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Development of Object and Grasping
Knowledge by Robot Exploration

Dirk Kraft, Renaud Detry, Member, IEEE, Nicolas Pugeault, Emre Bageski, Frank Guerin, Justus H. Piater, and
Norbert Kriiger

Abstract—We describe a bootstrapping cognitive robot system
that—mainly based on pure exploration—acquires rich object
representations and associated object-specific grasp affordances.
Such bootstrapping becomes possible by combining innate com-
petences and behaviors by which the system gradually enriches
its internal representations, and thereby develops an increasingly
mature interpretation of the world and its ability to act within it.
We compare the system’s prior competences and developmental
progress with human innate competences and developmental
stages of infants.

Index Terms—Active exploration of environment, hardware
platform for development, robots with development and learning
skills, using robots to study development and learning.

I. INTRODUCTION

HE ABILITY to bootstrap the learning of increasingly
T rich internal representations of the world is one of the
crucial properties of the human cognitive system. This ability
allows the system to postulate and verify predictions and, ulti-
mately, to act purposefully—which on the highest level of repre-
sentation is connected to planning [1]. Such bootstrapping pro-
cesses are required because, on one hand, it is impossible to
hard-code all relevant objects and actions as well as their prop-
erties and effects (see, e.g., [2]). On the other hand, it is known
that demanding learning tasks such as object learning, for recog-
nition as well as for grasping, cannot be solved in general terms
without a certain amount of prior knowledge coded into the
system. The alternative “tabula rasa” approach (as phrased by
[3]) would inevitably fail because of the huge dimensionalities
of the learning spaces of the actual problems [4].
The first competence a human (or human-like cognitive
agent) needs to learn is to control its own body and how it is
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linked to its visual system. Infants develop this competence
within approximately six months (as measured by reaching
success [5]). Such learning has also been successfully modeled
on humanoid robots (see, e.g., [6]). An important learning step
that follows such body learning and vision-body calibration is
object learning, making use of a rich set of visual descriptors
(e.g., textures, shapes, and edges) [7], as well as the refinement
of reaching and grasping based on initial reaching [8] and
grasping reflexes [9] (see the discussion in Section IV-A). In
this paper, we describe an artificial cognitive system in which
a similar development takes place. More concretely, mainly
driven by pure exploration and without any innate prior object
or object-specific grasping knowledge, the system develops
increasingly rich and mature internal representations of objects
and knowledge of how to grasp them. In parallel, starting
from some inchoate innate behavioral patterns, the system
develops a set of increasingly complex competences up to a
very premature planning ability. Note that our system does not
attempt to mimic infant development in the details, but rather in
its broad outline, and in particular to develop object and grasp
knowledge by a bootstrapping process, where each helps the
other. Since the embodiment of our system is different from
infants (e.g., high precision of grasping and 3-D reconstruction
through fixed and calibrated cameras) some problems infants
have to solve (e.g., body learning and learning of association
of the visual system to the motor system) can be ignored or
simpler solutions can be adopted (e.g., using directly the very
precise 3-D information for grasping).

It is important to realize what kind of learning is appropriate
(and possible) at an early stage of development. Since language
is not yet developed, teaching by any explanation is not an op-
tion. Moreover, up until about nine months, it is unlikely that
imitation plays a crucial role in learning to interact with objects
(see Section IV-B4). Therefore, exploration is likely to play a
decisive role at that stage of development, which is also sup-
ported by observations in developmental psychology [10], [11].
Along a similar line of thought, exploration is the main driving
force in our system, supported by very weak supervision by a
human “robot-sitter” whose role it is to create learning situa-
tions and to avoid self-damage, in a way very similar to infant
supervision.

To realize this learning task, our system requires a minimal
amount of innate knowledge about the world with which it in-
teracts. This knowledge is expressed in: 1) the system’s embod-
iment; 2) the machinery for (visual) feature extraction; 3) struc-
tural knowledge (statistical machineries and memory system);
4) a number of innate behavioral patterns; and 5) knowledge
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of the physical world. However, as we show, this knowledge is
rather generic, and choices are motivated by neurophysiological
knowledge, as well as results of developmental psychology (as
discussed in Section IV-A).

By carefully combining these innate competences and behav-
iors, we end up with a system that gradually enriches its internal
representations. This process leads to an increasingly mature in-
terpretation of the world and the system’s ability to act within
it, up to (still very simple) planning and plan execution with
grounded object and grasp representations. We then compare
the system’s prior knowledge with equivalent knowledge avail-
able to humans, and discuss similarities and differences. In par-
ticular, we compare the system’s developmental progress with
developmental stages of infants in Section IV-B.

The modeling of such bootstrapping processes serves (at
least) two purposes. First, it is a necessary competence for
cognitive robots to learn by interacting with the world; hence,
we believe that it is an important capability of future robotic
systems. Second (and equally importantly), it provides a better
understanding of the internal requirements of such complex
processes and thus provides insight for the understanding of
human development.

A. Related Work

Since our work focuses on bootstrapping mechanisms in a
cognitive system which makes use of a number of rather com-
plex submodules, a large variety of research questions are in-
volved (grasping without object knowledge and object specific
grasping, object learning, structure from motion, pose estima-
tion, etc.) that cannot be fully covered in this section; we focus
here on work that is relevant in the context of bootstrap learning
of grasp representations (Section I-Al), or object and action
knowledge generation by exploration (Section I-A2). For a more
detailed discussion of the state of the art for each submodule
used in the bootstrapping process, we refer to more technical
publications (see [12]-[16]).

1) Learning Grasping Affordances: Classical approaches
to grasp generation [17], [18] rely on predefined 2-D or 3-D
models. These models have mostly been used to construct
successful and stable discrete grasping solutions using ana-
lytical methods. Of the more recent, large body of literature
on learning how to grasp, the majority focuses on methods
that produce a number of discrete grasping solutions [19]. A
few recent methods (including that used by our system [14])
instead aim explicitly at producing a continuous, probabilistic
characterization of an object’s grasping properties [20], [21].
The latter can naturally be used to produce grasping solutions;
additionally, they allow for ranking grasps by providing a
likelihood of success for arbitrary grasps. Montesano et al.
[21] learned 2-D continuous and probabilistic grasp affordance
models for a set of objects of varying shape and appearance,
and developed a means of qualifying the reliability of their
grasp predictions.

Chinellato et al. [22] describe a relevant manipulation exper-
iment in which categories of grasps (based on features derived
from 2-D-visual and motor information) are learned. These cate-
gories can be interpreted as symbols representing different grasp
types. The features used by Chinellato ef al. contain a significant

amount of prior information. They are constructed based on the
authors’ thorough understanding of the grasping process. We do
not make use of such specifically tailored features; the different
grasp categories in [22] are object independent while our work
learns object-specific grasps.

