, it was guaranteed to find it on the first
try. Under these conditions, fifty trials of ten episodes were
performed. The resulting average reward graphs are shown in
Figure 8(b), along with the data’s variance. From this graph
it is clear that the co-articulated policy achieves more reward
per state transition than the sequential policy.

E. Hierarchical Composition of Control Programs

Value functions are potential functions for discrete
state/action spaces. As a result, performing greedy ascent
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on a value function may lead an agent toward absorbing
states where Φ̇=0. The basis for hierarchy in the control
basis framework depends on the abstraction of sensorimotor
programs—with all the internal state they require—in terms
of the single, four-predicate state logic of Figure 5. Although
a program can have a significant amount of internal structure,
the hierarchical learning agent views this program as a single,
temporally extended control action whose state is represented
the same way as that of all other control actions. Control basis
programs are similar to reinforcement learning options [33]
with their own state/action spaces.

We now present the results of additional learning stages in
which Dexter used the affordance discovery reward function
to acquire hierarchical control basis programs. In each stage,
Dexter learned a policy to uncover a new affordance using
the ACCOMMODATE() procedure. Each of these programs
employs at least one other control basis program hierarchically.
When a program is used as a hierarchical single action in a
new learning program, we will treat it as having habituated,
and will fix its policy in place. Furthermore, these programs
will provide no additional reward from the intrinsic motivator.

F. Example: ReachTouch

The first hierarchical program Dexter learned asserts a
TOUCH affordance by combining SEARCHTRACK with arm
control tasks. We call this program REACHTOUCH, and it
allows Dexter to engage highly-saturated objects that are not
physically presented to it.

A learning stage for Dexter was constructed to enable
Dexter to learn a policy for REACHTOUCH. The robot
was provided with three actions: SEARCHTRACK,
REACH(SAT,RIGHTARM), and TOUCH(RIGHTHAND).
The latter is defined as follows:

Touch uses the virtual spring potential φs to apply a small
magnitude force in a desired reference direction. In this
example, Dexter uses TOUCH constructed to control a small
reference force on each of the three fingers of its right hand
in order to grab objects. This controller is defined as:

TOUCH(RIGHTHAND) , c(φs, (fr,ref , fr,hand),θr,hand), (23)

where θr,hand ∈ C4 are the configuration variables of the
robot’s right hand, fr,hand = [fr,1 fr,2 fr,3]T , capturing the
sensed forces at each of the robot’s three right-hand finger-tips,
fr,ref = [fref,1 fref,2 fref,3]T and fref,i is a reference vector
of 0.2N pointing in the inward (palm) direction of finger i.

TOUCH allows Dexter to hold simple objects like balls or
boxes when they are placed close to the robot’s palm. Because
of the geometric structure of Dexter’s hand, simultaneously
“TOUCH-ing” the same object with all three fingers often
forms a primitive grasp. This is the control basis analog
of the palmer grasp reflex in humans, and demonstrates
how an embodied system’s morphology can be exploited
to accomplish behavior. We will call this primitive grasp a
“grab.” It should be noted that more robust grasp control
strategies exist that achieve wrench closure on objects [25],
but we will be satisfied with TOUCH in the following

examples due to its simplicity.

These three actions construct an action space Art =
{SEARCHTRACK, REACH, TOUCH, REACH / TOUCH,
TOUCH / REACH}1 and a state vector s ∈ Srt where
s = (pst preach ptouch) and pst is the state predicate value
of the entire SEARCHTRACK program. Quiescence of the
TOUCH(RIGHTHAND) controller is rewarding by the affor-
dance discovery motivator because it signifies an affordance
in the environment.

One trial of 25 learning episodes was conducted in this
learning stage to allow Dexter to learn the REACHTOUCH
program using the ACCOMMODATE() procedure. During ap-
proximately half of the learning episodes, a human presented
highly-saturated objects to Dexter. In most of the other
episodes the human delivered a highly-saturated object in front
of the robot in a location initially out of view of the robot’s
two cameras. During a small number of episodes (∼10%) no
object was presented to the robot. In the cases where the object
was presented to the robot, it was able to grab it using TOUCH.

