IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 2, NO. 4, DECEMBER 2010 267

A Probabilistic Appearance Representation
and Its Application to Surprise Detection
in Cognitive Robots

Werner Maier, Member, IEEE, and Eckehard Steinbach, Senior Member, IEEE

Abstract—In this work, we present a novel probabilistic appear-
ance representation and describe its application to surprise de-
tection in the context of cognitive mobile robots. The luminance
and chrominance of the environment are modeled by Gaussian
distributions which are determined from the robot’s observations
using Bayesian inference. The parameters of the prior distributions
over the mean and the precision of the Gaussian models are stored
at a dense series of viewpoints along the robot’s trajectory. Our
probabilistic representation provides us with the expected appear-
ance of the environment and enables the robot to reason about the
uncertainty of the perceived luminance and chrominance. Hence,
our representation provides a framework for the detection of sur-
prising events, which facilitates attentional selection. In our exper-
iments, we compare the proposed approach with surprise detection
based on image differencing. We show that our surprise measure
is a superior detector for novelty estimation compared to the mea-
sure provided by image differencing.

Index Terms—Attention, cognitive robots, image-based repre-
sentations, surprise.

1. INTRODUCTION

OGNITIVE robots plan motion sequences and actions
based on an internal representation of their environment.
In the field of simultaneous localization and mapping (SLAM),
various approaches have been proposed that enable mobile
robots to autonomously build a topological map of their envi-
ronment [1]. To this end, the robots typically fuse data from
multiple laser scans or depth maps into a consistent global geo-
metric model and acquire knowledge of the objects’ distances.
Geometric information about the world is useful for grasping
task-relevant objects or to avoid obstacles during navigation.
However, the information about the robot’s environment con-
tained in purely geometric models is not sufficient. Without
storing information about the appearance of the world, a robot
would be unable to remember if the (identically shaped) cups
that it just put on the table were yellow or green. Besides, it
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would not be possible to distinguish the blue box in the kitchen
cupboard from the other equally sized and shaped boxes. Hence,
color information is a crucial component of the robot’s internal
representation.

Texture mapping techniques from the field of computer
graphics [2] have shown that realistic visualizations of struc-
tured environments can be achieved by associating real-world
image data with the 3-D vertices of the geometry model.
In order to capture some of the view-dependent appearance
changes, a sparse set of images (view-dependent textures) can
be stored along with the global geometric model.

The performance of traditional texture mapping heavily de-
pends on the level of detail and on the material properties of the
objects. In complex real-world environments, and that is where
robots usually act, it is difficult to achieve high-quality results.
For the visualization of glasses and other translucent objects, in-
formation about the refraction of light has to be included in the
rendering process in order to achieve acceptable results. To this
end, raytracing techniques [3] were developed which provide
high quality results but suffer from high computational com-
plexity. For cognitive robots, which have to make decisions in
real-time and rely on rapid information retrieval from the in-
ternal model, this is not acceptable.

Image-based object or scene representations provide an inter-
esting alternative to raytracing techniques since they allow for
a realistic visualization of the environment while the computa-
tional complexity is independent of the structure of the scene.
Hence, it is possible to render virtual images of scenes con-
taining translucent and specular objects several times a second.
In order to capture an image-based scene representation, a dense
set of images is acquired by a rigid camera array or a mobile
platform. Novel virtual views are generated by transferring and
combining pixel data from nearby reference views. The amount
of images that has to be acquired for realistic and artifact-free
modeling depends on the accuracy of the geometry information
that is used for the color transfer [4]. The more accurate the local
geometry data, the smaller the number of images that have to
be stored in the representation. Hence, view-dependent geom-
etry represented by local per-pixel depth maps, which are stored
along with the images, has become very popular [5].

Since cognitive robots act in dynamic environments, their in-
ternal environment representation has to be updated continu-
ously. In order to handle the vast amount of data that is acquired
by its sensors, the robot has to filter the information and focus on
stimuli which are particularly relevant for task selection. Hence,
a mechanism which controls the robot’s attention is required. In

1943-0604/$26.00 © 2010 IEEE



268 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 2, NO. 4, DECEMBER 2010

p(Xy)1
s
p(XCb? 2: + per-pixel
X

¢, depth

p(Xc.) :=
> X

Cr

& o

Yo

2C

Tc
+ camera
pose

AW,

Tw

Fig. 1. Our proposed appearance representation uses Gaussian models for the
luminance and the chrominance of the environment at each pixel at a viewpoint.
The Gaussian distributions are infered from observations along the robot’s tra-
jectory. The representation also includes a depth map and the pose of the robot’s
camera head for each viewpoint.

the past, a number of methods have been proposed for the de-
tection of novelty [6]. Furthermore, saliency models have been
presented [7] in order to predict positions in an image that attract
human gaze. Recently, Itti et al. found that, compared to other
information-theoretic and saliency measures, Bayesian surprise
is the strongest attractor of human attention [8].

Hence, surprise can provide an efficient means to direct the
robot’s attention to regions in the environment that contain ob-
jects the robot has not seen before. Once the object is segmented
from the background, the robot can extract features, store them
in a database and use them for recognizing it at a later time.
During navigation the robot is rapidly informed about new ob-
stacles that are not contained in the internal representation. Be-
sides, surprise is a good detector for unexpected human motion.

In [9], we proposed a method for surprise detection that is
based on image-based representations. We extend our work in
[9] in two important directions. First, compared to [9] we con-
sider dynamic scenes and second, we add a measure of un-
certainty of the acquired color values to the robot’s internal
representation. More specifically, this work presents a novel
probabilistic appearance representation that, similar to image-
based models, consists of a dense series of views. However, our
proposed representation does not store the raw observations of
the robot but infers the parameters of probability distributions
which treat luminance and chrominance values as random vari-
ables (see Fig. 1). Compared to traditional image-based models
this enables a cognitive robot to identify regions with uncertain
color values in the currently observed image and to distinguish
between static and frequently changing objects. Furthermore,
we show in this work that the proposed representation provides
a framework for the computation of Bayesian surprise.