2) Body, Object, and Action Learning by Cognitive Agents:
The work of Fitzpatrick and Metta [6] is closely related to our
object learning approach since the overall goal as well as the
hardware setup are similar: discovering relations between ac-
tions and objects by exploration using a stereo system combined
with a grasping device. We see our work’s main distinguishing
features in the larger amount of prior structure we use and in
the more complex and reliable visual and action models we are
able to produce. For example, we assume a much more sophis-
ticated vision system. Also, the use of an industrial robot allows
for a precise generation of scene changes exploited for the ex-
traction of the 3-D shape of the object. Similarly to [6], we ini-
tially assume “reflex-like” actions that trigger exploration (con-
nected to the concept of affordances [23]). However, since in
our system the robot knows about its body and about the 3-D
geometry of the world and since the arm can be controlled more
precisely, we can infer more information from having physical
control over the object in terms of an exact association of visual
entities across successive frames based on proprioceptive infor-
mation. Therefore, we can learn a complete 3-D representation
of the object (instead of 2-D appearance models) that can then
be linked to pose estimation.

Our work is very much related to a general research agenda
on bootstrapping cognitive systems outlined by Kuipers. In par-
ticular, Modayil and Kuipers [24], [25] addressed the problem
of the detection of objectness and the extraction of object shape
(e.g., of chairs, a trashcan, etc.) in the context of a mobile robot
using a laser sensor. Motion information (in terms of the odom-
etry of the mobile robot) is used to formulate predictions; in
this way, they can extract a 2-D cross section of the 3-D envi-
ronment. In our work, we did make use of a much richer vi-
sual scene representation (leading to full 3-D object represen-
tation covering geometric and appearance information), as well
as a more controlled way to interact with objects (grasping and
highly controlled manipulation of objects in contrast to mobile
manipulation and merely pushing objects).

Stoytchev [26] shows how to learn to pick up seven different
objects by experimentally chaining primitive actions, taken
from a discrete set. In contrast, we learn to grasp in a continuous
parameter space. Stoytchev’s work is done in a dynamic sim-
ulation environment, which simplifies some vision problems.
Corners of objects are input directly; a different approach would
be needed for objects that do not have the relatively simple
structure of the seven objects used. Furthermore, objects are not
recognized, but are color-coded so that they can be uniquely
identified. There is no link between exploration and the learning
of an object’s visual representation. In contrast to this work, our
experiments are done in a realistic environment which tackles
real-world vision and we do not ground our grasping actions
in primitive actions, but rather use an abstract 6-D pose for
grasp representation. Stoytchev’s later work [27] shows how
different tools and their actions can be learned and how this
knowledge can be used to solve problems. This work is done
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Fig. 1. Tllustration of how our processes can be interpreted in accordance with human memory models (using the popular working memory model of Baddeley).

See Section II for more details. (Continued in Fig. 2).

in a real-world robot scenario while manipulation happens in a
planar world. The author also investigates how this learned tool
representation can be updated in case the tool changes (e.g.,
breaking off of parts). Our work does not explicitly address
shape changes, however, our learned grasp models will adapt
to gradually changing objects during continued interaction.
Moreover, added or removed parts will be robustly handled in
the same way as clutter and occlusion and will generally be
inconsequential, unless the parts in question directly interfere
with applied grasps.

This work is based on earlier work [13], [14]. While [14]
focuses on technical aspects, the conference publication [13]
discusses how individual objects and grasp affordances can be
grounded. This article bundles prior work into a bootstrapping
system that is described herein for the first time. In this con-
text, we also compare this system with findings from neuro-
physiology and developmental psychology. In particular, we re-
view some findings that justify the prior knowledge built into the
system, and discuss how our system relates to the development
of infant grasping abilities in their first year.
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Fig. 2. Continued from Fig. 1.

II. THE DEVELOPMENTAL PROCESS

The developmental process has three main stages which them-
selves can be split again into different substages. This is visual-
ized in Figs. 1 and 2. The first stage involves a first learning cycle
[see Fig. 3 (top)] called “Birth of the object,” the second stage
involves a second learning cycle [see Fig. 3 (bottom)] similar to
playing with an object (grasping and dropping the object); the
third and final stage can then use the knowledge acquired previ-
ously to manipulate objects in a planful way.

During the first “innate” stage, the system (“I” in Fig. 1)
merely performs actions triggered by feature-induced affor-
dances (see [28] for a video).! The system does not have any

!In this paper, we refer to two types of affordances: a feature-induced af-
fordance is identified by the visual system based on coplanar contours and re-
quires no prior object knowledge; an object-specific affordance requires an ob-
ject model, and refers to a specific gripper pose at a specific point on the object
model.

concepts of concrete objects and how to grasp them. It only
executes a mechanism that tries to perform grasps on something
(i.e., not necessarily an object) triggered by specific 3-D feature
constellations which the early cognitive vision system provides.
In case the system experiences a resistance to a total closing of
the two-finger gripper, another mechanism triggers a rotational
movement which provides the visual system with a set of con-
trolled views of the object, from which it accumulates features
that move in agreement with the proprioceptive information
(see [29] for a video). The set of these features (provided the
predictions of the visual features based on the proprioceptive
information can be verified) constitute “objectness” and object
shape. Hence, at the end of the first learning cycle the system
possesses concrete object knowledge. Based on this it also has
now a more mature means to analyze the scene by recognizing
learned objects and estimating their pose. This is the second
stage reached in “V” in Fig. 1.
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Fig. 3. The two learning cycles. In the first learning cycle (top) a visual object model is learned after gaining control over the object. The second learning cycle
(bottom) uses this model for pose estimation that enables the system to attach attempted grasps to a common coordinate system. These grasps can then be used to
construct grasp densities, which form a continuous grasping affordance representation.

During the second stage, a more complex behavior compared
to the feature-induced affordance driven behavior of the first
stage is performed. Since the system is now able to estimate
the object’s pose it can perform focused actions on an object
(i.e., grasp it with a certain end-effector pose in relation to the
object). In this way, the system can systematically test grasp
hypotheses to build up grasping experience associated with the
object. At the end of this process, the system has acquired object
shape and appearance and object-specific grasping knowledge;
this facilitates entry to the third main stage, which can perform
behaviorss in which multiple objects can be manipulated in a
systematic way, a precursor to planning. This third stage is not
described in this paper (see [30] for more detail). Instead, the
focus here is on how to bootstrap a system to such a level of
knowledge.

We want to note three issues. First, in human development
(or in a more faithful developmental robot) these stages are not
distinctly sequential. Purely feature-induced affordance-based
behavior, more focused “playing” and planning will all be
available at later stages. Second, during play, more is learned
than grasping a specific object, for example, fine-tuning of
movements, aligning the body with the vision system, and
learning more sophisticated grasping affordances. This idea of
significant overlap between different processes is very much in
line with contemporary theories of cognitive development [31].
Third, the emergence of deliberate planning is not a discon-
tinuous development, but rather a process of gradual increase

in the sophistication of skills and their combination; evidence
suggests that the basic strategy of applying a means to achieve
a goal is available in the first six months, but means-ends per-
formance in manual tasks will not be observed until about eight
months because the required component skills (or “planning
operators”) are not available earlier [32]. Later on, as more
playing is done, more is learned about potential planning oper-
ators and so more sophisticated planning becomes possible.

