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Top–Down Connections in Self-Organizing Hebbian
Networks: Topographic Class Grouping

Matthew Luciw, Member, IEEE, and Juyang (John) Weng, Fellow, IEEE

Abstract—We investigate the effects of top–down input connec-
tions from a later layer to an earlier layer in a biologically inspired
network. The incremental learning method combines optimal Heb-
bian learning for stable feature extraction, competitive lateral in-
hibition for sparse coding, and neighborhood-based self-organiza-
tion for topographic map generation. The computational studies
reported indicate top–down connections encourage features that
reduce uncertainty at the lower layer with respect to the features in
the higher layer, enable relevant information to be uncovered at the
lower layer so that irrelevant information can preferentially be dis-
carded [a necessary property for autonomous mental development
(AMD)], and cause topographic class grouping. Class groups have
been observed in cortex, e.g., in the fusiform face area and parahip-
pocampal place area. This paper presents the first computational
account, as far as we know, explaining these three phenomena by
a single biologically inspired network. Visual recognition experi-
ments show that top–down-enabled networks reduce error rates
for limited network sizes, show class grouping, and can refine lower
layer representation after new conceptual information is learned.
These findings may shed light on how the brain self-organizes cor-
tical areas, and may contribute to computational understanding of
how autonomous agents might build and maintain an organized in-
ternal representation over its lifetime of experiences.

Index Terms—Autonomous feature extraction, deep networks,
Hebbian learning, self-organization, top–down connections.

I. INTRODUCTION

O NE particularly challenging issue faced by a designer of
a task-nonspecific learning agent is enabling the learning

architecture to be general enough to learn any task possible, yet
allowing refinement for a task if guidance is available from the
environment. Task-specific refinement should be as nondestruc-
tive as possible. It should not prevent the agent from learning
new tasks later in its lifetime or destroy the internal representa-
tion needed for tasks that were already learned.

Consider the requirement that once turned “on,” an agent’s
software and memory cannot be directly accessed by anything
besides the software itself. This “skull-closed” requirement is
difficult to deal with by current methods. For a skull-closed
agent operating in a rich environment, it will not be able learn
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the distribution of all experiences beyond some level of preci-
sion. If it has other goals besides compression, it needs to learn
some parts of experience at a much higher precision. Unguided
generative learning methods, which try to approximate the dis-
tribution of all experience evenly, will not be ideal. On the other
hand, unchecked discriminative learning methods are typically
designed to use as much resource as possible for a single task;
such methods will be too destructive. Yet some form of discrim-
inative learning is necessary.

Since humans deal with the above problem very well, we in-
vestigated biological systems. We specifically investigated vi-
sual cortex in primates, which deals with many challenging vi-
sual recognition tasks. Could cortex integrate both generative
and discriminative learning in a unified way through bottom–up
and top–down connections? The visual cortex is a deep hierar-
chical bidirectional network [1]–[3]. Environmental stimuli en-
ters at the bottom (e.g., firing of the photoreceptors of the retina),
traveling upwards towards associative cortical areas, sending
information to premotor and to motor cortex, which controls
movement and behavior. Cortical neurons at any place in the
hierarchy generally have input connections from other neurons
in three relative locations: earlier layers (bottom–up), from the
same layer (lateral), and from later layers (top–down).

Do top–down connections provide abstract and task-specific
information to lower layers to sculpt their learning and organ-
ization? These top–down connections are as numerous as the
bottom–up connections. They are both excitatory and inhibitory
in type, but about 85% of all connections are excitatory [4]. In
learning, the computational roles of the top–down connections
are not yet known. There are areas in cortex that have been found
to represent conceptually linked information. Neurons in the in-
ferotemporal (IT) area have been implicated in object, class, and
category recognition [5]. An area in IT that represents an ab-
stract category is the parahippocampal place area (PPA), which
fires whenever a scene such as a room or landscape is seen [6].
Less abstract, but still encoding an impressive amount of vari-
ation, is the fusiform face area (FFA), which fires whenever a
face is seen [7]. If they are not somehow innate, for the brain
to organize these areas requires a signal representing the un-
derlying concept by which it can “decide” if a stimuli belongs
to one of these areas. Presumably, this signal comes from the
top–down. Note that, despite this class-grouped organization in
IT, the lowest areas in the visual hierarchy such as V1 do not
have organization and features that would require task-specific
guidance—it is well known that many V1 neurons represent
oriented edges [8], features which many computational models
have developed in an unsupervised way from images (e.g, [9]
and [10]).
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Inspired by the above issues and evidence, in this paper we
present a biologically inspired local learning rule for self-organ-
ization and for developing the weights of a neural network layer
using both bottom–up and top–down activity as bidirectional
input. With class-representing top–down inputs, we show that a
layer with bidirectional input develops discriminative features;
additionally, neurons representing the same class become orga-
nized together, an effect we called topographic class grouping
(TCG)1.

This paper is organized as follows. Section II presents some
background context. Section III introduces some preliminary
ideas needed to understand the learning rule, which is then given
in Section IV. Section V interprets and justifies the algorithm.
Experimental results are given in Section VI. Section VII con-
tains a discussion on related work and some broader implica-
tions. Section VIII concludes the paper.

II. BACKGROUND

As proposed and refined by Barlow [11], [12], an objective
of developing internal representation is to store and exploit re-
dundancies in the observations, i.e., derive features (also called
components) or groups of features as statistically independent
as possible, and to organize experience into feature groups so
that each group does not interfere too much with other groups.
To avoid forward propagation of uncertainties in multilayer net-
works, it is necessary to reduce interference among the features,
unless the interference is irrelevant to the “goals” of later layers.
Features at lower layers having high interference with respect
to some criteria unknown by that layer can make it difficult or
impossible to learn for the criteria later in the network. A net-
work that uncovers mutually dependent features makes is easy
for top–down refinement to be destructive since it cannot isolate
weights to change.