Although our algorithms have not been developed for a spe-
cific cognitive architecture, we believe that they could be used
for preattentive vision in the perception modules of architectures
like ACT-R [10] and ICARUS [11]. Our surprise maps indicate
the position of novel objects and thus could provide input to the
visual buffer which is associated with the dorsal “where* path

of ACT-R’s visual system. On the other hand, the selective ex-
traction of features from novel objects which is shown in this
work can facilitate the autonomous formation of higher-level
object representations. Using these object representations, the
robot can recognize familiar objects in the scene and create en-
tities associated with them in the visual buffer of ACT-R or in
the perceptual buffer of the ICARUS architecture.

The paper is structured as follows. In Section II, we review
related work. Section III presents the novel probabilistic ap-
pearance representation which we propose for cognitive mobile
robots. The section also describes our methods for camera lo-
calization, depth estimation and view interpolation. The compu-
tation of surprise using our probabilistic representation is pre-
sented in Section IV. Section V shows experimental results ob-
tained from a real-world scenario. In Section VI, we conclude
this work.

II. RELATED WORK

In [12], the huge body of work in the field of image-based
rendering (IBR) is reviewed. IBR methods are classified with re-
spect to the amount of geometry information which is included
in the representation and used for rendering. A system which
computes novel images using explicit view-dependent geometry
in terms of per-pixel depth maps is presented in [5]. Since the
positions of the cameras capturing the scene are static, only one
initial calibration step is required, without further pose estima-
tion during the acquisition process.

In [13], an image collection is acquired by a mobile robot
during exploration and organized in a link graph. Using this rep-
resentation, the robot is able to localize itself in the environment.
This work investigates, in particular, the application of this rep-
resentation to path planning and navigation.

Itti er al. found in [8] that surprise attracts human attention
more than saliency and information-theoretic measures like the
image entropy. They use a statistical model for the firing rates
of early visual neurons and learn probability distributions over
its parameters from observations using Bayesian inference. The
Kullback-Leibler divergence of the posterior and the prior dis-
tribution provides a quantitative measure for surprise. Neurosci-
entific experiments in [14] also show that there are areas in the
primary visual cortex and putamen which respond progressively
more to unpredicted and progressively less to predicted visual
stimuli. It was found that surprise is an important cue for asso-
ciative learning [15].

In [16], an approach is presented for reinforcement-driven in-
formation acquisition during the exploration of an unknown en-
vironment by a robot. This method evaluates the information
gain which is achieved between two subsequent states along the
robot’s way through the environment and uses this metric for
assessing the reward of a given exploration policy in a reinforce-
ment learning framework. Similar to [8], the Kullback-Leibler
divergence is used for the computation of the information gain.
Reinforcement learning is in general a promising means for the
autonomous mental development of intrinsically motivated sys-
tems [17], [18]. Intrinsic motivation, which results from the pur-
suit of maximum internal reward, can be driven by learning
progress [19] or by novelty and surprise [20], and leads to the
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development of complex action sequences. However, the down-
side of reinforcement learning is that it is not able to cope with
high-dimensional state and action spaces. Hence, the environ-
ment has to be abstracted from the robot’s sensor data and thus
its internal representation is often not as realistic as in our work.
Experiments are often performed in an artificial gridworld.

The concept of surprise is also used in [21] where a robot au-
tomatically detects new landmarks during exploration and cre-
ates a topological map which contains points of special interest
like gateways.

The main contributions of this paper are the following:

* a probabilistic representation which expresses the robot’s
expectation and uncertainty about the appearance of its dy-
namically changing 3-D environment in terms of belief dis-
tributions over luminance and chrominance;

* a method for the computation of surprise maps which is
based on the probabilistic concept of this representation.

In contrast to our work, the image-based rendering techniques

reviewed in this section only store momentary snapshots of the
scene. While [8] investigates low-level surprise in humans, we
propose a method for surprise detection which does not require
the simulation of visual neurons and which can be easily im-
plemented on the graphics hardware of a robot. Furthermore,
unlike [8], we keep track of the pose of the robot’s camera and
extract local geometry information. This allows us to match im-
ages which are captured at different viewpoints. In contrast to
[13] and [21], we do not focus on objects and landmarks which
are only useful for navigation but also include complex everyday
objects like glasses in our representation.

III. A PROBABILISTIC APPEARANCE REPRESENTATION FOR
COGNITIVE ROBOTS

A cognitive mobile robot which is equipped with cameras is
able to acquire color information and to gather evidence about
the appearance of the objects in its environment. By storing
images from a continuous sequence together with the corre-
sponding camera poses, the robot can build an internal appear-
ance representation and later remember how the environment
looked like at the moment of acquisition. The ability to recall
and predict the appearance of the environment from a percept
history enables the robot to assess its current observation and
to extract regions that convey novelty and thus are particularly
interesting for task selection and task execution.

Since there is strong evidence from literature that attention is
driven not only top—down, but also bottom—up from stimuli data
[22], a representation which contains information about the lu-
minance and chrominance of the environment facilitates rapid
attentional selection as tedious preprocessing of the currently
observed image is not necessary. Hence, the robot can already
filter relevant information from early stimuli before higher cog-
nitive layers are reached.

An image taken at a given time instant only reflects the mo-
mentary appearance of the scene but does not tell how long
the environment is in the perceived state. The color value of
an image pixel, e.g., does not reveal that the brown table in
the middle of the kitchen is at its common position but that the
spilled liquid on the floor is unusual. Hence, in order to assess

the uncertainty of the currently perceived state of the environ-
ment, the robot has to evaluate a series of images taken over a
time interval. The robot holds a belief in the hypothesis that the
scene appears in a certain color.

In the representation that we propose in this work, the lumi-
nance and chrominance values which are captured at a single
pixel for a given viewpoint are modeled by Gaussian distribu-
tions

2T
with k € {Y, Cy,, C,} 1)

A 2 1 )
P (X | o, M) = | 5= - exp —5)\k(Xk—Mk) :

We use three separate probability models for the luminance Y
and chrominance components C}, and C, since there is strong
evidence that in the human visual system the luminance and
chrominance information is processed in decoupled pathways
[23].

The parameter 15, of the Gaussian distribution denotes the ex-
pected luminance or chrominance value and the parameter Ay
is the precision of the distribution, i.e., the reciprocal value of
the variance. Hence, the larger the precision, the smaller is the
uncertainty and the stronger is the belief that the environment
appears in the expected luminance and chrominance. These pa-
rameters are updated with each new observation that the robot
makes in the vicinity of the viewpoint. The luminance Y and
the chrominance components C}, and C, are computed from
the RGB values captured by the robot’s camera using the irre-
versible color transform [24]. Compared to the color processing
in the human visual system the C}, values encode blue—yellow
opponencies and the C, values red—green opponencies.