Figs. 1 and 2 exemplify the learning process inherent in
the interaction of the different internal modules and behaviors
interpreted in accordance with the popular model of working
memory of Baddeley [33] (see Section IV-A3). We realized
a procedure that reflects this model and leads to a stepwise
enrichment of the internal representations. This enrichment
process produces a gradually maturing interpretation of the
world that allows for increasingly complex actions. The
horizontal axis gives the different types of memory that are
involved in the developmental process: iconic memory (IM),
visuospatial sketchpad (VS), episodic buffer (EB), object
memory (OM), and grasp memory (GM). Note that IM is
part of the sensory store, VS and EB are both part of the
short-term memory (STM), while OM and GM are both part
of the long-term memory (LTM). The vertical axis represents
the time on a coarse scale, corresponding to critical stages
of the system’s development. The horizontal bar on top of
the different memory systems represents competences of the
system. These also change (i.e., develop) over time.
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The different memory systems have different roles in the
developmental process. Iconic memory stores and integrates
visual information for only approximately 250 ms [34] and
delivers the information to the visuo—spatial sketchpad [33],
where internal representations act on the sensory information
(in our case associating grasping hypotheses to visual features,
see, e.g., Fig. 1. Experienced relations between sensory infor-
mation and action are stored in the episodic buffer [33]. The
information in the episodic buffer delivers input to learning
processes that initialize and refine concepts in the long-term
memory—in our case, object-specific grasping affordances.
More specifically, we store visual features which triggered a
grasp, motor information associated to the grasping attempts, as
well as a success evaluation of the grasp attempt. The success
evaluation is based on haptic information.

To view the system from Piaget’s theoretical perspective [35],
we could describe it in terms of the functions of assimilation
and accommodation. The accumulation process involves assim-
ilation of the object according to the system’s innate idea of
objectness, and then rotating it just as it would do with any
other object. The accumulation process involves accommoda-
tion when the system changes its object memory to accommo-
date this new, previously unseen object. The playing process
first involves assimilation of the object by a model existing in
object memory (pose is estimated in this assimilation process);
a grasp attempt is then triggered. The result of the grasp at-
tempt leads to a change in the recorded empirical grasp density;
this change corresponds to Piaget’s accommodation. This pro-
cedure is thus broadly compatible with Piaget’s theory where
each process involves an element of assimilation and an element
of accommodation.

The competences and behavioral patterns are activated in the
developmental process. Initially, they are directly activated by
affordances (e.g., the grasping reflex is used to grasp objects)
and later in the developmental process by more purposeful
considerations (e.g., the planner decides what object to grasp
in which way). These competences and behavioral patterns
are combined over time to form more complex concepts and
behaviors, providing an increasingly rich world model: The
developing system proceeds from object-independent, stim-
ulus-driven grasping to more purposeful and mature grasping
of objects, and finally forms sequences of behaviors to execute
purpose-directed plans.

The main developmental steps and the corresponding internal
system states (Figs. 1 and 2) are now briefly outlined by means
of concrete examples, before we describe the actual submodules
applied in this process in Section III.

I) Attheinitial stage, a “grasping reflex” (see Section I1I-A2)
is triggered by a visual stimulus in the VS. In this case,
the execution of the selected grasping hypothesis leads to
a collision between the gripper and the basket; the grasp
is labeled as failed and stored in the EB as a combination
of visual features and outcome evaluation. We note that,
at this point of development, the only competence avail-
able to the system is to trigger one of the feature-induced
affordances by the grasping reflex (GR), as indicated by
the only green highlighted competence. This constitutes a
purely affordance-based, reactive scheme.

II) Another attempt to perform a grasping hypothesis leads to
a successful grasp (measured by haptic information); the
basket is grasped and the action is labeled accordingly.
Note that, by having physical control over “something,”
a new (however, innately available) competence becomes
usable by the system (“Rotation/Accumulation”).
At this stage, an accumulation process (see Section II1-A3)
is triggered following the successful grasp, during which
the object is observed from different perspectives.
After a set of views have been collected, they are incor-
porated into a common model. An object is born when
a sufficient number of the features moving according to
the robot’s proprioceptive information have been accumu-
lated. The EB is updated accordingly and the object model
is stored in OM. This concludes the first learning cycle as
described in Section III-B1.
V) At this stage, the new entry in the object memory allows
for a more complex representation in the visuo—spatial
sketchpad via the use of the pose estimation process (see
Section III-A4). Now the scene represented in the VS
contains not only grasping affordances, but also a concrete
object that can be localized by a pose estimation algorithm,
as indicated by the green highlighted box.
A new competence combining grasping reflex and pose
estimation, generating new entries in EB and GM, is
activated. From this point onwards, learning happens by
playing, i.e., picking up and dropping the object. This is
essentially an iterative combination of the grasping reflex
with the pose estimation (described in Section III-B2).

X) After grasping the object multiple times, the grasping
model (described in detail in Section III-A4) becomes
sufficiently complete. This concludes the second learning
cycle.

XI-C) Additional objects are born and grasping models are
learned by the very same mechanisms.

CI) Based on the learned object and grasp representations,
planning with grounded objects and grasps finally be-
comes possible. This is described in detail in a separate
publication [30].

110)

V)

VI)

III. SUBMODULES AND LEARNING CYCLES

This section presents the technical implementation of the de-
veloped system. The implementation is based on an embodiment
(see Fig. 4) consisting of a classical six degree of freedom indus-
trialrobotarm (Staubli-RX60) with an attached two finger gripper
(Schunk PG-70) and a calibrated stereo camera system (Point
Grey BumbleBee2). In addition, the system uses a Force/Torque
sensor (Schunk FTCL-050) to detect collisions between gripper
and environment. In this context, a foam floor leads to a slow
increase of forces and hence allows for longer reaction times.

We now describe in Section ITI-A the modules that are used by
the system and how they interact within the two learning cycles
(described in Section III-B) in a cognitive agent which is able to
learn object representations and grasping actions autonomously.

A. Visual and Behavioral Modules

This section details the technical implementation of the
a priori competences and behaviors that build the basis for the
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Fig. 4. Hardware setup (description see text).

realized system. Here we want to stress that although many
parts of the system are motivated by and have analogies to
human information processing, these analogies are not mod-
eled on a neuronal level, but represent functional abstractions
of processes realized in the human brain by means of neurons
(for an in depth discussion of analogies to the human visual
system we refer to, e.g., [36]). Moreover, some processes are
also realized rather differently in the human brain as discussed
in detail in Section IV.