Many researchers developed networks for component ex-
traction based on redundancy reduction; these mostly fall into
the framework of independent components analysis (ICA)
[13]. This work is built on lobe component analysis (LCA)
[10], a biologically inspired competitive learning algorithm
that combines biological inspiration (Hebbian learning, lateral
inhibition) with candid covariance-free incremental principal
component analysis [14] and ICA. But LCA does not ex-
actly follow the ICA formulation. The data is assumed to be
compactly generated as a combination of a set of hidden com-
ponents (e.g., the “independent components”), but LCA does
not explicitly assume independence among the components.
Instead each internal “lobe component” is designed to find a
concentration in the probability density, which is assumed to
represent some hidden component and its distortions. By sparse
coding through lateral inhibition, the lobe components compete
with each other to prevent learning the same components.
Each lobe component maintains the energy of the underlying
distribution and updates using a quasioptimal learning rate for
stability.

This work also utilizes ideas first introduced by the self-orga-
nizing maps (SOM) [15]. SOM order a layer of neurons them-
selves in some 2-D or 3-D space (not the data space), and define

1When the next layer is for classification, we will also refer to the learning
rule as TCG in this paper

a neighborhood updating kernel on this space. In SOM, neu-
rons compete globally with cooperation locally. If the data has
some underlying low-dimensional ordering, the self-organizing
process may find it and carry forward the input ordering into the
internal network layers. Internal maps are often called “topo-
graphic maps.” Maps reduce dimension: knowing the location
of firing on a map of neurons can give as much information
with two values as could otherwise be attained using values,
in the unordered case. Maps also lead to smoothness that reflects
the ordered subspace, and network generalization becomes in-
terpretable as interpolation with respect to what the map rep-
resents. As we showed in [10], SOM is not formulated to have
the stability for component extraction. We combined ideas from
SOM with LCA for increased stability, to try to derive compo-
nents that represent observation regularities at the same time as
generating topographic organization on the internal map.

In a multilayer network, finding components with high
interference with respect to later layers is typically a problem,
which we deal with by using top–down connections. Most
network training methods do not use the actual activations
of higher layer neurons as part of the input to a lower layer,
instead using the output error based on some objective function.
We will show that combining self-organization with bidirec-
tional input, and using equal bottom–up and top–down from
a classification layer, leads to an emergent specialization and
partitioning of class-specific resource . A group of neurons
become associated with each class, and each group is connected
in the neuronal map space. The TCG method groups a class
into specialized features automatically, and lets the features
within the groups and the number of features be adaptive based
on recent experience.

The method we present combines unsupervised learning
using bottom–up and top–down connections for low-interfer-
ence component extraction with topographic map generation
from lateral inhibition and excitation. The top–down is not
globally destructive due to sparse coding. The main contri-
butions of this paper are: 1) an efficient biologically inspired
local learning rule for feature extraction and topographic map
generation, that uses bottom–up and top–down inputs (and does
not require output error); and 2) showing how and why class
grouping emerges when top–down inputs represent different
classes.

III. PRELIMINARIES

The TCG rule is formulated for a network using rate coding
and operating in discrete-time. Since we do not deal with se-
quences here, although we describe a dynamic system, we will
mostly omit time where it is not needed explicitly.

A. Four Types of Connections

In Fig. 1, four connection types are shown for a general
network layer : bottom–up excitation, top–down excitation,
lateral excitation, and lateral inhibition, as shown in Fig. 1.
The bottom–up and top–down weights are adapted through
learning, but the lateral weights are dealt with by approximate
methods—global inhibition by winner-take-all (or -winners
take all), and local excitation using the neighborhood kernel.
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Fig. 1. A general set of three layers in a hierarchy, organized from sensors
at the bottom and motors at the top. Each neuron on layer � has bottom–up and
top–down excitatory projections to it, interacting with neurons on its same layer,
through approximate methods of excitation and inhibition.

Fig. 2. A three-layer network (best viewed in color). A circle in a layer repre-
sents a neuron. The internal layer 1 takes three types of input: bottom–up input
from layer 0, top–down input from layer 2, and lateral input from the neurons
also in layer 1. To extend to a dynamic system, the top–down input at layer 1 at
time � is from layer 2’s output at time ��� (represented by the “D” module). For
simplicity, this is a fully connected network: every neuron in a layer takes input
from every neuron in the later layer and the earlier layer. Local connectivity is
possible. For the center neuron (white) in layer 1, neurons in the same layer are
inhibitory (which feed inhibitory signals to the white neuron) while its nearby
neurons (green) in the same layer are also excitatory. Neurons connected with
inhibitory lateral connections compete so that fewer neurons in layer 1 will win,
which leads to sparse neuronal updating and firing (sparse coding [16]).

We used a 3 3 pyramid kernel, which decreased interference
between class groups as compared to a Gaussian.

B. Layer Input and Output

A specific three-layer network architecture is shown in Fig. 2,
which has pixels, feature neurons and motor (output)
neurons. In a more general deep network, there are neurons
in layer , neurons in layer , and neurons in layer .
Layer ’s firing rate vectors for , , and are ,

, and .

Fig. 3. Bottom–up connections to layer � � � are shared with top–down con-
nections to layer � , in a fully connected network.

Layer ’s input space contains paired vectors from ,
containing joint bottom–up and top–down input:

.
In a three-layer network, any input vector is the raw pixel

values of a digital image, while represents a more abstract
concept associated with . Here, has firing equal to one at
neuron(s) representing the correct label(s), where each neuron
indicates a different label and zero elsewhere. It is of course
not realistic to have such “conceptual stimuli,” so for AMD

is more appropriately considered the firing at an associative
layer between multiple modalities (e.g., it may represent words
learned through audio processing).

C. Shared Weights

The bottom–up weights of layer are column vectors in
matrix . The top–down weights to layer are shared or tied
with the bottom–up weights to the next layer (see Fig. 3). The
bottom–up weight matrix of layer are ( ), and
then the top–down weight matrix to layer is . Each
neuron on layer is represented by vectors and .

D. Initialization

All neurons must first find the lower-dimensional subspace
in which the data lies before extracting components and self-or-
ganizing in this space. To avoid a long “initial search” phase,
we sequentially initialize layer weight vectors using a set of

layer stimuli: for , once layer
neurons are distributed well, and then set the neuron “ages”

(described below) to ones. For the three-layer classification net-
works, we sampled the initialization data from all classes. The
weights could be initialized randomly, but learning will take
longer, and the parameters of initial learning would have to be
adjusted to ensure that all the neurons are drawn onto the data’s
subspace.