Like in image-based representations with explicit geometry
we store a per-pixel depth map at each viewpoint and the 6-de-
gree of freedom (6 DOF) pose of the robot’s camera head with
respect to a defined world coordinate system. The retrieval of
the pose and the computation of the depth maps are described
later in this section. Fig. 1 illustrates our proposed probabilistic
appearance representation.

A. Bayesian Inference of Model Parameters

In principle, there are several ways to infer the parameters
of the Gaussian distribution from the acquired luminance and
chrominance samples. Within the frequentist paradigm, one
could estimate the mean from the average of sequentially
captured samples and the precision from the squared differ-
ences of the samples from the inferred mean. The obtained
maximum-likelihood estimates are then point estimates which
provide one single Gaussian model which is supposed to be the
only valid model. In regions of the environment that the robot
does not visit frequently, only a small set of luminance and
chrominance samples is acquired around a given viewpoint.
Hence, the decision in favor of a specific probability model
based on an insufficient amount of sample data is very unreli-
able.

The Bayesian approach, in turn, does not infer only one single
model and discards all the others, but places prior distributions
over the parameters of the probability distribution. The prior dis-
tributions can be interpreted as subjective beliefs in hypotheses
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about the correct model. They take into account that, apart from
the most likely model, there might be other models that can be
valid for the observed data—of course with a lower probability.

In [9], we assume that the appearance predicted from the in-
ternal representation at a virtual viewing position does not differ
much from the true appearance. Thus, we suppose that the mean
value of the Gaussian distribution is known and only placed a
one-dimensional gamma prior over the precision. In this work,
we do not make this assumption and treat both the mean and the
precision of the Gaussian distribution as unknown.

One reason why we use a Gaussian model for the luminance
and chrominance values at a pixel is that the Gaussian distri-
bution belongs to the exponential family. So there exists a con-
jugate prior for its parameters [25]. An important property of
conjugate priors is that the posterior distribution obtained by the
multiplication of the prior with the likelihood function has the
same functional form as the prior distribution [26]. This makes
any further analysis like the comparison of posterior and prior
distribution straight forward. Furthermore, the computed poste-
rior distribution serves as a new prior during the processing of
new luminance and chrominance samples.

The conjugate prior which is used for the Bayesian inference
of both the mean and the precision of the Gaussian distribution
under the assumption that none of them is known is the normal-
gamma distribution. It has the following form:

Po (ks Ak) =
ag,r—1/2 )‘k (/Lk_TO k)2
K ARt cexp{—fo Ak} -exp{ —E DR ?)
’ I 200,k
with
3‘10:1\-
po_ Mor .

[(aok)\/2m00 K

as a normalization factor and k € {Y,C}, C,} again. I'(a) is
the gamma function

INa) = /00 u®texp{—u}du. 4)
0

As we can see from (2), the normal-gamma model is a two-di-
mensional probability distribution which is determined by its
four hyperparameters g 1, Bo,k, To,k» and g 5. Thus, in order
to encode the subjective belief distribution of the robot with re-
spect to the mean and precision of the Gaussian model, it is suf-
ficient to store these four hyperparameters for a given pixel at a
viewpoint. Note that the normal-gamma distribution is not sep-
arable with respect to the random variables ;. and Ag. While
the first exponential term in (2) only contains the precision, the
second one depends on both the mean value and the precision.
An example for a normal-gamma distribution in the luminance
channel is shown in Fig. 2.

When the robot makes a new observation X, =
{Xobk} =y Cp.c, At 2 viewpoint, the prior distribution in
(2) is turned into a posterior distribution using Bayes’ formula

D (s Ak | Xob,k) < p (Xobk | 1k, Ak) - Do (ks M) (5)

Py, Av)

Fig. 2. Anexample of a normal-gamma distribution over the mean ¢y and the
precision Ay of the Gaussian model of the luminance channel. The expected
luminance at this pixel is around 150.

Due to conjugacy, the posterior distribution in (5) is again a
normal-gamma distribution with the following hyperparameters
[26]

1
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We see from the update in (6) that the parameter oy, can be in-
terpreted as an indicator of how many samples have been ac-
quired so far for inference. The parameter 7, in (8) encodes
the expected value of the luminance or chrominance at a pixel.
Hence, the two-dimensional array of the 7i-values is supposed
to be close to a photorealistic virtual image. The parameter S, in
(7) contains a sum of squared differences between the new ob-
served luminance or chrominance value and the corresponding
expected value. The parameter oy, in (9) determines the weight
that a new luminance or chrominance value receives during the
update of the expected value.

When we consider the updates in (6)—(9), two issues arise.
First, the two parameters o and (j increase towards infinity
as the number of updates grows to infinity. Second, the param-
eter 0y, tends towards zero. This leads to the problem that after
a couple of iterations the expectation 73 does not change any
more. However, if a new object with different color appears in
the environment after a few observations, the expected appear-
ance has to be adapted to the new scene.

Furthermore, if the robot discovers during exploration new
parts of the environment which have been occluded so far by
objects, the appearance of the corresponding region in the new
observations has to be transferred to the internal representation
which is only achieved with values for oq ; which are signifi-
cantly larger than 0.

In order to prevent the unbounded growth of o, and J, a for-
getting factor f < 1 is introduced in [27] where similar update
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(b)

Fig. 3. (a) One of the trackers which capture the position of the LED markers
on the camera head from the laboratory’s ceiling. (b) Our camera head consists
of three sensors and a rectangular plate with LED markers in its corners.

equations have been derived for a gamma model as a prior over
the parameter of the Poisson-distributed neural firing rates. We
adapt this solution to our case. Furthermore, in order to ensure
rapid adaptation to unexpected changes, the parameter o, is
modified before the Bayesian update as follows:

Op,k = min (max <007k - exp {M—} ,omin) ,amax)
01

(10)
where £ is a constant. M(; denotes the first-order moment of the
prior normal-gamma distribution with respect to the precision
(see Appendix A)

“+o0 “+o0
Mo = / / Ak po (pk, Ak) dper dA
Ap=—00 J j1}, =—00
_ aO,k

~ Box

The reciprocal value of My, is the expected uncertainty about
the appearance of the environment at a given pixel. It controls
op,1; and so the update of the expectation 7 . If a change occurs
in the environment, new observations deviate from the prior ex-
pectation and the robot gets unsure about the true appearance. In
this case, the internal representation has to be updated rapidly.