1) Early Cognitive Vision System: In this work, we make use
of a visual representation delivered by an early cognitive vision
system (ECV) [16], [36], [37]. Sparse 2-D and 3-D features,
so-called multimodal primitives, are created along image con-
tours. The 2-D features represent a small image patch in terms of
position, orientation, and phase. These are matched across two
stereo views, and pairs of corresponding 2-D features permit
the reconstruction of a 3-D equivalent. The 2-D and 3-D prim-
itives are reorganized into perceptual groups in 2-D and 3-D
(called 2-D and 3-D contours in the following). The procedure
to create visual representations is illustrated in Fig. 5 on an ex-
ample stereo image pair. Note that the resultant representation
contains not only geometrical information (i.e., 2-D and 3-D po-
sition and orientation), but also appearance information (e.g.,
color).

The sparse and symbolic nature of the multimodal primitives
allows for the coding of relevant perceptual structures that ex-
press relevant spatial relations in 2-D and 3-D [38]. The rela-
tions between contours allow us to define grasping hypotheses
(see Section III-A2). The formalization of a primitive’s visual
change under a rigid-body motion enables us to accumulate the
3-D primitives belonging to an object (see Section III-A3).

2) Feature-Induced Grasping Affordances: To gain physical
control over unknown objects, a grasp computation mechanism
based on previous work [15] is used. Pairs of 3-D contours that
share a common plane and have similar colors suggest a possible
grasp [see Fig. 6(a)—(c)]. The grasp location is defined by the
position of one of the contours. Grasp orientation is calculated

Early Vision

Early Cognitive Vision

L J/

Fig. 5. Overview of the visual representation: (a) stereo image pair;( b) filter
responses; (¢) 2-D primitives; (d) 2-D contours; (e) 3-D primitives (note that the
surface on which the color is displayed is for display only and has no geometric
meaning, for details, see [37]); and (f) close-up of (c).

from the common plane defined by the two contours and the
contour’s orientation at the grasp location. Every contour pair
fulfilling this criterion generates multiple possible grasps [see
Fig. 6(a) for two such possible grasp definitions and [28] for
a video showing the execution of the grasping behavior in a
complex scene]. In the context of this behavioral module, the
visual features, the feature relations used for defining the grasps,
as well as a haptically generated success evaluation are required
and are hence stored in the episodic buffer (for details, see [15]).

Here we want to note that the grasping mechanism can be
generalized to more complex hands than two-finger grippers.
For example in [15], the feature-grasp associations shown in
Fig. 6(a) were mapped to a five finger hand. In general, in [39], it
has been shown that the high-dimensional manifold of joint con-
figurations of a five-finger hand can be mapped to a much lower-
dimensional subspace that is able to represent most grasping
actions. This indicates that a rather limited set of feature—ac-
tion associations might already generate a significant variety of
grasping actions.

The system’s embodiment allows it to detect collisions with
its environment (e.g., the object it tries to grasp) and to judge
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Fig. 6. Grasping reflex. (a) Based on two coplanar and cocolor visual contours certain grasps are predicted. (b) Concrete situation and the grasps predicted by a
specific contour pair. (c) More complex scene and a selection of predicted grasps. (d) Results based on real grasping attempts stored in the episodic buffer. The
gripper pose (p), the position of the centres of the two generating contours (visualized as red dots here). as well as the evaluation result are stored. (e) The success

rate after learning versus the increase of the learning set.

if it successfully grasped “something.” This allows for an au-
tonomous operation and an autonomous generation of labeled
experiences [see Fig. 6(d)]. We have shown in [15] that, based
on these labeled experiences, we can learn an improved fea-
ture-based grasp generation mechanism. The system uses an ar-
tificial neural net to determine which feature relations predict
successful grasps. Fig. 6(e) shows how the success rate increases
with the amount of labeled learning data the system can make
use of.

3) Accumulation: Once the object has been successfully
grasped, the system manipulates it to present it to the camera
from a variety of perspectives, in order to accumulate a full 3-D
symbolic model of the object [16]. This process is based on
the combination of three components. First, all primitives are
tracked over time and filtered using an unscented Kalman filter
based on the combination of prediction, observation, and up-
date stages. The prediction stage uses the system’s knowledge
of the arm motion to calculate the poses of all accumulated
primitives at the next time step. The observation stage matches
the predicted primitives with their newly observed counterparts.
The update stage corrects the accumulated primitives according
to the associated observations. This allows the encoding and
update of the visual primitives. Second, the confidence in each
tracked primitive is updated at each time step according to
how precisely the accumulated primitive was matched with a
new observation. The third process takes care of preserving
primitives once their confidences exceed a threshold, even if
they later become occluded for a long period of time. It also
ensures that primitives are discarded if their confidence falls
below a threshold. New primitives that were not associated
with any accumulated primitive are added to the accumulated
representation, allowing the progressive construction of a full
3-D model. Note that the sparse nature of primitives yields a

condensed description. Fig. 7(a) shows how an object model
improves qualitatively by applying the accumulation scheme
over different frames. Fig. 7(b) shows the variation of the
Kalman gain over frames clearly indicating a convergent be-
havior.

4) Statistical Machinery—Pose Estimation and Grasp Den-
sities: The accumulated 3-D symbolic reconstruction described
above can serve for object pose estimation. Pose estimation is
performed using the model of Detry et al. [12]. This model
has the form of a hierarchy of increasingly expressive object
parts, where bottom-level parts correspond to generic multi-
modal primitives. The model is learned from the accumulated
3-D symbolic reconstruction (see Section III-A3) of the object,
and allows for a probabilistic estimation of the object pose in
an arbitrary scene. Visual inference of the hierarchical model is
performed using a belief propagation algorithm (BP) [12], [40],
[41]. Means of autonomously learning the hierarchical model
from an accumulated 3-D symbolic model are presented in prior
work [12].

The role of pose estimation is to align object-specific
grasp affordances to arbitrary object poses. Object-specific
affordances represent the different ways to place a hand or a
gripper near the object so that closing the gripper produces a
stable grip. The grasps we consider are parametrized by a 6-D
gripper pose composed of a 3-D position and a 3-D orientation.
Object-specific affordances are represented probabilistically
with grasp densities. A grasp density represents the spatial
distribution of relative object-gripper poses which yield stable
grasps; it corresponds to a continuous probability density func-
tions defined on the 6-D pose space [14]. The computational
representation of grasp densities is nonparametric: A density is
represented by a large number of weighted grasp observations.
Density values are estimated by assigning a kernel function
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Fig. 7. Tllustration of the accumulation process. This accumulation is the product of two interleaved processes. In the generative process, illustrated in panel (a),
the object is rotated over a number of frames; for every frame the visual features are extracted and accumulated, enriching the object model. The second process,
illustrated in panel (b), tracks and corrects features over time. The reliance on the predicted features increases while the influence of new observations decreases,
as can be seen in the reduction of the gain. Please note that at every step, new features (with an initial high Kalman gain) are introduced, which leads to larger error
bars. It is important to point out that even though such new, uncertain features continue to be introduced, the overall Kalman gain still decreases. At a Kalman gain
of 6.5 new observations and predicted features have approximately the same impact on the update stage. These two subprocesses occur at very different timescales.
The accumulation of new information, in panel (a), requires large viewpoint variation to be effective, and the object’s shape becomes complete only after a half
revolution of the object (~35 frames); in contrast, the correction process, in panel (b), converges after only a few frames (~5 frames).

to each observation and summing the kernels [42]. Letting
K; denote the kernel associated to the i*" grasp observation,
and letting w; denote the associated weight, the value of a
density at pose z is given by ), w; K;(x). The learning of
grasp densities—acquiring grasp observations and learning the
weights—is detailed in Section III-B2. An intuitive illustration
of a grasp kernel is given in Fig. 8(a) and Fig. 8(b) illustrates
a kernel-based grasp density. Grasp densities are registered
with the visual reconstruction of the object they characterize,
allowing for their alignment to arbitrary object poses through
visual pose estimation. The association of grasp densities with
the visual model is covered in more detail in prior work [14].