E. Grounding

Grounding involves filling in the internal representation be-
tween sensory observation and appropriate action [17]. The im-
posed action simply involved setting in our experiments, but
for AMD, one might consider a teacher that can get the agent to
imitate an output, without understanding itself what part of the
input is related to it. Training the network on both and al-
lows the internal model parameters to adapt so the pair becomes
more likely within the network. Later, if any components of
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or are omitted, it fills them in (without using the output error
gradient).

F. Testing

For testing, there is no imposed action. The goal of learning a
classification task is for the model to generalize well: a trained
network provide the correct action for a given test sample drawn
from the same distribution as the training data, but not specifi-
cally encountered in training. In other words, given a case that
was not specifically taught, the agent should act in the correct
way.

IV. ALGORITHM

The following is a layer ’s learning algorithm. It follows
the general incremental self-organizing framework: given an
input, under some criterion, some neurons are considered win-
ners. Next the winning neurons and their neighbors update their
weights to do better on that (or related) criterion for the current
input.

Layer-specific parameters include the number of neurons
, the sparsity parameter , the top–down parameter , and

learning rate parameters .
Initialization involves setting weights and neuron ages

(to one). After initialization for any time , a layer does the
following:

1. Sense. The layer samples the cooccurring bottom–up and
top–down firing and .

2. Precompetition. Compute competitive potential
using normalized inner product for both bottom–up
and top–down

(1)

where controls the relative influence of
top–down to bottom–up, and contains normalized (or
zero vectors where appropriate) columns of (likewise
for .

3. Lateral Inhibition. Approximate global lateral inhibition
is “winner-take-all,” or -winners take all. Due to com-
petition, most neurons will not update. Use a threshold
based on the th highest competitive potential : set

. The other neurons are considered
winners. To scale their responses, if is a winner neuron,
let . Then normalize
by L1 norm so .

4. Lateral Excitation. Approximate local lateral excitation
involves spreading of response to the winner neurons’ ad-
jacent neighbors (in 3 3 neighborhoods). For each non-
winning neighbor neuron , adjust its firing rate based on
the nearest winner ’s firing and the neighborhood distance:

, where is the distance between
and that nearest winner.

5. Hebbian Learning. For each neuron with nonzero firing
rate, update the bottom–up weights as in LCA

(2)

where the learning rate is automatically set from
the neuron’s age and firing rate :

.
The three-sectioned CCI plasticity function is defined as

if ,
if ,

if
(3)

which combines optimal updating and a level of plasticity for
each neuron, eventually converging to a learning rate .

Finally, increase the age of each updating neuron :
.

V. JUSTIFICATION OF THE ALGORITHM

With input from combined bottom–up and top–down space,
LCA, described briefly here, tries to approximate the joint
density . It does so by competitive local incremental
learning.

A. Fast and Stable Incremental Learning

A problem with many incremental updating methods for
component extraction is the question of how to tune the learning
rate. There is no way to know in general if a hand-tuned learning
rate can find the components, or if it to high (in which case
the weights will not “stick” to the components), or too low
(in which case convergence will be artificially slow). LCA
addresses this by using a framework for optimally tuning the
learning rate. Optimality depends on the distribution within
each partition being best approximated by the expectation of
response-weighted input.

For some layer, LCA’s functional description is

(4)

1) Belongingness: A limited resource of neurons divides
the sample space into mutually nonoverlapping regions,
called lobe regions

(5)

Each lobe region is associated with a single neuron, which
represents input that falls within its region. Any input vector
belongs to a region based on some criteria of best-match, or
similarity. Depending on the sparsity, each input will only be-
long to one or a few regions. LCA uses normalized inner product
to determine belongingness

(6)

2) Dual Optimality: Under our assumptions, the input is
composed of a few hidden components, where each of these is
distorted in the observations. If each lobe component sticks to a
hidden component, we can expect a low distortion error. Glob-
ally, we wish to find set of lobe components that minimize
the expected square approximation error

(7)
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where is the reconstruction of as response weighted
expectation over lobe components that belongs to. Unfortu-
nately, if the belongingness (partitioning) must be determined,
finding a global solution to this problem is NP-hard [18]–[20].

When the partition does not change, it can be solved opti-
mally. For a single cell, we note that, for many distributions,
the sample mean leads to the lowest approximation error for the
samples seen so far

(8)

for a set of stimuli that fall into this cell, drawn from distribu-
tion . As , the following tends towards equality

(9)

Statistical estimation theory reveals that for many distribu-
tions (e.g., Gaussian and exponential distributions), the sample
mean is the most efficient estimator of the population mean (e.g.,
[21]). For such distributions, no other estimator could reach as
low of an error given the observations.

The above gives the best possible estimator for any time step.
Therefore, optimality is spatio–temporal since we use the most
efficient estimator for any time .

3) Optimal Hebbian Updating: We use the spatio–temporal
optimality as a guide to set a neuron’s learning rate. Most incre-
mental methods do not use the above optimality. To show this,
consider the Hebbian learning framework. The basic Hebbian
form [22] for updating the weight vector of a neuron is

(10)

where each update follows the direction between weight and
input . The neuron’s amount of updating uses the match be-
tween firing rate (postsynaptic activity) and (presynaptic
activity). The only thing to be determined when using the Heb-
bian learning form is how to tune , the learning rate.

But this typical form struggles with stability due to the single
learning rate. In comparison, the LCA updating rule, derived
from (8), is

(11)

which we rewrite as

(12)

(note , where ).
Equation (12) is not usable for updating, but shows a condition
that is fulfilled by each update. This form shows that incremental
update keeps the energy of by automatically scaling . By the
spatio–temporal optimality, there is no better way to tune the
learning, and there is no way to tune a single learning rate to
match (11) in one step.

Intuitively, the optimal representation of the samples in each
partition is the expectation of the response-weighted input:

converges to . Instead of just having the correct direc-
tion, this formulation gives both direction and distance, giving
a guide to select step size.

Of course, there is no way in general that the initialization of
the neurons will give a perfect partitioning. There are several
ways to deal with shifting partitions. We keep the learning rate
artificially high by the CCI adaptive plasticity function, allowing
for “forgetting” of older observations, while still adjusting the
energy appropriately.

B. Density Estimation

On the surface, the competitive learning tries to minimize
distortion via a divide and conquer approach. But it also ap-
proximates the density of the input. The density estimate will
be similar to that of SOM [23], [24], but using a normalized
inner product to determine the partitions instead of Euclidean
distance.