By the end of the learning trial, Dexter had learned a
policy for REACHTOUCH to uncover TOUCH affordances. The
transition diagram showing the most likely state transitions
that occur under the greedy policy for this program is shown
in Figure 9. The robot starts out in state (XXX) and chooses
the action REACH / TOUCH. If the object is initially in
the field of view, the state transitions to (X0−), meaning
that there is a reach goal, but no reference to TOUCH. If
the object is not initially in the robot’s field of view, the
robot transitions to state (X−−), from which it employs
SEARCHTRACK to find a reach goal. When a goal is found
and tracked, the robot enters state (1XX) and REACH /
TOUCH is tried once again, resulting in a transition to state
(X0−). From this state, the robot continues executing REACH
/ TOUCH until it either reaches state (X11), in which reward
is received by the intrinsic motivator, or the reach action
converges without bringing the robot’s hand into contact with
an object, resulting in a transition to state (X1−). This latter
case occurred in the small number of episodes in which the
robot reached toward visual stimuli that did not pertain to an
object within its reachable workspace (e.g., the window in
Figure 6(b)).

The simple policy for REACHTOUCH provides a robust way
for Dexter to turn visual cues into spatial and tactile cues it
can engage in different ways. In [12], three additional control
programs were presented that allowed Dexter to uncover
additional visual and tactile affordances using the proposed
framework. All three programs were learned by the robot in
stages of 25 learning episodes using the ACCOMMODATION()
algorithm; all use the REACHTOUCH program hierarchically.
The first program, BIMANUALTOUCH, allowed the robot to
employ a combination of kinematic conditioning actions to
bring a grasped object in contact with its left hand to accom-
plish a new TOUCH objective. Figure 10(a) shows the robot

1Co-articulated actions between primitives and programs were not allowed.
How to co-articulate discrete state/action policies is an open research question,
but see [28] for one possible approach.
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Fig. 9. This diagram shows the transition diagram for the policy
learned for REACHTOUCH after 25 episodes. The state vector is s =
(pst preach ptouch) where pst is the state value of the SEARCHTRACK
program. The hierarchical use of SEARCHTRACK is indicated by the abstract
transition icon introduced in Figure 5.

at the conclusion of this program. The second program, called
VISUALINSPECT, allows the robot to optimize the measure
of localizability with respect to grabbed objects, bringing
them to a location where small visual features that were not
initially visible can be tracked. Figure 10(b) shows the robot
after the conclusion of VISUALINSPECT. The third program,
PICKANDPLACE, allowed the robot to pick an object and
bring it into contact with another object (e.g., the green
table) using a Harmonic path-plan to prevent collisions with
obstacles, and regulating the reaction forces that occur upon
contact. Figures 10(c) and 10(d) show the robot performing
PICKANDPLACE, putting the yellow ball in the center of the
green table.

(a) (b)

(c) (d)

Fig. 10. Frame (a) shows Dexter after the completion of BIMANUALTOUCH.
Frame (b) shows Dexter after the completion of VISUALINSPECT. Frames (c)
and (d) show Dexter during and after PICKANDPLACE.

IV. PROGRAM GENERALIZATION

We have seen how a robot can acquire new skills in a
process of accommodation by restricting the environmental

context and the control expressions that it can explore. Such
scaffolding is an appropriate way for a human teacher to
bootstrap intrinsically motivated behavior. It is necessary,
however, to also consider how the robot can assimilate new
contexts into its knowledge structures to provide dexterous
solutions for achieving reward in more general situations.

In this section we address how a control basis program can
be transformed into a unit of behavior called a schema to pro-
vide dexterous contingency plans in a variety of environmental
contexts. This generalization is accomplished by factoring
existing control programs into declarative and procedural
components [9]. The declarative structure of a program—
capturing abstract information concerning which combination
of objectives are required to meet a behavioral goal—can
be transferred to different contexts. The procedural structure
examines the environmental conditions under which reward is
received and dictates how resources should be allocated to the
(abstract) declarative objectives at run-time.

Specifically, our approach allows a robot to find the sta-
tistically reliable parameterizations of control basis actions
that maintain the original typing constraints and transition
dynamics of policies that achieve reward. We next discuss how
to factor controllers and control programs into abstract entities
that can be re-parameterized, and then discuss how procedural
policies can be found that increase the likelihood of achieving
intrinsic reward in contexts different from those in which the
policies were initially acquired.