B. The Two Learning Cycles

The modules described in the previous section can be com-
bined into two learning cycles. The first cycle learns visual
object models; the second learns object-specific grasping affor-
dances from these models. The issue of learning to recognize
affordances which are not specific to known objects is not
tackled here, but is the subject of ongoing work (see end of
Section 1V-B2).

1) Birth of the Object: Fig. 3(top) shows how the two
submodules described above interact to generate visual object
models for unknown objects. The initial grasping behavior (see
Section III-A2 and steps I-1II in Fig. 1) is used to gain physical
control over an unknown object. If no object has been grasped
in the process (this is determined using haptic feedback, i.e., the
distance between the fingers after grasping) another grasping
option is executed. When the object has been grasped, the
accumulation process (see Section III-A3 and steps III-IV in
Fig. 1) is activated. If a stable representation emerges after some
steps, then the grasped entity possesses temporal permanence.
Together with the attributes manipulability and constrained
size relative to the agent (which have been established by the
agent being able to pick up the entity), the entity fulfils all of
Gibson’s [43] criteria of objectness. We use the name Birth of
the object for this transition process, from entity to object. The
generated object model is then stored in the object memory.

This process can be repeated until all objects in the scene have
been discovered. Object models resulting from the first learning
cycle can be seen in Fig. 3(top) in the column labeled object
memory and in [44].

2) Object-Specific Grasp Affordance Learning: Affordances
can initially be constructed from a grasp generation method that
produces a minimum ratio of successful grasps (e.g., the ini-
tial feature-induced grasping behavior in Section III-A2). In this
work, we used an approach where we initially use grasp hy-
potheses at random orientations at the position of the ECV prim-
itives of the object model [see Fig. 8(d)]. A grasp density model
is constructed from these hypotheses by using each hypothesis
as a grasp observation; observation weights are uniform. We call
the representations built with any of these weak priors grasp hy-
pothesis densities [14].

An object’s grasp hypothesis density allows for grasping,
but yields low success rates. In order to improve success rates,
the system uses exploration and the execution of a number of
random grasps sampled from the hypothesis density. Success-
fully executed grasps are used as observations for building an
empirical grasp density [see Fig. 8(e)]. The weights associated
to these grasps are computed through an importance sampling
algorithm [14] in an effort to remove the bias introduced by the
grasp hypothesis density. The empirical grasp density yields
higher success rates than the grasp hypothesis density, models
more accurately the object’s properties and reflects the robot’s
morphology (see Section III-A4 and steps VI-X in Fig. 2). In
[45], a video of the learning and execution of this grasping
behavior is shown for a variety of objects.

The success rate of grasps sampled randomly from the hy-
pothesis and empirical densities of the plastic basket are shown
in Fig. 8(c) in red and green respectively. Instead of drawing
a grasp randomly from a density, a robot may also select the
grasp that has the maximum success likelihood. This is done
by combining the grasp density with reaching constraints to se-
lect the achievable grasp that has the highest success likelihood.
The success rates of maximum-likelihood grasps computed with
the empirical grasp density of Fig. 8(e) are shown in blue in
Fig. 8(c). The process of computing hypotheses densities, pose
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Hypotheses Density

Empirical Density

Fig. 8. Grasping affordances are represented using kernel-based grasp densities. (a) Iso-probable surface of a “grasp kernel,” and relation between a two-finger
grasp and a kernel representing this specific grasp in the model. (b) Kernel-based grasp density. The right-hand side shows lighter sampling for illustration pur-
poses. D represents the density, while w; and K; represent the individual weights and kernels. (c) Grasp success rates for the basket: 1) counting kinematic path
planning errors as failures; and ii) excluding such errors from the score. Red bars correspond to grasps drawn randomly from the hypothesis density (d). Green bars
correspond to grasps drawn randomly from the empirical grasp density (e). Blue bars correspond to maximum-likelihood grasps from the empirical grasp density
(e). (d) Initial grasping knowledge is modeled with a hypothesis density (right) which is based on kernels placed at the positions of the visual features at random

orientations (left). (¢) Empirical grasp density.

estimation and execution of random samples from the grasp hy-
pothesis density, through which an empirical grasp density is
generated, is shown in Fig. 3 (bottom).

IV. REFLECTION ABOUT SIMILARITIES AND DIFFERENCES TO
HUMAN DEVELOPMENT

In this section we first discuss the prior knowledge that has
been applied in our system and relate it to knowledge about in-
nate structures in humans (Section IV-A). We then discuss in
Section IV-B similarities and differences between our system’s
development and the development of infants’ object representa-
tion and grasping abilities.

A. Prior Knowledge

The system’s innate knowledge can be distinguished bys;
1) its embodiment; 2) the machinery for (visual) feature ex-
traction; 3) structural knowledge (statistical machineries and
memory system); 4) a number of innate behavioral patterns; and
5) knowledge of the physical world. These will be discussed in
more detail in the rest of this section.

1) Embodiment: The system has knowledge about its em-
bodiment and the consequences of its movements in the three-
dimensional world. In technical terms, the system knows about
its body shape and body kinematics and is able to relate its
self-motion to the visual information it perceives. In addition,

it has the ability to plan collision-free motions while respecting
the limits of its work space.

Besides the actual control of its body, an important property
of the system is that it is able to achieve a high level of control
over objects by grasping. Interestingly in this context, Pinker
[46] speculates that the superior manual dexterity of humans
may be one of the factors which facilitated the species’s devel-
opment of higher-level cognitive competences. In the develop-
ment described here, the robot makes use of very precise predic-
tions on how visual features change according to its ego-motion
once the object is grasped. It has also the ability to “subtract” its
hand from visual features generated from the grasped object.