Furthermore, (10) prevents the parameter o, ;, from growing
beyond an upper threshold oy, and from falling below a lower
threshold o ,;, near O.

The update equations, which we use in our algorithm, then
become

(1)

1
ap=f-aok+ 5

12
: (12)
1 (Xob kE— T0 k)Z
=f. B S Lo LA 13
Br =f /80,k+2 P (13)
- X,
o= Op,k b,k + Tok (14)
opi+1
Upk
=__PF 15
Tk opk+1 (15

Equation (11) shows that the multiplication of both g j and
Bo,x with the forgetting factor f does not change the first-order
moment of the prior distribution with respect to Ay In this work,
we use a forgetting factor of 0.8.

After the Bayesian update, the prior distribution at the robot’s
current viewpoint is replaced by the new posterior distribution
which serves as a new prior for future observations.

B. Camera Localization

In order to continuously determine the current pose of the
robot’s camera during motion, we use multiple active-optical
real-time 3-D trackers which are mounted on the ceiling of the
laboratory. One of the trackers is shown in Fig. 3(a). The tracker
sensor captures the position of four LED markers which are at-
tached to the camera head of the robot and transmits the marker
data to a host computer. As depicted in Fig. 3(b), the camera
head consists of a three-sensor camera system, a ballhead, and
a rectangular plate which contains the four LED markers in the
corners. The plate is strongly attached to the camera system in
a way that it is perpendicular to a camera’s image plane. The
markers emit infrared light in a predefined pattern and are con-
trolled via radiocommunication.

We define a local coordinate system xcyczc on the plate and
determine the positions of the LEDs in that coordinate frame.
When the robot moves and acquires images, we permanently
capture the current world coordinates of the LEDs. In order to
get the current rotation of the local coordinate frame zcyczc
with respect to the world coordinate frame zwywzw, we use
the least-squares approach in [28]. The translation t of the
camera head with respect to the origin of the world coordinate
system is provided by the tracked 3-D position of the front-left
LED in Fig. 3(b).

C. Depth Estimation

At each viewpoint in Fig. 1, a dense depth map is calculated
which contains the distance of each scene point to the projection
center of the camera. The camera system, depicted in Fig. 3(b),
captures three images simultaneously. The sensor in the middle
provides the image which updates the prior distribution in (2).
The image from the left camera and the image from the right
camera are used for multiview stereo matching, respectively.
Using two images for depth recovery allows for handling oc-
clusions.

The computation of depth maps is done in two steps. First,
a plane-sweep approach [29] tests several depth hypotheses for
each pixel of the middle image and computes a matching cost
by comparing its luminance value to the corresponding lumi-
nance values in the left and right image, respectively. Second,
an efficient implementation of the max-product algorithm [30]
then infers the most probable plane label for each pixel and pro-
vides as a result a smooth and dense depth map. The depth map
is stored at each viewpoint together with the pose information
and the parameters of the posterior distribution in (12)—(15).

D. View Interpolation

When a robot returns to a part of the environment that it has
visited before it will never exactly go along the same trajectory
and never make its observations at the same viewpoints as be-
fore. Hence, in order to retrieve the prior distributions for the
pixels of a currently captured image, it has to interpolate the pa-
rameters of the probability model in (2) from nearby views from
the internal representation. Section I1I-A describes that the robot
stores the infered posterior distributions at a viewpoint in terms
of two-dimensional arrays for each luminance and chrominance
channel. Thus, the robot can later retrieve them from memory
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like images in order to interpolate the prior for the current view-
point. The array of parameters which are stored at a viewpoint
in the representation will be denoted by reference parameter im-
ages and the array of parameters that is interpolated at the cur-
rent position will be denoted by virtual parameter image.

The internal representation might comprise hundreds or thou-
sands of reference parameter images, depending on the com-
plexity of the environment. Hence, the robot cannot keep the
whole representation in working memory all the time. Further-
more, it would not make sense to use reference parameter im-
ages for view interpolation covering a part of the environment
which lies completely outside the current field of view of the
robot’s camera. Thus, each time, the robot interpolates a new
virtual parameter image, it determines a subset of seven refer-
ence views which are the closest ones in terms of distance and
viewing direction.

The view interpolation is done in several passes. First, the
local geometry of the environment is reconstructed in terms
of triangle meshes using the depth maps of the selected refer-
ence views. The corresponding reference parameter images are
mapped on the 3-D vertices. The meshes are then projected on
the image plane of the virtual camera. Finally, the values «y z,
Bo,k» To,k»> and g 1, in the virtual parameter image are computed
by averaging the warped reference parameters at each pixel. The
obtained values are the parameter values of the normal-gamma
prior in (2).

IV. COMPUTATION OF SURPRISE MAPS

The probabilistic appearance representation presented in
Section III provides a framework for the detection of surprising
events and for attentional selection. The posterior distribu-
tion obtained by (12)-(15) expresses the robot’s belief in a
hypothesis about the appearance of the environment after a
new observation. If this new observation drastically changes
the belief the robot had before this observation, the robot gets
surprised.

A formal way to describe Bayesian surprise in terms of
how much a new observation changes the robot’s prior be-
lief is provided by the Kullback—Leibler divergence [8]. As
shown in Appendix B, the Kullback-Leibler divergence of
two normal-gamma distributions can be written in a closed
form. This is very convenient for technical implementations
and rapid computation of per-pixel surprise maps on graphics
hardware. In the luminance and chrominance channels of the
new observation, the surprise values Sy, k € {Y,C},C,} ata
given pixel are then computed by

Sk =KL (p (prs M) ;00 (s Ae)) =T1 + To + T3 + Ty + T

(16)
where
2T (a0) - /Tk0
T =1 k 17
e ( T T(ow) o ) 0
Ty = (Bro — Br) - % (18)
Ty = (ap — ao) [¢(ar) — log(Br)] (19)

>e 2

mobile robot
with camera

table with
objects

(b)

Fig. 4. (a) The mobile platform used for image acquisition [31]. (b) During
the acquisition of the image sequence 7, the robot moves multiple times from
point ¢, to point (> along an approximately circular trajectory. The trajectories
between the two points are similar but never identical.