A. Controller Abstraction

Let T be a set of sensory types, such as those seen in
Table I. Control expressions in the control basis provide typing
requirements on the input sensors and output effectors that are
used to compute control inputs. As a result, a potential function
φ ∈ Ωφ, when combined with a sensory signal σ ⊆ Ωσ with
a characteristic input type (CIT) tin ∈ T , and an effector
resource τ ⊆ Ωτ with characteristic output type (COT) tout ∈
T , represents a family of functionally equivalent controllers
we will call an abstract action, a(φ, tin, tout). For example,
an abstract action using a harmonic potential φh represents a
class of control actions that provide collision-free motion plans
in R3 to a manipulator configuration output in Cn. However,
goals and obstacles in φh can be observations derived from a
laser scanner, a stereo vision system, a tactile probe, or any
other equivalent sources of position information.

1) Example: SearchTrack Abstraction: The SEARCH-
TRACK program that Dexter learned in Section III-D created
models of where training features (highly-saturated pixel re-
gions) occurred and tracked them on the center of its left
camera image plane. The strategy acquired, however, could
equally well be applied to different visual features. In a new
learning stage, Dexter executed its SEARCHTRACK policy for
an additional fifty training episodes, this time building a model
of where regions of pixel motion occur in its pan/tilt configura-
tion space and tracking such motions. This was accomplished
by “swapping out” the feedback signals to SEARCH and
TRACK pertaining to high-saturation cues, γlsat ∈ Ωσ , with
signals pertaining to motion cues, γlmotion ∈ Ωσ . For 50% of
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Fig. 11. Panel (a) shows Dexter’s left camera view while tracking motion
during a typical programming trial, and (b) shows the non-parametric dis-
tribution of pan/tilt configurations learned for motion cues after 25 training
episodes. The single peak corresponds to the place where the experimenter
presented motion cues to the robot during the acquisition of SEARCHTRACK.
The thirty panels in (c) show the ten hue, saturation, and intensity histograms,
respectively.

these episodes, an object was shaken in front of the robot, as
seen in Figure 11(a). The other half of the time, no object was
presented to the robot. Figure 11(b) shows the non-parametric
distribution Dexter learned during these episodes encoding
which pan/tilt configurations track motion cues.

To show the wide applicability of SEARCHTRACK re-
parameterization, Dexter was directed to explore headings to-
wards regions of interest in thirty hue, saturation, and intensity
channels in Ωσ (10 channels each, discretizing the full space).
The result of this exploration was that Dexter was able to
gain a comprehensive “understanding” of the affordances in
its primitive visual environment. For this training situation,
Dexter cycled through each of the thirty HSI channels, pa-
rameterizing SEARCHTRACK accordingly, and gathering data
regarding where the environment affords tracking each visual
signal. Dexter attempted to acquire fifty positive samples of

each channel, but gave up if no valid heading was found after
ten searches. Figure 11(c) show histograms of pan/tilt locations
where regions of each of the thirty channels were trackable.
Most channels produced some response from the environment,
although a few did not (e.g., saturation channels 7 and 10, hue
channels 8 and 9, etc.).

In conjunction, these visual signals can be used by Dexter
as a primitive background model for what it expects to see
from its cameras. Given that Dexter is a stationary robot, such
a model provides a prior on the entire visual environment the
robot can expect to observe. Furthermore, deviations from this
model can direct the robot’s attention towards new possible
affordances. For example, any object placed in front of the
robot—which will itself be comprised of a combination of the
above thirty channels—will result in some deviation from the
robot’s prior model. It is easy to see how this deviation could
be used to “trigger” further exploration—for example, the
robot could try reaching out and touching the object, picking
it up, etc.

B. Schema

We now describe a process by which a robot can generalize
its acquired control programs to new situations in subsequent
stages of learning that preserve the transitional structure (or
“intentions”) of the original policies. As a robot generalizes its
programs to support increasingly dexterous procedural contin-
gency plans, these programs are transformed into knowledge
structures we call schema that can produce reward in many
contexts.