In our system, we decided not to have this knowledge de-
velop. Instead, this body knowledge is hard-coded to allow
us to focus exclusively on the problems of object and grasp
learning. This is appropriate in the embodiment we chose
since an industrial arm allows for a high degree of precision in
robot-camera calibration and execution of movements (this is
a significant difference from infant precision, and necessarily
leads to a number of other differences in our system). It has
also been shown that such knowledge can indeed be learned
by exploration (see, e.g., [6]). In humans, the body knowledge
and its link to visual information must develop in parallel with
object and grasp learning because the body itself is changing
due to growth (see Section IV-B).
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2) Sensory System: The robot is equipped with a sophisti-
cated vision system [which we have called early cognitive vi-
sion (ECV) system [36], [37]] which provides semantically rich
and structured 2-D and 3-D information about the world. This
system contains prior knowledge about image features and their
relations, knowledge about basic geometric laws and how they
affect visual features, and most importantly, basic laws of Eu-
clidean geometry used for stereo reconstruction and the predic-
tion of the change of visual features of moving rigid bodies.

There has been a long debate on the innate components of V1,
with contradicting evidence [47]-[50]. It has been argued that
orientation columns in V1 are innate [47] or develop in some
species without visual experience [50]. However, some work
points to a large degree of plasticity [49] and it has been shown
that filters associated with early feature extraction mechanisms
can indeed be learned [51] (for further discussion see [52]).

Our assumption of having a calibrated stereo system which
is also precisely calibrated with the robot arm is an assumption
which is not justified by human development, but possible in our
specific setup. It has been argued that infants are able to perceive
3-D information from birth, probably based on the convergence
cue [53], [54]. Stereo is used after approximately twelve weeks
[55]. The stereo machinery starts rather instantaneously, prob-
ably caused by maturational change in cortical disparity-sensi-
tive units [54] pointing to a large degree of innate structuring.
The actual robot—camera calibration, however, can be learned,
as demonstrated by [6]; this also reflects the significant change
of embodiment taking place in the first year (which is not mod-
eled in our system either).

In summary, the ECV system provides a large degree of se-
mantically rich information in terms of 2-D and 3-D feature ex-
traction and spatio—temporal relations between features. There
exists evidence that complex feature extraction mechanisms in
terms of orientation columns are already present at birth [47]
or develop without visual experience of real-world data [48];
however, it is very likely that there are also adaptive and matu-
rational components in this process that are not modeled in our
system (see section 3 in [52] for an in-depth discussion).

3) Structural Prior Knowledge: Our system represents struc-
tural knowledge of objects using learned, statistical models that
relate ECV features to each other and to grasp parameters. This
allows for robust object detection and pose estimation under un-
certainty and noise by probabilistic inference. While it is un-
clear how this machinery compares to equivalent processes in
the brain, there is substantial evidence that many brain processes
operate in ways consistent with probabilistic reasoning [56].

For learning, the system makes use of a memory system that
has been created in analogy to a model of the human memory
system by Baddeley (see [33]) covering different subsystems:
First, an iconic memory which stores the immediate prepro-
cessed sensory data for a short time period (approximately 250
ms, see [34]). Second, a visuo—spatial sketchpad [33] in which
internal representations can map on transient visual information.
As a consequence of the developmental process, the interpreta-
tion of the visual data in the visuo—spatial sketchpad becomes
more and more complex starting from feature-induced affor-
dances and ending up in complex scene representations in terms
of objects and their poses as well as optimal grasping options

(compare Fig. 1 step V and Fig. 2 step CI). Third, an episodic
buffer [33] in which sensory data, actions upon them as well as
action consequences are stored. In the technical system, this is
required to make instantaneous experimental information tem-
porarily available to later learning stages. Hence, it can be seen
as part of the short-term memory. Finally, object representations
and grasping affordances (abstracted over long phases of explo-
ration) are stored in a long-term memory.

There is a general notion that an elaborated memory archi-
tecture is available to infants. Indeed, it has been argued that
limitations of such a memory system lead to severe constraints
distinguishing competences of humans and apes. For example,
apes are able to create and execute a plan for stacking boxes
to reach a banana when the boxes are in their immediate reach.
However, they have great difficulties achieving this task when
the boxes are not available in the problem area (e.g., the boxes
are in another room) [57]. This suggests that they cannot get
sufficient access to representation in their long-term memory.

4) Behavioral Prior Competences: The system has two in-
nate behavioral patterns that drive the bootstrapping process.

First, there is a premature mechanism to grasp unknown ob-
jects based on visual feature combinations (coplanar contours).
This endows the system with physical control over objects (al-
though with a rather low success likelihood for an individual
grasping attempt). When successful, it triggers a second be-
havioral pattern (discussed below). An important aspect of the
grasping mechanism is that individual grasps can be evaluated
by haptic information leading to labeled data in the episodic
buffer. Based on this information, the success likelihood of the
initial (premature) grasping behavior can be improved.

It is known that infants indeed possess a premature, innate,
visually elicited reach and grasp mechanism [8]. This mecha-
nism, together with the tactually elicited palmar grasp reflex is
thought to help bootstrap the learning of a more mature reach
and grasp, which begins to appear at about four months (see
more detailed discussion in Section IV-B).

The second mechanism performs a rotation of the grasped ob-
ject (inspecting the object from all sides) and allows the system
to segment objects and creates visual object models based on
ECV features utilising the visual predictions derived by com-
bining visual features and self-controlled object motion. Recent
experimental work suggests that six-month-old infants do create
3-D representations of objects, while four-month-infants do not,
and it is suggested that this may be learned when the infant be-
gins to sit up, between four to six months, and can thus engage
in extensive visual-manual exploration of objects [58], [59].

5) Knowledge of the Physical World: The system rotates the
grasped object in order to see the other side, and thus to build
a complete representation of the object. This ability reflects an
implicit expectation that objects do have an unseen side, which
rotation can reveal. Evidence from psychology suggests that this
may be something that infants need to learn [60]. Infants lack
the capability to intentionally rotate an object to find an unseen
side until about nine months [61], which is quite late compared
to grasping (more detail on grasping is given in Section IV-B
below). Although infants may rotate during random exploration
at six months [35], it is doubtful that it is done with the intention
of seeing the other side. Instead, it is likely that this exploration
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helps the infant to develop towards knowledge of other sides.
Given the coarse object representations which are likely to be
in use up to six months, it is quite probable that such an infant
rotating a box may not distinguish the sides as different. The in-
clusion of this rotation behavior in the robot therefore represents
an implicit knowledge which helps it to bootstrap its object rep-
resentations.

B. Infant Development of Object and Grasp Representations

Human infants, in their first year, progress through significant
changes in internal object representations as well as grasping
abilities. Compared to our robot system, analogies as well as
differences can be discerned.