It implicitly defines an energy surface on , where energy
is based on the response of the best matching neuron

(13)

Energy is related to the network’s internal estimate of proba-
bility as

(14)

where handles normalization and is typically intractable to
compute. Using normalized inner-product, each neuron defines
a Laplacian kernel, which is sharper than a Gaussian and has
large tails. Within each partition, each kernel is placed with
mean as the weighted centroid of this neuron and its neighbors,
weighted by neighborhood distance [24].

By training, we want to decrease the energy of the current
pair, but we would like not to do this in a destructive

way (i.e., increasing the energy of patterns we have previously
trained as a side effect).

For understanding, consider training pair for a sim-
pler three-layer network. In multilayer networks, layer simply
treats the output of the layer as its input. For this net,
we are concerned with the network’s internal joint probability

. Since we do not use
probabilistic assignment, is deterministic from , so we can
ignore .

After evaluating, we get

(15)

which gives the energy of the pair as

(16)

Equation (16) suggests that to decrease the energy given an
input pair, neurons on the feature layer should not be considered
a winner based only on how well they represent the input, but
also on how well they represent the output at the next layer (in
other words, how much uncertainty about the true output they
provide to the output neurons).
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Fig. 4. Self-organization in a weighted semantic-physical space leads to partitions that separate the classes better than when self-organizing in the purely physical
space (best viewed in color). (a) There are two bottom–up dimensions � and � . Samples falling in the blue area are from one class and those falling in the red
area are another class (assume uniform densities). The “relevant” and “irrelevant” dimension are shown by the upper right axes, which are here linear (diagonal).
(b) The effect of self-organization using nine neurons in the bottom–up space. Observe from the resulting partitions that the firing of many neurons will transmit
ambiguity about the class. (c) Boosting the data with top–down information, which here is shown as a single extra dimension instead of two (for visualization)
(d) After self-organizing in the boosted space and embedding into the bottom–up two dimensions. Note how the partition boundaries now line up with the class
boundaries and how the data that falls into a given partition is mostly from the same class.

If we do not take this into account, since the energy of de-
pends on , updating the same feature neuron over a dis-
tribution of inputs containing instances of two or more classes
leads to output uncertainty. For the network to reduce a single
input pair’s energy through an internal class-mixed neuron, it
will have the side effect of interfering with (increasing energy
for) already trained pairs from the other class.

One way around this problem is for the designer to set aside
certain amount of resource in the feature layer for each class. But
in general we cannot know how much is needed by each class,
and this reduces adaptivity (i.e., the current task cannot recruit
resource needed). Instead, we use top–down connections to re-
define a belongingness that takes into account (16), so that the
network can partition the resource itself, with as little updating
interference as possible.

C. Top–Down Connections

Much of the information experienced in a real data stream is
irrelevant. It is crucial for a limited size network to find the rele-
vant information, so the irrelevant information can be discarded
if necessary. In supervised learning, we assume that the relevant
part of the input matches the expected input over all instances
of the same imposed action. For example, if the agent sees the
shape of the capital letter “A” in multiple contexts (on a flash-
card, on television, on a sign, etc.) and a teacher can cause the
agent to focus on the letter and “speak A” in each case, then the
relevant information (the shape of the letter and the action per-
formed) will not change too much over the different inputs, but
other information (the surrounding visual scene) changes a lot.

Fig. 5. A layer-one weight vector, around other neighbor weight vectors,
viewed as images, of a neuron exhibiting multiclass distortion due to 3� 3
updating.

The visual “essence” of the action “speak A” is uncovered as
the expectation over the visual stimuli linked to that action.

Let the layer’s bottom–up input space be made up of rel-
evant subspace and irrelevant subspace . The relevant sub-
space is correlated with output space and can be uncovered
from

We use a scaled version of , called . To achieve neuron
specificity, it is essential that the scale of top–down influence
can match bottom–up. When a layer uses paired input connec-
tions, the influence of one of or could be very low. For ex-
ample, the dimension of visual dimensions is large (e.g., a 40
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Fig. 6. Topographic class grouping with a 1-D neuron array in 2-D input space (best viewed in color). The red area contains samples from class one, and the
blue area contains samples from class two. The 10 neurons’ bottom–up vector are circles or squares. Their top–down membership is shown by the color or shape:
Gray neurons are unassociated, black neurons are exclusive resource for class two and white neurons exclusive for class one. Square neurons are border neurons.
To better understand how TCG emerges, we provide the following four cases. (a) After initialization, all neurons are unassociated. Only three neurons are drawn
to show they are neighbors. Other neighbor connections are not shown yet, for clarity. (b) Neuron N1 has won for a nearby sample, becomes linked to class two.
Its neighbors are pulled towards it and also link to class two. Note how N3 is actually pulled into the between-class “chasm,” and not onto the class distribution.
(c) Over wins by N1, N2, and N5, self-organization occurred through neighbor pulling. N4 has become a border neuron, and N6 is starting to be pulled. (d) A
final organization, uncovering the relevant dimension. For this data, the relevant dimension is not linear: it is through the center area of each class distribution,
lengthwise. The final neuron organization mirrors this, and the neurons have organized along the relevant dimension.

row and 40 column digital image gives 1600 dimensions) com-
pared to the number of label components (e.g., 10 classes). So
that the relative influence could be easily controlled, we mapped
each to a paired vector

(17)

Setting gives the bottom–up and top–down equal
influence. Raising will increase the distance between different
class distributions in .

For classification2, the components of represent sets of mu-
tually exclusive events. Each imposed action vector will be codi-
rectional with an axis of , and is a mixture of delta
functions at different positive axes. In this case, if no samples
are members of two classes, any two class distributions are lin-
early separable in .

The top–down boosting embeds the samples into a space
where samples from different classes are farther apart and
always separated. This reduces and can nearly eliminate up-
dating interference between classes. During self-organization,
two effects emerge. Partition boundaries will tend to follow
the class boundaries to the relevant subspace, and the neuronal
entropy becomes lower. An illustration of these effects for a
simple data distribution is shown in Fig. 4.

D. Self-Organization

Since is a mixture of delta functions, purely compet-
itive learning using a hard-assignment winner-take-all causes a
“hard” separation of per-class resource. We wish to use a softer
resource assignment, and include cooperative learning as neigh-
borhood updating, approximating lateral excitatory connections
that are more dense closer to the neuron of origin. We use 3 3
updating, meaning the winner neuron will update its weights
and so will the neurons adjacent to it.