The proposed methodology for generalizing control basis
programs into schema is illustrated in Figure 12. A program
with policy π is first learned over a state and action space
A and S using specific sensory and motor allocations that
work in the training context. The policy is then factored into
declarative (abstract) and procedural components. The abstract
actions are then allocated with type-constrained resources
based on the environmental context f ∈ F in order to
preserve the original transition structure of π. Enforcing strict
typing constraints reduces the combinatorial space of possible
resource combinations, making the search space more efficient
for machine learning algorithms to explore. We now discuss
how this process can be represented computationally.

Let the (ordered) declarative and procedural parts of a
prioritized control law ci = c(φ0, σ0, τ0) / · · · / c(φn, σn, τn)
be defined, respectively, as follows:

declarative(ci) = (a0, · · · , an) (24)
procedural(ci) = (ω0, · · · , ωn) (25)

where each am is a single-objective abstract action consisting
of a potential function with characteristic input and output
types, such that am = a(φm, type(σm), type(τm)), ωm is
the set of sensor and effector resources, ωm = 〈σm, τm〉, that
meet the original CIT and COT typing constraints of cm, and
m = 0 . . . n.

At run-time, each abstract action must be allocated with
sensorimotor resources. Let procedural policy ψ for a schema
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Fig. 12. Sensorimotor programs in the control basis can be factored into
procedural and declarative components and generalized to new environmental
contexts, by means of the policy ψ(ai, fj), where ai ∈ A and fj ∈ F .

be a mapping from abstract action a ∈ A, and context f ∈ F ,
to a set of sensorimotor resources for each controller,

ψ : (a, f) 7→ (ω0, · · · , ωn). (26)

One useful procedural policy for a single-objective abstract
action a(φi, tin, tout) is defined as:

ψ(a, f) = argmaxωiPr(scur, sdes|ci, a, f) (27)

where ωi = 〈σi, τi〉, ci is a controller parameterized by φi
and resource model ωi (that obeys the CIT and COT typing
constraints of original control action, such that type(σi) = tin
and type(τi) = tout), scur is the current state, and sdes is the
desired next state along the route to a rewarding state under
policy π. Policy ψ can be extended to multi-objective control
laws by finding the set of procedural parameterizations that
preserve the desired state transitions.

Examining the procedural context of a particular control
basis program also supports inferences regarding when reward
is unlikely to occur for any resource allocation. This likelihood
is captured by the probability of achieving reward for a given
policy and context, Pr(reward|π, f). Consider a case in
which Dexter explores REACHTOUCH, but no object is present
in the reachable workspace: in this case, the probability should
be sufficiently low. In such a situation, the schema should
report that it is not in a region of its state-space where its
goals can be met, and evaluate to the undefined “−” condition.
It can then inform any higher-level program that is using it
hierarchically that it is unlikely to be able to achieve its goals.

The procedure for how a control basis program can be gen-
eralized into a schema with procedural contingency plans—
called ASSIMILATE()—is provided by Algorithm 2. It is
similar to ACCOMMODATE() except that, instead of using Q-
Learning to learn an action-value function Φ, it estimates a
policy ψ and various probability distributions that capture
procedural information. ASSIMILATE() takes as input the
action set A, a policy π that maps states in the state space
S formed by the actions in A to those actions, a set of
resources Ω that can be used to re-parameterize the actions
suggested by π, the number of learning episodes m to be
performed, and a “timeout” parameter T that limits the number
of state transitions for each episode (set to 100 in the following

Algorithm 2 ASSIMILATE(A, π, Ω, m, T )
1: Let A′ be the set of non-composite actions in A
2: Let S be the state space formed from the predicates of

the actions in A′
3: n← |A′|, ε = 0.2
4: for i = 1 to m do
5: k ← 0, t← 0
6: reward← false
7: while (reward = false) ∧ (k < T ) do
8: observe features f ∈ F
9: st ← (pt1 . . . p

t
n)

10: a← declarative(π(st))
11: ω ← ψ(a, f) (via ε-greedy selection), where ω ∈ Ω
12: allocate a with ω to form control action c
13: repeat
14: execute c for one iteration
15: t← t+ 1
16: st ← (pt1 . . . p

t
n)

17: until st 6= st−1

18: k ← k + 1
19: update Pr(st−1, st|c, a, f)
20: evaluate rt according to Equation 17
21: if rt > 0 then
22: reward← true
23: update Pr(τ |σ, reward) for all rewarding control

actions c(φ, σ, τ),
24: end if
25: end while
26: update Pr(reward|π, f)
27: end for

experiments). Line 18 updates the probability distribution used
to evaluate ψ as seen in Equation 27. Line 25 updates the
probability of achieving reward for the given policy and the
observed run-time context f ∈ F .