1) Development of Grasping Competences: Infant grasping
begins with a “neonatal palmar grasp” reflex present from birth,
where the fingers close on stimulation of the palm. This is fol-
lowed by a voluntary palmar grasp, and grasping then pro-
gresses through a number of stages [9] leading to a scissor grasp
at about eight and a half months, which uses the volar sides of
the extended thumb and index finger. After some further in-
termediates this eventually develops into the pincer grasp at
about twelve months, which uses the volar surfaces of the tips
of the thumb and index finger. Development is by no means
finished here; the second year will see an improvement in the
use of appropriate forces, and the grasp will not approximate
adult performance until six to eight years, with further subtle im-
provements continuing until adolescence [62]. Compared with
an infant, our robot system does not develop different grasps
and is precalibrated for simplicity. The grip used by our robot
is two-fingered, and could be mapped to the scissor or palmar
grasp, but without mechanical compliance. This simplification
is justified in order to make technical aspects simpler; the cali-
bration is simpler, the grip is firm, and also there is less occlu-
sion as there are only two rigid fingers. A much more accurate
computational model of infant grasping appears in the work of
Oztop et al. [63], however, it does not incorporate vision. If a
more human-like hand is used in our system, then it may be nec-
essary to extend the accumulation process so that a number of
grasps and rotations from different points would be combined
(to gather information about parts of the object that were oc-
cluded on the first rotation).

In terms of reaching to grasp seen objects, it has been ob-
served that neonates have a very premature reach and grasp
mechanism which reduces in frequency over the first two weeks,
and is hard to elicit in the period from four to 20 weeks [5]. The
primitive reach motion is visually elicited, and may be ballistic,
with no visual feedback to correct the reach motion while it is in
progress [8]; it has a nine to 40 percent chance of contacting the
target [54], [5]; furthermore, there is little evidence that the ca-
pability to grasp accurately is present, although some elements
such as hand opening are present [8]. The hand opening disap-
pears at about two to three months, and the behavior becomes
more of a swiping with a closed fist, which is then replaced by an
open-handed reaching, but with no grasp [64]. Note that palmar
grasping without vision is developing in parallel at this time,
and there is significant exploration of objects with the hands
[65]. The more mature reach and grasp which appears at about

20 weeks (c. five months) has about an 80 percent chance of
contacting the target, with the possibility of visual feedback
to correct the reach in progress, although the grasp coordina-
tion appears to have regressed [5]. It seems that the primitive
reach-grasp was undifferentiated (i.e., the reach and grasp are
coupled), and by 20 weeks two differentiated (or decoupled)
motions have replaced it, which can now be executed indepen-
dently, or coordinated. Gordon [62] also notes that this type of
regression followed by advancement is common: reorganiza-
tions can initially result in a decline of the motor skills, before
improvement. After this period the coordinated reach and grasp
develops rapidly; Bower reports 100 percent accuracy on visu-
ally elicited reaching [5] at six months and an increasingly de-
veloped preadjustment of the hand is seen.

Compared to human grasping development our robot also
makes use of an initial premature grasping behavior which has
a rather low success rate; however, after multiple attempts, this
leads reliably to situations in which physical control is achieved.
However, our robot skips some of the infant development where
reach and grasp must be decoupled and then coordinated; the
starting position of our system is more akin to a six-month-old
than a neonate.

One main problem for the young infant is that the motor
system and the visual system are not well coordinated in the
first four months. Infants may regard their hands moving in the
second month, but the vision does not guide the hands [35].
Subsequent to this, vision augments the activity of the hand.
It is not until about the fourth month that proper visually di-
rected grasping will commence, and that the infant will bring
the hand into view to grasp seen objects even when the hand
is not initially in view [61]. After that, the calibration between
both systems (comparable to the robot—camera calibration in our
system) develops rapidly, leading to a well-calibrated system
after six months as described above. For simplicity’s sake, our
robot is precalibrated: the infant must go through a calibration
phase because its body is not produced to a precise standard
specification and the rapid growth during infancy would neces-
sitate perpetual recalibration in any event; these issues do not
apply to our robot.

2) Visual Information Used to Elicit Reaching and Grasping:
There are few studies which address this issue specifically, but
these show that five-month-olds seem to organize what they
see into manipulable units with internal coherence and external
boundaries, and they reach for the boundaries of these perceived
objects [66]. Objects adjacent in depth seem to be treated as one
object. This is consistent with Bower’s finding that an object is
at this stage defined by a bounded volume of space [5]. There is
a developmental progression in the infant’s use of information
about the size of objects; infants as young as eight weeks make
more reaches to a graspable ball than one that is too large [8]);
five-month-olds tend to reach with two hands regardless of size,
seven to eight-month-olds use two hands for large objects more
often than for small ones, and at eleven to twelve-month-olds
reaching closely reflects the object’s diameter [67]. A similar
pattern appears for the thumb-index finger angle opening during
the reach, which increases after seven to eight months, as well
as the adjustment of the angle to the object diameter and the pro-
portion of the object within hand opening at touch [67].
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With regard to edge detection, some differences between the
infant and our robot system can be seen. Edges can arise due
to discontinuities in luminance, color, texture, depth, or motion
[54]. Five-month-old infants use only depth and motion to de-
termine object boundaries, probably because these have higher
ecological validity [54]; it is not exactly known when infants
begin to use luminance and color, but it is sometime in the
second half of the first year [54]. In contrast, our vision system
uses only luminance and color edges from the beginning, be-
cause it detects edges from still 2-D images.

Our robotic system recognizes potential feature-induced
grasping affordances by finding two coplanar contours.
Coplanar contours are especially suitable for grasp attempts
by our gripper with two rigid fingers, but if a more human-like
hand is used this grasp reflex may need to be extended to
make grasp attempts of a wider variety of features. The infant
does not restrict him/herself to attempting grasps on coplanar
contours, but will often attempt to grasp planes which may be at
90 degrees, or more irregular surfaces. The infant will learn that
this is not so effective on a wooden block, for example, but can
work quite well on a soft material such as a sponge or plastic
bag; furthermore, although ineffective for picking up some
rigid objects, a poor grasp can be adequate to pull it closer. The
infant will thus learn to recognize different affordances, not
only those that are good for grasping and lifting, but also those
good for grasping and shaking, or pulling. Besides grasping,
other exploratory actions (sucking, scratching, shaking, hit-
ting, squeezing, etc.) are performed by infants which are not
modeled in our system. This then reflects differences in the
richness of the world of the infant versus robot, and also the
richness of its behavioral repertoire, which in turn reflects the
richness of its embodiment. Given the simplicity of our robot’s
embodiment it is reasonable that it is limited to a subset of the
infant’s repertoire.

Infants’ knowledge of grasping seems not to be as object-spe-
cific as realized in our robot’s grasp densities. Infants are quite
successful at grasping during the second-half of the first year,
but they do not seem to build whole 3-D object models until
about 24 months [68]. This means that during the first year in-
fants are probably recognizing graspable fragments of objects in
a coarse grained way, allowing for a higher degree of abstraction
of grasp-object associations generalizing across objects (generic
affordances). However, our system generates knowledge which
creates data for grasp learning in terms of more precise grasp
densities on specific object models. Currently, we are working
on finding feature-action associations across objects taking the
grasp densities as input.