1 0%
T, = 2 92 2) . == 20
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In (17) and (19), log(-) denotes the natural logarithm and (o)
is the digamma function

S0 (@) lo=ay

P(ax) = ()

(22)
The surprise values which are computed in the luminance and
chrominance channels are finally combined to a total surprise
score

S = Sy + Sc, + Sc, - (23)

Image regions which exhibit large surprise values convey much
novelty over the internal representation and can be used in order
to guide the robot’s attention.

V. EXPERIMENTAL RESULTS

In order to evaluate the computation of surprise based on our
proposed probabilistic appearance representation we captured
a long image sequence Z; with 1283 frames using the mobile
platform shown in Fig. 4(a). The robot’s camera acquired im-
ages at a resolution of 320 x 240 pixels and at a frame rate of
7 frames per second (fps). While the estimation of the camera
head’s poses was performed in real-time at 25 Hz, the com-
putation of the depth maps required several seconds per view.
Hence, for further processing, the images were saved on a hard
disk and the depth maps were computed in an off-line step. The
interpolation of the prior parameters, the inference of the pos-
terior distributions according to the (12)—(15) and the compu-
tation of the surprise maps in (16) are performed by a graphics
processing unit (GPU). The execution time of these steps is on
average 120 ms using an NVIDIA GeForce GTX 275. Hence,
our module for surprise detection can be used in real-time ap-
plications with frame rates up to 7 fps.

The robot started at point ()1 in Fig. 4(b) and was controlled
to go along a circular trajectory with its camera head looking to-
wards the center of the circle. When it reached ) it stopped and
immediately went back on the circle to ;. Arrived at )1 again,
it repeated the motion multiple times. At the turning points the
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TABLE I
THE ACQUISITION OF THE IMAGE SEQUENCE Z; CAN BE DIVIDED INTO
SEVERAL PHASES. IN EACH PHASE THE ROBOT MOVES FROM Q1 TO (22 AND

BACK
Phases Frames Description
and Events
A 1-339 Robot acquires reference model
of the scene.
X1 325 - 358 Human adds glass.
B 340 - 674 Robot captures images of the scene
with the new glass.
Xa 657 - 686 Human adds a black cup.
c 675 - 979 Robot captures images of the scene
which now also contains the new cup.
X3 962 - 985 Human removes cup.
D 980 - 1283 Robot captures images of the scene.
Glass is the only additional object.

robot continued the data acquisition so that the image sequence
71 was not interrupted. Each time it reached ()1 the scene was
changed by a human who added and removed objects. Thus, the
acquisition of the image sequence 7; can be divided into several
phases (A to D) which are separated by events (X to X3). The
phases and events are described in Table 1.

Our representation consists of reference parameter images in-
fered at 200 dense viewpoints around the scene. During the first
run of the robot from ()1 to 2, an initial set of 200 reference
parameter images was stored. The parameters of the normal-
gamma prior distribution for the inference of the first reference
parameter image were chosen as agr, = 1, o = 1, 70,5 = 0
and o9, = 5 with k € {Y, Cy, C,}. All other reference param-
eter images in the representation were infered during the first run
by using the robot’s observation and a prior which was interpo-
lated from reference parameter images at nearby viewpoints. In
all other runs along the trajectory, the latest reference parameter
image selected for view interpolation (see Section III-D) was re-
placed by the parameter image of the posterior distributions at
the robot’s current viewpoint. The depth map and pose matrix
associated with the latest selected reference parameter image
were replaced by the depth map and the pose at the robot’s cur-
rent viewpoint as well.

A. Evaluation of Bayesian Surprise Based on Our Probabilistic
Appearance Representation

Figs. 5-7 illustrate three surprise maps which we computed
in the phases B, C, and D, respectively. In Fig. 5(a), the image
captured by the robot at frame 465 is shown. Fig. 5(b) illustrates
the values of 7 o which are interpolated at the robot’s view-
point from the internal representation. We transformed 74, o to
the RGB domain in order to facilitate a better comparison to the
captured image. The parameters 7 o encode at each pixel the lu-
minance and chrominance of the scene which the robot expects
at its viewpoint. As depicted in Fig. 5(b), our representation en-
ables the robot to predict a virtual image with a high realism.

The surprise map in Fig. 5(c) clearly indicates the glass
as a novel object which was added to the scene at the be-
ginning of phase B and is not contained in the internal

1000 2000 3000 4000 5000 6000
(© (d

Fig. 5. (a) Frame 465 of the image sequence Z;. (b) The parameters 7¢ ;. cor-
respond to the robot’s expected appearance. For illustration, the values of 7
were transformed to RGB domain. (c) The surprise map indicates the glass as
a novel object. (d) The parameters 33°, show that the robot’s uncertainty about
the appearance is low across the image.

(a) (b)

1000 2000 3000 4000 5000 6000
(d

Fig. 6. (a) Frame 800 of the image sequence Z; . (b) The parameters 7 . rep-
resent the robot’s expected appearance. For illustration, the values of 7o i were
transformed to RGB domain. (c) The surprise map indicates the cup as a novel
object. (d) The parameters 33, show that the robot’s uncertainty about the ap-
pearance is low across the image.

representation. Fig. 5(d) depicts the sum of the parameters
BF =Yk (v,Cy,,C.} Br,0 Which express the uncertainty of the
appearance at each pixel [see (11)]. The figure shows that the
values are relatively low over the image which means that the
robot is quite sure about the appearance of the scene. There are
slightly elevated values around the edges of the objects. This is
because small pose inaccuracies due to tracker noise can lead
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Fig. 7. (a) Frame 1010 of the image sequence Z;. (b) The parameters 7o,
correspond to the robot’s expected appearance. For illustration, the values of
To,r were transformed to RGB domain. (c) The surprise map shows only slightly
elevated values in the region of the missing cup. (d) The parameters 33, show
a region of high uncertainty where the cup was removed. :

to small shifts of the object edges in the observation and the
predicted image during phase A.

Fig. 6(a) shows an observation of the robot in phase C' and
Fig. 6(b) the appearance of the scene which the robot expects
from the internal representation. The glass which was a novel
object in phase B is already shown in this virtual image. The
surprise map in Fig. 6(c) shows that the black cup added by the
human at the beginning of phase C' conveys a lot of novelty.