It is generally not beneficial for neighborhood pulling to
be between class distributions. Smoothness is useful for gen-
eralization, but it can be harmful if the distribution

2Some related results concerning regression are in [25].

is multimodal where different peaks are separated by very
low-probability areas. Consider a neuron with two neighbors
that fire often. This neuron is pulled in by both of its neigh-
bors, placing it in between what the neighbor neurons represent.
This could be useful if they represent a single class, as it would
average into a variation that might generalize well for that
class. But if they represent different classes, the averaging
effect may lead to a representation of something that would be
very unlikely (see Fig. 5).

Using LCA and paired input , neurons are attracted to high-
probability areas in . Via competition and updating, different
neurons seek out different areas with a concentration of prob-
ability density. For any input, the best matching neuron repre-
sents that input better than the other neurons. The problem is
any neighbor neuron that does not match the input well will
still update its weight vector if it is adjacent to firing neuron
. The neighbor neuron ’s weight is pulled away from its spot

in and travels linearly between its weight and the input at
. is the percent of the distance it travels

towards . Since this updating has a distance sensitivity, if
is very far away from , it can change a lot even with a low
learning rate. It becomes more likely that ends up in a very
low probability area, which hurts the approximation of .
Now, since will have little chance to win in competition, it
may not recover.

The top–down connections, and a small neighborhood kernel,
help address this issue. The neuronal precompetitive response
function

(18)

shows that by setting high, it is essential that a neuron find
become class-specific in in order to have a chance to win.
Normalization encourages neurons to become representative of
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Fig. 7. Summary of experiments for 25 objects viewed from a full range of horizontal 360 degrees (best viewed in color). (a) Some example views of the 25
objects. (b) The bottom–up weights of 40� 40 neurons in layer one developed using top–down connections. (c) The expended views of the bottom–up weights of
6� 6 neurons. Each small square image corresponds to the weight vector of a neuron. (d) The maximum class representation probabilities of the 40� 40 neurons
of layer one in a network developed without top–down connections. (e) Developed using top–down connections.

only a single class. Consider such a neuron as exclusive re-
source for class .

Consider the exclusive neurons as active neurons and the
class-mixed neurons as passive neurons. Additionally, the active
neurons are class-specific. The active neurons gradually recruit
neighbor passive neurons. Being gradually pulled in causes
the passive neurons to move towards areas in and with
higher probabilities. If a passive neuron is pulled by an active
neuron enough, the passive neuron finds a high-density area. It
can start to compete with the active neurons and becomes an ac-
tive neuron itself, in turn recruiting its neighbors. In this way,
grouping emerges.

Fig. 6 illustrates an incremental grouping and growing with
two classes lying in 2-D and using a 1-D circular neuronal array.
Such wraparound organizations reduce border effects.

As a final note, even when using top–down, 3 3 could be
harmful if the class distributions themselves are disconnected or
have holes. In that case, the “harmful pulling” described above
could occur even within a class. It may be better and more
biologically plausible to do away with the isotropic updating
and use instead an adaptive lateral excitation (some preliminary
work on this was done in [26]).

VI. EXPERIMENTAL RESULTS

We propose that top–down connections from an abstract layer
to a more physical self-organizing feature layer lead to grouped
class areas and lower entropies on the physical layer, and higher
recognition rates in classification overall. To test this, we com-
pared two types of three-layer networks. In the first type, the fea-
ture layer learned by both bottom–up and top–down connections
( ). The second network type only utilized bottom–up con-
nections, and the top–down were disabled ( ). Top–down
connections were disabled in the testing phase for all networks
tested. To classify a testing sample, the network operates in feed-
forward mode, and the maximum firing rate at the motor layer
represents the output class label. The networks do not take ad-
vantage of temporal dependencies in the inputs.

For CCI Plasticity, we used settings , ,
, throughout.

Proof of Concept

We selected 25 toy objects to train different sized networks to
recognize each individual object. 200 images of 56 56 were
taken in sequence for each object. There is also an “empty” (no
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Fig. 8. (a). Images presented to a trained network to measure the class-re-
sponse scatter. (b) Bottom–up weight to the neuron representing this class
(“turtle”). This network was top–down-disabled. (c) Top responding neuron
positions for each of these samples for the unsupervised network (d) Layer-two
weight for a top–down-enabled network (d) Top responding neuron positions
for the top–down network.

TABLE I
ERROR RESULTS FOR THE 25 OBJECTS, AVERAGED OVER FIVE TRIALS

object) class. The 200 images cover about two complete rota-
tions of 360 degrees for each object. An object varies slightly
in position and size throughout its sequence. The background
color is controlled to not be an issue (more details in [27]).

1) Experiment 1: Top–Down With a Limited Resource: Five
top–down-enabled and five top–down-disabled networks were
trained for each of the network sizes , 30 30,
and 40 403. This is a limited resource utilization problem, as
the networks cannot just store all the views. Additionally, the
networks do not use time so they cannot take advantage of tem-
poral dependencies in the rotation. Given the limited resource,
the class and view angle could ideally be represented so that
each neuron is responsible for a single class over a set of angles
from about 5 (for ) to 25 (for ).

Two types of the networks were trained: the first type used
excitatory top–down connections ( ), while the second
type did not ( ). Every fifth image in each sequence
was set aside for testing. Training involved random sample
selection over 50 000 training samples, using . All the
-down enabled networks showed TCG, as seen in Fig. 7. For
reporting purposes, TCG was measured by the within-class
scatter of neuron responses on the 2-D neuronal plane. The
within class scatter of firing for each stimulus class, aver-
aged over all stimulus classes, measures how condensed the
neuron responses were. The class-response scatter is the trace
of the within class scatter matrix, normalized for map size:

. Using , we can

3For the larger (40� 40) networks, we scaled up the feature layer in resolution
from 20� 20 networks after 1500 samples.