1) Example: ReachTouch Procedural Knowledge: In the
last section, we demonstrated a program called REACHTOUCH
that Dexter acquired using ACCOMMODATE() in a constrained
setting. This program provides a policy for the robot to
uncover TOUCH affordances in its environment using its right
hand. The REACHTOUCH strategy, however, can be applied
equally well to uncover left-handed or bimanual TOUCH
affordances. We now present procedural contingency plans
learned for REACHTOUCH using ASSIMILATE() demonstrat-
ing common sense knowledge concerning handedness and
concerning when objects are out of reach.

During learning, objects of either 50cm or 10cm diameter
were presented to the robot in a variety of positions and with
a variety of velocities. In half of the training episodes, a ball
of the larger diameter was placed in front of the robot. In
the rest of the episodes, a smaller ball was presented, placed
in a stationary position to the left or right sides of the robot
or on one side moving with a velocity of 0.05m/s in the
direction of the opposite hand. The larger objects require
a bimanual strategy to successfully track reference contact
signals. The smaller and moving objects require policies that
consider handedness and anticipatory reaches. The object was
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Fig. 13. The decision tree in (a) shows the resulting procedural policy for
choosing which arm to allocate for reaching based on object volume, position,
and velocity. The tree in (b) shows conditions under which REACHTOUCH is
likely to achieve reward. It captures when objects are out of the robot’s work
space in terms of their position.

occasionally presented outside of the robot’s initial field of
view, requiring the use of the SEARCHTRACK program.

Figure 13(a) shows a decision tree learned using the C4.5
algorithm2 after one of the training trials on the robot to
estimate ψ. Other trials produced similar results. This tree
indicates that if the ball is large (i.e., it has appreciable
volume), then a 2-handed reach should be used. Moreover,
small moving objects indicate that the robot should reach
with the arm that anticipates the movement, otherwise, the
object would move out of the workspace of the hand chosen.
Stationary objects indicate the use of the hand on the same
side as the object. This policy reflects clear common sense
knowledge about handedness, scale, and velocity concerning
one- and two-hand REACHTOUCH options.

In an additional 50 learning episodes, objects of various
sizes were placed on the table in front of the robot, half of the
time outside the robot’s reach. The C4.5 algorithm was used
to learn a decision tree based on the position of the object con-
cerning what contexts lead to reward using the REACHTOUCH
policy and which do not. This tree (Figure 13(b)) reflects the
probability distribution Pr(reward|π, f) updated in Line 25
of the ASSIMILATE() procedure. We see that for objects placed
in x locations greater than 1.17m in front of the robot or too
far over to the robot’s side in the y-direction, the program is
not likely to achieve reward.

2) Example: PickAndPlace Procedural Knowledge: In
the initial learning stage in which Dexter accommodated
PICKANDPLACE, both the object to be transported as well
as the goal location had to be placed sufficiently close to
the robot’s right hand in order for reward to be achieved. In
cases where either were too far away, the program would not
succeed. In a new learning stage, we expanded the contexts
in which Dexter applied PICKANDPLACE by placing a ball
with highly-saturated hues in unconstrained initial locations
on the table and by exploring more places to transport it.
During training, Dexter learned to assimilate these situations

2The C4.5 algorithm, [26], was chosen due to its intuitive and human-
readable output. It should be noted, however, that there may be other efficient
means of estimating the desired probabilities and policies, but a full discussion
is ongoing research and beyond the scope of this paper.
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Fig. 14. This learned PICKANDPLACE procedural policy.

into its PICKANDPLACE schema. “Place” goals were visually
designated by a blue-colored hue spot that was placed in
various locations on the table. In this expanded context, there
are situations in which a solely right-handed policy (as was
initially learned) does not yield reward.