At frame 1010 in phase D, the robot makes the observation
in Fig. 7(a) which shows that the cup has been removed again
by the human. Although the cup is still contained in the internal
representation, as depicted in Fig. 7(b), the robot is only little
surprised that it has disappeared. Since the sudden appearance
of the cup at the beginning of phase B aroused a large stim-
ulus difference in the luminance channel, the robot is still un-
sure about the true appearance in that region [large values of 35
in Fig. 7(d)]. The robot expects low luminance values but the
infered Gaussian model has a small precision. That is why large
luminance values, which are captured from the table cloth in the
new observation, are unlikely, but still possible. The sum of the
parameters 33° in Fig. 7(d) in the region of the glass indicates
that our proposed representation is able to store the appearance
of complex transparent objects with a relatively low uncertainty.

We made a quantitative evaluation of the surprise maps over
the whole image sequence Z; . For this, we manually drew poly-
gons into the images around the regions of the glass and the cup,
starting with the frame in which they appear on the table for
the first time. Fig. 8 shows the blue-tinged masks. The mask in
Fig. 8(c) indicates the region on the table that contained the cup
before it was removed. It is used in order to measure the robot’s
surprise about the missing cup. In order to remove noise from
the surprise maps we averaged the values over 4 x 4-blocks.

(©)

Fig. 8. We manually labeled the image regions showing the glass in (a) and
the cup in (b) in order to create a mask for the evaluation of the robot’s surprise
about these objects. In (c), we labeled the region where the cup has been in order
to measure the robot’s surprise about the missing cup. (a) Case II. (b) Case II.
(c) Case 1II.

Fig. 9(a) shows the maximum values which are measured in a
block within the masks that indicate the glass and the cup, re-
spectively. We start our measurements at frame 340, after the
glass has been put on the table (green curve). The reason for the
drop of the surprise values in the region of the glass at the begin-
ning of phase B is that the robot coming from point ()5 reaches
the turning point (). Since in (); several images are captured
at the same viewpoint, the surprise values decrease rapidly. As
soon as the robot starts moving again towards ()2, the surprise
values increase since the reference parameter images along the
trajectory still represent the scene without the glass. After all
reference parameter images have been updated when the robot
reaches (), at frame 520, the surprise values decrease since the
scene does not contain any novelty along the way back to Q.

We start the measurement of the maximum surprise values in
a block within the region of the cup at frame 675 as soon as it is
on the table (orange curve). Fig. 9(a) shows that the cup evokes
larger surprise values than the glass did at the beginning of phase
B. This is because the stimulus difference between the bright
table cloth and the dark cup is also higher. The large surprise
values hold on along the trajectory until the robot reaches Q5.
There, as in the case of the glass, the surprise values drop since
the glass then is no longer novel for the robot. When the cup
is removed again around frame 980 the surprise values increase
but do not reach as high values as at the beginning of phase C'.
Hence, as already noted before, the removal of the cup is not as
surprising for the robot as its addition since the robot has already
seen the table without the cup before.

A similar behavior can be found for the mean surprise values
computed from all 4 x 4 blocks within the masks that indicate
the glass and the cup [see Fig. 9(b)]. The surprise values aver-
aged over the whole region of the glass are of course much lower
than the maximum surprise values because the stimulus differ-
ence is very low at sites where the glass hardly refracts the light.
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Fig. 9. (a) The maximum surprise value of a 4 X 4-block within the regions of the glass (green) and the cup (orange). (b) The average surprise value over all
4 X 4-blocks within the regions of the glass (green) and the cup (orange). In both cases, we see high values during the robot’s first run from ), to Q- after the

new object has been put on the table.

However, the values during the first run from Q1 to Q- are still
higher than in all following runs when the novelty of the glass
has gone.

The acquisition of the image sequence Z;, the computation
of surprise maps and the update of the internal representation is
illustrated in the video which can be seen on http://www.lmt.ei.
tum.de/videos/surprise.php.

B. Comparison to Change Detection Using Image-Based
Representations

For visual search tasks, the relationship of the surprise values
within the region of an object of interest to the surprise values in
the rest of the map is important. The surprise values within the
region have to be higher than outside so that the attention of the
robot is directed to the novel object. In order to evaluate this, we
introduce a measure which we call attentional selectivity (AS)
and which we calculate as follows:

AS = 10log, (%) dB (24)

out
where S is the surprise value averaged over all 4 x 4-blocks
within the region of the object of interest. S‘m,t denotes the max-
imum value of all blocks outside the region. In our case, we ex-
clude blocks near the borders of the surprise map since there the
virtual images which predict the appearance of the scene often
do not contain any information [cf. right border of Fig. 6(b)].
This automatically leads to high surprise values. In practice, the
robot can always determine the distance of a surprising block to
the borders of the image and give the blocks near the borders a
lower priority for attentional selection.
Furthermore, we introduce the peak attentional selectivity
(PAS) which is computed as

PAS = 10log; | —— | dB

out

(25)

where S denotes the maximum surprise value of all blocks
within the region of the object of interest.

In the following analysis, we evaluate the AS and the PAS
with respect to the regions of the glass and the cup over the

image sequence Z;. For comparison, we also evaluate the AS
and PAS obtained by the method image differencing. Here, the
appearance of the environment is stored in terms of a (nonprob-
abilistic) image-based representation and a virtual image is in-
terpolated at the current viewpoint of the robot from nearby
reference images. The image-based representation is continu-
ously updated by replacing the latest selected reference image
by the current observation. The absolute difference between the
luminance and chrominance values in a new observation and in
the predicted image is used in order to detect changes between
the two images. The AS and PAS are computed using (24) and
(25), while replacing the surprise values with the corresponding
values of the sum of absolute differences over the luminance
and chrominance channels. The difference to our proposed rep-
resentation is that the robot only stores deterministic snapshots
of the environment and does not hold any information about the
uncertainty of the appearance.