TABLE II
FEATURE ENTROPY AND GROUPING RESULTS

FOR THE EXPERIMENTS WITH 25 OBJECTS

Fig. 9. Category and class sensitivities of neurons in two different 20� 20 net-
works after each stage of two-stage teaching (best viewed in color). The color
of each pixel of these 20� 20 images indicates either category selectivity (a) or
class selectivity (b) and (c). The five classes from one category are given purple
shades while the other five classes are given green shades. Selectivity after stage
one (top row) and two (bottom row) are shown. (a) and (b) correspond to the net-
work trained on category first, then both category and class. Observe in the lower
part of (b) how the class motors have organized the lower-layer representation
within each category. (c) shows the control network where only category was
taught.

see this measure is invariant to rotation of the 2-D map (see
Fig. 8). We also measured developmental entropy, which tells
us how class-specific the neurons’ updating was.

For testing, we tried different values of from 1 to 10
for testing and reported the best results. The networks using
top–down connections did best with , but the others did
best with close to 4 or 5. The test error rate results are pre-
sented in Table I (FF stands for feedforward and TD stands for
top–down) and the measured developmental entropy and scatter
is presented in Table II. The per-neuron entropy is lower, as
is the class-response scatter, in the top–down networks. These
results show the top–down enabled networks develop to utilize
the same amount of available resource better, shown by better
error rate. Especially notable differences are seen when the
number of neurons is smaller. In particular, a top–down enabled
network with gets about the same performance as a
feedforward network with . A network has
learnable weights. As an example, for , this equals
1.3 , compared to 2.8 when . The smaller
network using top–down attains 99.6% of the performance of
the larger one without top–down, while using just 44% of the
resource.

2) Experiment 2: Two Task Learning With a Shared Re-
source: We guess top–down is necessary to refine existing
representation after new concepts are learned. The purpose of
this experiment is to illustrate resource management when a
network learns two tasks—categorization and classification—at
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Fig. 10. The handwritten digits “4” and “9” from the MNIST digit database [29] are very similar physically. (a) Result after self-organizing using no motor-
boosting. The 100 weight vectors are viewed as images below and the two weight vectors for each motor shown above. White means a stronger weight. The
organization is class-mixed. (b) After self-organization using motor-boosted distance (weight of 0.3). Each class is individually grouped in the feature layer, and
the averaging of each feature will be within the same class.

TABLE III
RESULTS FOR INCREMENTAL TWO-TASK LEARNING

two different times, but for the same stimuli. We trained the
more general categorization task first, followed by the more
precise classification task. Many discriminative methods trained
on a single task would throw out information that turns out to
be useful for learning the second task later.

We selected ten classes from two categories — toy vehicles
(“Cruiser,” “Off-road cruiser,” “Pink buggy,” “Blue buggy,”
and “Green buggy”) and toy animals (“Cow,” “Tiger,” “Duck,”
“Pig,” and “Elephant”). We trained 20 20 networks in two
stages. The first stage used 5000 randomly drawn samples
(from time to 5000) and the second stage took 15 000
samples (from to 20 000). The networks have 12
motor neurons — 10 for classes and 2 for categories. When
a network is trying to learn or produce both category and
class, the sparsity parameter for the motor layer was set to
two. Otherwise, was set to one. The top–down parameter

was set to 0.5. We also used edge-wraparound neighbor
relationships.

Test 2.1: Adding Information: In the first stage (S1), the
agent is taught to produce the category name when seeing an
image. In the network, the appropriate category motor is im-
posed and the other clamped to zero. In one second stage (S2),
the agent hears the teacher say both the category name and the
class name, and it repeats both of these. As a control, we tried
an alternate stage two (S2-C) where the stage one teaching of
category continued.

Results are presented in Table III. Category error was not af-
fected based on whether the classification task was trained or
not. To measure how top–down class-based input influenced
the first layer after stage 1, we measured the maximum cate-
gory and class representation probability for the layer 1 neu-
rons. The second two columns show their average, measuring

how selective the layer 1 neuron’s are for a single category or
class. After training with class, layer 1 neurons on average jump
up nearly 20% in class-selectivity, whereas for the control con-
dition they on average only increase by about 5% ( ).
We can observe how the top–down class connections influence
neuron organization, shown in Fig. 9. After stage 1, there are
two large groups for the two categories, but class representa-
tions are mixed inside each category group. But after stage 2,
subgrouping within each category group emerged.

Test 2.2: Two Stage Learning: In a new second stage the
agent is taught class, but not category. This test shows the effects
of destructive interference [28] (from learning the new task)
since both class and category use the same layer 1 representa-
tions. Destructive interference has a severe effect, as the catego-
rization error at the final dropped to 48% on average
— nearly chance. The classification error is 0. Such task un-
learning is due to the growing and spreading of groups in stage
two, while the category weights do not change. Since class and
category use the same layer one representations, this interfer-
ence gets around long term memory by sparse coding.

What can be done to avoid complete task unlearning? We
can maintain the shared resource by operating the network in
a semi-supervised mode, where the network layer ’s output
causes a firing rate vector at layer , and that firing vector is
used as top–down input to layer for learning. If an agent has
learned a task well that applies to its current experience, it can
practice or rehearse performing that task, and it can maintain a
level of performance. For this experiment, it “rehearsed” cate-
gory while being taught class. After learning over this semi-su-
pervised stage, networks classified with zero error, and did not
show much destructive interference: they categorized with av-
erage 3.4% error ( ).

3) Experiment 3: Grouping With Physically Similar Classes:
As a small test of TCG, we observed that grouping will result
even for very similar bottom–up inputs, such as the handwritten
digits “4” and “9.” This can be seen in Fig. 10.

A. Comparison Datasets

1) MNIST Digits: The well-known MNIST dataset of 70 000
total images (60 000 training, 10 000 testing) contains 10 classes
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Fig. 11. 2-D class maps for a 40� 40 neural grid after training with the NORB
data. At each neuron position, a color indicates the largest outgoing weight in
terms of class output. There are five classes, so there are five neurons, and five
colors. (a) � � � (b) � � ���.

Fig. 12. 2-D entropy maps for the Fig. 11 experiments. High-entropy means
neurons represent multiple classes, which can lead to error. Whiter color means
a higher entropy. (a) � � � (b) � � ���. Note the high entropy neurons shown
here coincide with class group borders shown in Fig. 11.

of handwritten digits (from 0 to 9). Each image is composed of
28 28 pixels. The foreground, digit pixels are nonzero. Each
digit resides in the center of its image. We did not use any data
prepreprocessing.