The C4.5 decision tree learner to learn a procedural policy
for initially grabbing the object according to the ASSIMI-
LATE() procedure over the joint signal space that arises from
the union of the “pick” and the “place” locations (i.e., the
object and goal locations, respectively). The resulting policy
is shown in Figure 14. This decision tree distinguishes cases
when the object and the goal are sufficiently far away from
each other in the robot’s y-direction (lateral to the robot).
In this case, it should invoke BIMANUALTOUCH in place of
REACHTOUCH. Because both these schema reward the same
type of affordance (TOUCH-ability), they both provide valid
re-parameterizations of the original declarative policy. In the
current training context, the BIMANUALTOUCH accomplishes
a form of “hand-transfer” by picking up the object and
bringing it into contact with the robot’s other hand to achieve
a grab. The resulting behavior in these situations is illustrated
in the sequence of images shown in Figures 15(a)-15(d). The
result is that the robot can accomplish a larger variety of
PICKANDPLACE tasks by leveraging a large amount of prior
behavioral knowledge.

V. DISCUSSION

In this paper we introduced a paradigm for programming
adaptive robot control strategies that can be applied in a variety
of contexts. This paradigm advocates three important princi-
ples that are related to recent work in the community. The first
principle is that behavior should be learned incrementally (or
developmentally) and acquired in learning stages that provide
new contexts for either accommodating or assimilating new
schema. Computational methods for developmental learning
in robotic systems were proposed by a number of researchers
including [30] and [1], and have recently enjoyed a great
deal of attention in the literature (cf. [17]). The framework
presented in this paper contributes to the literature a devel-
opmental strategy for acquiring behavior that is inherently
grounded in a robot’s ability to assemble closed-loop strategies
for interactive behavior.

The second principle the proposed paradigm advocates is
that control strategies should be learned through an intrinsic
motivator that rewards behavior in ways measurable to the
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(a) (b) (c) (d)

Fig. 15. A procedural adaptation for PICKANDPLACE. In (a) the (blue-colored) goal is placed far to the robot’s left, while the object is on its right. (b) and
(c) show the robot using BIMANUALTOUCH to pick up the object and pass it between its hands so that it can be brought to this far-away goal location (d).

robot, not just to the human programmer. This approach is in
direct contrast to much of the recent work in robot learning that
focuses on programming by demonstration [3] and imitation
learning [31]. In this work, a robot learns a skill based on
a small number of demonstrated examples provided by the
teacher. The robot uses the exemplars—often in conjunction
with a task-specific reward function tailored to the domain—
to bootstrap online exploration as it learns how to reliably
accomplish the goal. Similarly, work in inverse reinforcement
learning allows an agent to extract a reward function from
example trajectories that can, in turn, be used to learn robust
policies [22]. The approach we take in this document does
not rely on demonstrations by a teacher. Instead, the intrinsic
reward function for affordance discovery we have presented
is designed to provide a robot with a means to acquire new
skills autonomously and with minimal guidance.

The third principle we advocate is that a robot’s knowledge
should be grounded in the affordances it discovers in its
environment. There has been much recent work in affor-
dance learning for robots. Montesano et al. and the Multi-
Sensory Autonomous Cognitive Systems group have provided
formalisms that capture the statistical relationships between
taking actions on objects and observing the effects [20],
[29]. A number of researchers have examined affordance-
like structures called “Object-Action Complexes” as the basis
for use in higher-level planning tasks [5], [15], [16]. These
approaches are similar in that they formulate robot actions
as pre-programmed activities that require little or no sensory
feedback to measure “success.” In contrast, this paper con-
tributes a novel approach in which the behavioral affordances
are explicitly grounded in the robot’s dynamic sensorimotor
interactions with its environment.

Taken together, these principles support an integrated ap-
proach to robot learning that makes the first steps toward
robot systems that learn over the long term with minimal
guidance from human programmers—something that has been
elusive to artificial intelligence researchers to this point. We
argue that any robot operating for long periods of time in
unstructured and real-world environments must be endowed
with an ability to continually learn new skills on its own, as
well as to adapt existing skills for novel situations previously
unseen. We believe that the framework presented in this paper
provides formal methodologies for achieving these goals.
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