Fig. 10(a) shows the PAS values obtained by Bayesian sur-
prise and image differencing for the glass region in phase B.
On the robot’s way from @1 to ()2, the PAS is above 0 dB and
is higher for Bayesian surprise. When the robot returns to @1,
the PAS drops below 0 dB in both cases, which means that the
region of the glass does not contain a block which is more sur-
prising than the blocks in the rest of the map. When looking at
the corresponding AS values in Fig. 10(b), we notice that the AS
obtained by image differencing hardly gets over O dB between
the frames 340 and 520, whereas the AS obtained by Bayesian
surprise clearly does. That means that according to image differ-
encing, the glass is not more novel than other parts in the image,
which is not the case during the first run of robot from )1 to Q5.

The explanation for this is shown in Fig. 11. Here, we see that
the edges around the objects in Fig. 11(d) show up elevated ab-
solute difference values which are due to pose inaccuracies. This
type of noise decreases the AS. In contrast, the surprise values
around the object edges in Fig. 11(c) are relatively low, since
our probabilistic appearance representation establishes small re-
gions of uncertainty around the object borders. The drop of the
AS towards the end of phase B is due to the human person which
is about to put the cup on the table and enters the image from
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Fig. 10. The region of the glass is evaluated. Both the PAS values in (a) and the AS values in (b) are higher for Bayesian surprise than for image differencing. In
(b), the AS values below 0 dB obtained by image differencing during the robot’s run from €Q; to ¢J> show that the glass does not convey more novelty than the
rest of the scene. In contrast, Bayesian surprise detects the glass as a novel object.

(W)

Fig. 11. (a) Frame 400 of the image sequence Z; . (b) The virtual image which
is interpolated from the robot’s image-based representation and hence predicts
the appearance of the scene. (c) The surprise values computed by our method are
higher in the region of the glass than in the rest of the map. (d) The map obtained
by image differencing is sensitive to pose inaccuracies and shows false positives
near the edges of the objects.

the left (see Fig. 12). Both methods detect the human as a nov-
elty and provide surprise values which are higher than the ones
within the region of the glass.

Fig. 13(a) compares the PAS values obtained by Bayesian sur-
prise to the PAS values obtained by image differencing with re-
spect to the region of the cup. Due to the large stimulus differ-
ence, which cause large absolute difference values especially in
the luminance channel, the PAS obtained by image differencing
is higher than the PAS obtained by Bayesian surprise. However,
both the PAS and the AS values in Fig. 13(b) lie above 0 dB
so that the cup is clearly detected as a novel object. In phase
D, we see that both the PAS and the AS values obtained by
image differencing do not fall below 0 dB, whereas the AS ob-
tained by Bayesian surprise does. Thus, in case of Bayesian sur-

2 4 6 8 10 12 14
©)

Fig. 12. The human who is about to put a cup on the table in frame 662 (a) is
not expected by the robot (b) and thus, causes high surprise values near the left
border (c).

prise, the robot would briefly be astonished about the missing
cup but on average this image region is not more surprising than
others because the robot has seen the table cloth before. In con-
trast, image differencing detects high novelty in the region of
the missing cup. This could deteriorate the attentional selection
of other image regions which might contain new objects that the
robot has not seen before.

Furthermore, we investigate the effect of a reduction of the
number of reference parameter images in the probabilistic
appearance representation on the peak attentional selectivity.
Fig. 14 compares the PAS values in phase B obtained by
Bayesian surprise to the PAS values obtained by image dif-
ferencing for different densitites of viewpoints. The curves
denoted by “(F)” are obtained using the complete environment
representation, which consists of 200 reference parameter
images as described before. The addition “(R2)” denotes PAS
curves obtained from an environment representation with 100
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Fig. 13. The region of the cup is evaluated. Both the PAS values in (a) and the AS values in (b) are higher for image differencing than for Bayesian surprise.
However, during the robot’s first run from Q4 to (J> the PAS and AS values obtained by Bayesian surprise are clearly above 0 dB. The high values of the PAS and
AS obtained by image differencing at the beginning of phase D lead to a strong attentional control to the region of the missing cup. However, the absence of the
cup does not convey much novelty since the robot has seen the table without the cup before. This is reflected by the lower AS values obtained by Bayesian surprise.
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Fig. 14. Comparison of the performance of Bayesian surprise and image differ-
encing with respect to the attentional selectivity when the number of reference
views in the environment representation is reduced. The addition “(F)” refers
to the environment representation which contains all 200 reference views. The
additions “(R2)” and “(R4)” refer to environment models with a number of ref-
erence views reduced by a factor of 2 and 4, respectively.

reference parameter images and with a distance between two
neighboring views which is twice as large as in the case “(F).”
Finally, the curves with the addition “(R4)” are obtained from
an environment representation which contains only 50 refer-
ence parameter images whose spacing is four times as large as
in the case “(F).” We see from the curves in Fig. 14 that the PAS
values obtained by Bayesian surprise using an environment
model with a number of views reduced by a factor of 2 are still
as high or even a little bit higher than the PAS values obtained
by image differencing using the complete environment model.
If the number of views is reduced by a factor of 4, the PAS
values drop for both metrics. Hence, in phase B, the surprise
metric behaves more robust with respect to a lower number of
reference parameter images in the environment representation.
In general, however, the optimal number of reference views
in the representation always depends on the complexity of the
scene [4].

(®)

(d

Fig. 15. (a) Frame 250 of the image sequence 7>, which was used to infer
the probabilistic environment representation. (b) Frame 185 of the image se-
quence Z3, which shows the bounding rectangle around a new cup and four key-
points detected inside. (c) Frame 523 of the image sequence Z5, which shows
the bounding rectangle around a new milk carton and two keypoints detected
inside. (d) Frame 824 of the image sequence Z3, which shows the bounding
rectangle around a new coffee can and three keypoints detected inside.

C. Selective Extraction of Visual Features Using Surprise
Maps

Our surprise maps can be used to guide the attention of the
robot and to select regions from the captured images which con-
tain novelty. Hence, in this work, we consider the application of
surprise detection to the selective extraction of descriptive fea-
tures from new objects which are presented to the robot in a
familiar environment. Due to the short computational time, we
use speeded-up robust features (SURF) [32], [33], which are
invariant to scale, rotation and, to a certain degree, to illumi-
nation. The association of the selected SURF features with a
new created object class in a database facilitates the formation
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of higher-level object representations which can be used later
for recognition.