3) Development of Object Representations: Compared to
human development, our robot system starts with a visual
system that is much more mature than the infant’s system
at birth (approximately comparable to a six-month-old). In
contrast, in the infant case, as discussed above, it is only after
approximately four months that the infant begins to perform
visually controlled movements of its arms [61]. As a conse-
quence, babies are in a position at the age of four months to
produce controlled training data as we did with our robot and
camera. Interestingly enough, the infant’s concept of objects
changes dramatically at this stage of development; babies

younger than four months perceive an object as “something
at a certain position” or “something moving with a certain
velocity” [5]; the infant does not seem to understand that a
stationary object can begin moving without losing its identity,
this understanding develops and tends to be present in the four
to six months period. After approximately six months the rep-
resentation of objects starts to be based on shape and color cues
[5], with color being used considerably later than shape [69].
It is also about this time objects begin to acquire permanency,
i.e., objects continue to exist while being occluded [60]. (Note
that some later results contradicted this, but more recent results
supported it; it is a subject of ongoing debate [70]).

Kaufman et al. [71] describe how the two separate visual pro-
cessing streams in the infant brain (dorsal or ventral) are respon-
sible for different tasks, and this has interesting implications
for the development of object representations. The dorsal route
should be primarily used for knowledge relating to grasping,
while the ventral would be for representation and recognition of
the object; yet these must be integrated to allow grasp knowl-
edge to be associated with an object representation. In contrast
our system has one integrated pathway where grasp knowledge
and object representations are integrated as soon as they are
available. It may be at quite a late age (maybe nine months
[71]) that infants can integrate the information from the two
streams. Even after this, recent work in psychology suggests
that object recognition may undergo a long developmental tra-
jectory; fragmentary representations based on view-dependent
images and parts of objects are used up until about 18 months,
and then there is a period of rapid change where 3-D whole-
object geometric representations are built by 24 months [68].
The picture emerging from the psychological literature is rather
complex; Kellman and Arterberry explain that ‘perception leads
to multiple representations that may be recruited for different
tasks’ [54].

During this long development, psychological theories ac-
knowledge the importance of action as the foundation for
perceptual and cognitive development [11], [60], and suggest
that there should be a strong relationship between self-con-
trolled movements of objects and the development of internal
object representations. However, this has only recently begun
to be investigated in more detail. The results by Soska et al.
(mentioned in Section IV-A4 above) showed that self-sitting
experience and coordinated visual-manual exploration were
the strongest predictors of success on a looking task testing
perceptual completion of 3-D form [59]. The importance our
system gives to active object exploration is very much in line
with these theories. Furthermore, our system shows that the
ability to create a situation in which an object appears under
controlled conditions may help to learn a suitable representation
of objects, and the same may be true in biological systems.

In the other direction, there is evidence to suggest that “per-
ceptual competence may precede and guide emerging action
systems” [54]; therefore, there is evidence of a bidirectional in-
teraction between perception and action in development.

Our robot’s learning cycle copies this idea in spirit, but not
in the precise details: in our system (and in infants) visual
representation and action knowledge are built up together and
bootstrap from each other; i.e., visual recognition of some
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possible feature-induced affordances facilitates action (to lift
and rotate) which facilitates developing a visual representa-
tion, which in turn facilitates further development of grasping
knowledge. However, the robot’s cycle is much more rapid
than in infancy; a single successful grasp of the robot leads to a
full rotation of the object, and the immediate construction of a
full 3-D model. Thereafter, pose can be estimated on any new
presentation of the object, and grasp positions can be associated
with positions in the model. The competences employed here
(3-D model construction, pose estimation, rotation behavior)
take much longer to develop in infants [68]. Also, the robot
immediately works on whole objects, whereas infants probably
represent fragments such as handles or protruding parts before
integrating these in full object representations. Infants are how-
ever probably going through a similar cycle with their coarser
grained fragmentary representations; i.e., they are likely to be
recognizing a fragment such as a handle in different orienta-
tions, and learning about grasping strategies on this fragment.
4) Social Learning: As noted in the introduction, there is no
social element in our system, apart from some supervision by
a “robot-sitter.” This is probably a reasonable match with the
development of object and grasping knowledge in early infancy
where social learning does not seem to play a crucial role. In-
teractions which require the infant to note an object, another
person, and relationships among them, are known as “triadic”
interactions; Carpenter et al. trace their development from nine
to 15 months of age, and note that twelve months is an important
milestone: “It is around one year of age that infants first begin to
look where adults are looking flexibly and reliably, use adults as
social reference points, and act on objects in the way adults are
acting on them.” [72]. Therefore, the omission of social learning
from our system probably does not diverge far from the human
development of grasping knowledge up to about nine months.

V. DISCUSSION

In this paper, we described a bootstrapping system which ac-
quires rich object representations as well as knowledge about
how to grasp these objects by autonomous exploration. This be-
comes possible by making use of a number of innate compe-
tences; these include substantial, but generic prior knowledge
about the visual perceived world, a sophisticated machinery to
deal with uncertainties for pose estimation, as well as grasp
representation, an elaborated memory systems and a set of ini-
tial behaviors. The system’s exploration process can build on
these competences to evolve a richer set of competences such
as “playing” and very simple “planning.” The developmental
process of the system has been compared to human development
and similarities as well as differences have been described.

The system has been inspired by results from psychology in
the broad outline of its developmental approach, however, in the
details it is quite different, and part of the reason for this is that
the precise details of how infants develop grasping knowledge
are not known. The research for this paper has shed light on
some gaps in the psychology literature, and thereby opens some
interesting research directions which could be pursued by in-
fant studies. For example, there is a need to find what visual
information is used to elicit and guide grasping, e.g., what exact
shapes (e.g., handles or other protuberances) on parts of ob-

jects elicit specific grasp attempts with specific preadjustment
of the hand, to what extent does this generalize across objects,
and especially how does this develop throughout the first two
years. Further to this, it would be interesting to investigate how
this developing knowledge of shape fragments feeds into the
process of building 3-D object representations, and how it inter-
acts with processes such as object identification and categoriza-
tion. Recent results from psychology suggest that recognition
via fragments develops early in infancy and that the progression
to whole-object shape happens between 18 and 24 months [68],
and that action, to manually explore objects, is of prime impor-
tance throughout this development [59], [68]. It is the detail of
this development which has yet to be worked out.

An important aspect of infant’s bootstrapping is the bidirec-
tional interaction between the development of visual representa-
tions and action knowledge. In some work on grasping we have
seen one direction showing how visual features can be used to
learn to identify good grasping points [19], [21]; in the other
direction we have seen how exploratory actions can aid with vi-
sual segmentation [6], and some recent work has shown how
object shape can be learned via exploratory grasping [73]. The
developmental psychology literature however suggests the need
for a close bidirectional interaction over a long developmental
period, where vision can guide exploratory actions, and these
actions in turn help in the development of more advanced visual
representations (see Section IV-B3). In our system, such bidi-
rectional processes take place, e.g., the physical control over ob-
jects facilitates the learning of object representations while these
learned representations can be used to create higher-level behav-
iors such as “playing with the object” to bootstrap object-spe-
cific grasping affordances. The potential of such bidirectional
processes needs to be further explored.
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