The MNIST dataset is useful since we can compare with
the many other methods that have tried this data. We trained
a three-layer network with 100 100 map with , and

, which reached 2.97% on the test set. Performance of a
few other three layer networks without preprocessing4 are as fol-
lows. Contrastive Divergence [30] reached 2.49%. It was fine-
tuned using supervised gradient descent, after which it reached
1.25%. It would be interesting to fine-tune our method in such
a way. -nearest neighbors (storing all 60 000 training sam-
ples) with L2 distance reached 3.09% and 2.83% for L3 dis-
tance. Support vector machines with a Gaussian kernel reached
1.4% with no preprocessing. Deep networks with more than
three layers, which were also trained with additional distortions
of the data, have reached the best performances on MNIST.

We note here some caveats about the performance of TCG in
three-layer networks. The main purposes of this approach are
layer-wise feature extraction, developing an internal ordering
through self-organization, and resource management over time
for AMD. It sacrifices the possibility of learning complex fea-
tures on the first hidden layer by enforcing a strict sparse coding,
so that the features might reduce redundancy well. Since it does
not globally follow a gradient to decrease the output error func-
tion, or even the reconstruction error function, it is not expected
to directly compete with those that learn by a reconstruction or
error gradient. And it certainly introduces some distortions in
order to generate topography.

4Summarized on the MNIST web page.

TABLE IV
PERFORMANCE ON THE NORMALIZED-CENTERED NORB DATA

WITH AND WITHOUT TOP–DOWN

TABLE V
AVERAGE ENTROPY ON THE NORB FIVE-CATEGORY DATASET

2) NORB Objects: The normalized-centered NORB dataset
[31] is a 3-D object categorization dataset5. It contains stereo
image pairs of five categories of objects (four legged animal,
human figure, airplane, truck, car), with 10 different actual ob-
jects belonging to each class. The 5 training objects per class and
5 testing objects per class are disjoint. The dataset has 24 300
training images, and 24 300 testing images, with uniform back-
ground. The dimension of each training sample is

. The objects vary in terms of rotation (0 to 340 in 18 in-
crements), elevation (30 to 70 in 5 increments), and lighting (6
different conditions). Recognition must be done based on shape,
since all objects have roughly the same texture and color.

The NORB categories have much more variation than the ob-
ject classes used in the 25 objects’ case. The test set is very
different from the training set, so it requires powerful general-
ization. Overfitting on the NORB training data leads to a much
worse performance than MNIST.

We compared top–down-disabled and top–down-enabled net-
works of sizes 40 40 and 60 60 ( ), and top–down en-
abled networks only for sizes 80 80 ( ) and 100 100
( ), over five epochs over all the training data. Like in
MNIST, we did not use any added deformed patterns. The net-
works scaled up in size from for 8000 samples
to for 15 000 samples to . We used
wraparound neighborhoods. Results are presented in Table IV,
showing results at the different sizes (average for the two smaller
sizes, and best for the larger sizes), and Table V, which shows
entropy. Figs. 11 and 12 show that TCG emerged.

Since -nearest neighbor achieves 18.4% error rate on this
data [31], it seems the NORB data is susceptible to overfitting,
implying the hidden components that describe the different
categories cannot be extracted very well based on the full im-
ages. The smallest network we tried, having only 1600 neurons
even achieved a slightly better 17.9% performance, achieving
this with only 6.7% of the resource (but taking 4 more passes
through the data). The generalization provided by top–down
connections and resource separation by top–down grouping is
beneficial (note the 40 40 network without top–down was
much worse than K-NN) and actually gives a better result than

5http://cs.nyu.edu/ ylclab/data/norb-v1.0/
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nearest neighbor, despite operating in winner-take-all with the
full images.

The best performance for a three-layer network was 12.6%
for a 100 100 network trained with . As summa-
rized in [32], other results from similar algorithms on this
NORB dataset include logistic regression (19.6%), SVM
with a Gaussian kernel (11.6%), and deep belief networks
with a greedily pretrained sparse layer-one and label units
on layer-two, trained entirely through contrastive divergence
(11.9%).

The convolutional networks, which use attention (deriving
small localized codes), max pooling, and use the error gradient
perform the best on the NORB data. We did not experiment with
smaller receptive fields on this data yet.

The result of 12.6% for a three-layer network is very far off
the results of the best methods. But this result is in the same per-
formance class as the other three-layer models. The NORB data
appears to be described well by a more hierarchical and local
code, which is also how cortex represents objects. For better per-
formance with a reasonable number of neurons, we will have
to extend the network to use limited size receptive fields and
more layers. The algorithm in Section IV can be used to train
deeper networks in a layer by layer fashion. The main focus of
this paper is on the properties of biased self-organization due to
top–down connections, so training different types of networks
on NORB using the TCG method is a topic of future work.

VII. DISCUSSION

A. Extendability

This paper establishes the fundamental ideas behind the
TCG learning rule. To become competitive in learning complex
recognition tasks on its own, some extensions are probably
needed.

We known that adaptive lateral connections have a positive
effect [26]. Actually, even without adaptation, simply including
the influence of lateral excitation in the response function leads
to an internally consistent learning rule that can be shown to
follow the global gradient of minimal distortion [23]. The min-
imum distortion learning rule might lead to better performance.

Due to difficulties in using backpropagation to train deep
networks, the layer-wise unsupervised pretraining method [33],
followed by fine-tuning via the error gradient, has become pop-
ular. Typically, each layer is trained to minimize reconstruc-
tion error, or contrastive divergence error [34]. An issue with
layer-wise training is that it is generally unknown what the best
features are to extract at a lower layer that will lead to the best
performance at the output layer, so it is usually not known how
well a deep network has done feature extraction. As our method
is a divide and conquer algorithm for “redundancy exploitation,”
which is interpretable in a divide and conquer way, it may be
useful to use this or a similar method in layer-wise training.

Salient future issues involve extending the networks to use
local analysis and more layers. In [35], Bengio and LeCun argue
that many functions can be represented compactly by deep ar-
chitecture, and most functions that can be represented com-
pactly by deep architectures cannot be represented compactly

by shallow architectures. This includes, e.g., object recogni-
tion with complex and widely varying backgrounds, which re-
quires attention. Generalization in shallow networks involves
local smoothness and is limited, but generalization in a deeper
architecture can be combinatorial and potentially much more
useful. As discussed there, SVMs are ill-suited to extend in AI,
as they are shallow networks, they struggle when the number
of samples increases, do not deal with combinatorial data effi-
ciently, and cannot utilize attention.

Attention is a very important aspect of future work. For this
particular work, we handle the components in a permutation
invariant way [30]. In cluttered and uncontrolled scenes, this
monolithic image analysis is not effective due to the complexity
of the background and possible occlusion. Monolithic represen-
tations with complex backgrounds require a lot more resource
(practically unattainable) to represent all the variations. In gen-
eral, local analysis will be necessary. We have integrated some
TCG networks into some preliminary work on deeper architec-
tures that use local analysis [36], [37].

How appropriate is the learning network we described to ex-
tend towards AMD? An algorithm for AMD must be low com-
plexity, fast in training and testing, and be adaptable without
being destructive. The core issues are allowing the agent to learn
new tasks (possibly unpredicted by the designers) quickly at dif-
ferent times in the agent’s life, and integrating what is newly
learned with what has already been learned. Of course not all
issues have been solved, but the TCG algorithm fits well into
a framework for AMD, due to its simplicity, biological plausi-
bility, generality, plasticity, and optimality. The TCG algorithm
is very low in computational complexity — both training and
testing are linear in the number of neurons, it does not require
hardly any extra storage space, and it is purely incremental,
discarding the input at each . If extended to use adaptive lat-
eral connections, all the units could operate asynchronously.
It is very general, describing a framework including unsuper-
vised learning, supervised learning, semi-supervised learning,
and communicative learning.

B. Related Work

Artificial neural networks have traditionally operated using
bottom–up (feedforward) connections as primary connections,
with the top–down (feedback) connections approximately used
in a separate weight-tuning mode. For example, backpropaga-
tion-based networks [29], [38] use the top–down error signal
to train the bottom–up weights, but it does not use explicit
top–down connections. Learning vector quantization (LVQ)
[39] integrates a SOM-style learning rule with class label infor-
mation by negative “unlearning” if the label of a new sample’s
closest match would be incorrect, but it does not actually use
the label as an input. In comparison, the TCG algorithm uses
the label only indirectly represented by activity from upstream
neurons, and it does not do any unlearning.

A few networks used top–down information explicitly as part
the input. The use of an expanded input including both input
and output vectors for the SOM was briefly mentioned as a pos-
sibility by Kohonen 1997 [40]. In the SOM extension laterally
interconnected synergetically self-organizing map (LISSOM),
which used adaptive lateral connections [41], neurons take input
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from bottom–up, lateral and top–down connections. Sit and Mi-
ikkulainen 2006 [42] explained how a neuron responding to an
edge, for example, develops to receive top–down feedback from
neurons that detect corners including that edge in the next layer.
LISSOM was not designed as a classifier or regressor so it did
not address the issue of top–down biasing of a limited internal
resource with respect to task performance.

C. Topography and Modularity

The topographic organization of many cortical areas such
as somatosensory, motor, and visual, is well-known. SOM and
LISSOM showed that in some cases lateral excitation can be the
impetus for the development of topography [15], [41]. In SOM,
and in this paper, lateral excitation occurs from isotropic up-
dating, where a firing neuron will excite all the neurons around
it, decreasing as a function of radial distance. But an isotropic
lateral excitation function is not biologically supported. In
LISSOM, an orientation map with such patchy connectivity
developed by incorporating adaptive, limited-range, lateral
connections. LISSOM’s initial short-range isotropic lateral
excitation caused initial smoothness — the features represented
in the local area tended to be similar. After some learning,
excitatory connections between neurons that represented inde-
pendent stimuli were not present.

The brain is also characterized by a modular organization
[43]. In the modularity as described there, nodes within each
module are highly interconnected but not well-connected to
neurons in other modules. There are a few “hub” nodes, some
with many connections within a module, and some with connec-
tions between modules. We note that the TCG method develops
networks with modular connectivity. In the experimental three
layer networks, a module is a motor neuron and its associated
feature neurons. A single motor neuron and its supporting
neurons project in an excitatory way exclusively within the
module, while only a few border neurons have connections to
multiple motor neurons.

VIII. CONCLUSION

The work reported here showed how top–down connections
in a self-organizing Hebbian learning network with sparse
coding and quasi-optimal updating lead to topographic class
grouping. Further, the work explains why TCG leads to sig-
nificantly lower error rates. Class distributions are separated
and farther apart in the top–down boosted input space. Such
a weighting encourages class specificity in neuron repre-
sentations as less class-specific neurons will have a greatly
decreased chance to win in competition. Using 3 3 neigh-
borhood smoothing in the top–down space, class grouping on
the neuronal plane emerges, since the neurons that represent
each class well are the only possible winners. The emergent
class-specific neurons lie near high-density areas in the joint
probability, and actively “recruit” nearby class-mixed neurons.
The lateral excitatory effects enable local smoothing of resource
within class distributions, but discourage smoothing of resource
between class distributions. The algorithm is biologically plau-
sible and of low complexity, making it suitable to build on for

AMD. It handles stability and plasticity via LCA’s tuning of
learning rate. Experimental results in some visual recognition
problems (without needing attention) showed that networks
self-organized to group the classes, some of which have high
variability, using a limited resource. Top–down connections
led to networks that classified with lower errors compared to
networks of the same size without top–down. TCG networks
deliver similar performance to other comparable methods, and
are scalable to deeper networks with local analysis, for use
in more complex problems and architectures. This work has
implications towards understanding how internal representation
can be developed and maintained, and for understanding how
cortex develops category-specific grouped areas.

APPENDIX

DEVELOPMENTAL ENTROPY

Typically, entropy is used to measure the uncertainty at
a certain point in time. For example, it can measure how
class-mixed a neuron is after learning has completed by its
sampled probability of firing for the different classes in the
testing phase. Developmental entropy measures class-speci-
ficity throughout learning, and we used it to evaluate the
learning algorithm. Neuron developed from few classes if its
entropy of weighted stimulus history is small. From (11), it can
be seen that bottom–up weight of neuron is a weighted
sum of input samples

(19)

where are stimuli (samples) that were used to update and
are the weights retroactively defining each sample’s con-

tribution. The current , and for all previous
weights, .

The empirical probability that samples arose from class is
simply the sum of weights for class ’s samples

(20)

To quantify entropy of the probability distribution for the th
neuron, we have

(21)
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