For our experiments, we acquired two other image sequences
75, and 73 in a different part of our laboratory using the plat-
form in Fig. 4(a). The robot again captured images of a table
scene while moving on a circular trajectory between two turning
points. The size of the images is 320 x 240 pixels. During the
first image sequence Z, a probabilistic environment model con-
taining 316 reference parameter images is infered. In the second
image sequence 73, three unknown objects were presented to the
robot — a cup (frames 40-315), a milk carton (frames 435-690),
and a coffee can (frames 810-1050). Using a flood filling algo-
rithm [34], whose seed point is the pixel location of the max-
imum surprise value in a surprise map, we identify the part of
the image which is most surprising to the robot. We compute
the bounding box of this region and select all features inside.
Fig. 15 shows one image of the image sequence Z» [Fig. 15(a)]
and three images of the sequence Z3 [Fig. 15(b)—(d)], which in-
dicate the computed bounding box around the new objects. The
circles inside the bounding boxes visualize the keypoints of the
extracted SURF features. We see in Fig. 16(a) that the number of
features extracted inside the bounding box, in general, increases
when a new object is presented to the robot while no features
are extracted when there is no new object in the scene (e.g., be-
tween frames 316 and 434 or between frames 691 and 809).
When there is no new object, the bounding boxes are usually
very small [see Fig. 16(c)] and located at random positions in
the surprise maps [see Fig. 16(b)] since the position of the max-
imum surprise value varies a lot with noise. In contrast, when
the robot detects a new object, the focus of attention follows the
object which can be seen from the smooth curves of the hori-
zontal (x) and vertical (y) pixel position of the bounding boxes’
center in Fig. 16(b). Hence, surprise strongly guides the robot’s
attention.

D. Limitations

One of the current limitations of our approach is that the
robot’s motion is constrained to an area which is covered by
the optical tracking system. Outside this area, an estimation of
the camera head’s pose is not possible. Occlusions of the LEDs
in case of an extreme tilt of the camera head also pose problems.
While an erroneous or missing pose of a single LED can be re-
covered using the redundancy of the others, the rotation of the
camera head cannot be estimated any more if two or more LEDs
are not tracked. However, a purely vision-based localization of
the camera head is challenging due to the highly dynamic envi-
ronment of the robot and odometry data is usually too inaccurate
for our application.

VI. CONCLUSION

While image-based representations only provide snapshots of
the environment at the moment of acquisition, the probabilistic
appearance representation presented in this work enables the
robot to reason about the uncertainty of the currently captured
luminance and chrominance values. The parameters of prior dis-
tributions are inferred by the robot’s observations and stored at
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Fig. 16. (a) The number of keypoints which are detected inside the bounding
box of the surprise region in the frames of the image sequence Z5. At each
keypoint, a feature descriptor is computed. (b) The horizontal (x) and vertical
() pixel position of the center of the bounding box along the image sequence
T5. (c) The size of the bounding box along the image sequence Z5.

a dense series of viewpoints. Using the pose information and
per-pixel depth maps which are stored together with the param-
eter images, the robot is able to interpolate the parameters of
the prior distribution at viewpoints where it has not been before.
We show in our experimental results that our representation pro-
vides a realistic expectation of the environment’s appearance
even if complex transparent objects like glasses are present in
the scene.
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Our representation provides a framework for the computa-
tion of Bayesian surprise. A comparison to the image differ-
encing method, which computes the difference between the cur-
rently acquired image and a virtual image interpolated from an
image-based representation, shows that the surprise maps ob-
tained by our method are more robust to noise due to pose inac-
curacies. Furthermore, experimental results show that our sur-
prise measure is a better detector for novelty than the measure
provided by image differencing. Our surprise measure can be
used to guide the robot’s attention to novel image parts and fa-
cilitates selective feature extraction.

The approach which we present in this work, provides two
important cues which can be used by a robot for the selec-
tion of action sequences. First, the detection of image regions
which exhibit high surprise values allow for the selective extrac-
tion of object features. By tracking these features over several
frames the robot can identify static objects in the environment
and plan trajectories around them (under the consideration of
obstacles) in order to get full representations of these objects.
Second, the robot can develop policies to minimize the uncer-
tainty about the environment’s appearance in its internal repre-
sentation by taking images preferably in regions where the un-
certainty is highest. As pointed out in Section III-A, the update
of the robot’s expected appearance is driven by uncertainty.

APPENDIX A
MOMENTS OF THE NORMAL-GAMMA DISTRIBUTION

The moment My, of the normal-gamma distribution is calcu-
lated by

M01:/+oo /+oo )\.ﬂ—a.)\a_l/2
Jpu=—oo0 J A=—o0 F(Ol) V 2ro

AMp—1)*
~exp {—0A} - exp B — dAdp. (26)
o
With the substitution
e=a+1 27
we obtain
+oo +oo ﬂe—l
Moy = . /\6—1/2
o /u=—oo /,\:_c><> IF'(e—1)v2no
2
-exp {—0\} -exp { (N 7) } dAdp
20
_e— 1 / 55 L \e-1/2
p=—o0 Ja=—oo L' (€) V210
(u 7)2 e—1
-exp {—PA\} - exp dhdp = 3
e
=—_. (28)
B
Here, we used the relationship
Fe)=(e—1I'(e—1). (29)

Using (28), the moment M7, is calculated by
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APPENDIX B
THE KULLBACK-LEIBLER DIVERGENCE OF TWO
NORMAL-GAMMA DISTRIBUTIONS

Be po (14, A) and p (, A) two normal-gamma distributions
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The Kullback—Leibler divergence of the two normal-gamma

distributions is computed by
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Here, it is convenient to use the natural logarithm since the
normal-gamma distribution contains two natural exponential
terms.

K
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In order to keep the notation uncluttered, we write the Kull-
back-Leibler divergence as a summation of five terms

KL(p(uA)ipo (X)) =T1+To+ T+ Tu+Ts. (35

For T}, we obtain

a

+oo +oo T
I'(a)V2nwo
/ / p(p,A) - log %
TH=moe dA=Tee T(ao)v/2ros
a T .
= log <% V0 ) , 36)
5 T(a)- Vo

Using (28), T is computed by

Ty dA dp

+oo r+o00
Tzz(ﬁo—ﬂ)-/ /_ A-p (i A) dA dy
(873

= (=B 5. (37)
T3 is computed by
+oo e
_ . B e
T, = (/A:_ool‘)g(” LA exp =)
“+o00 1 2
X (n—1)
/L:_m P -exp g — 27 dp| dA
- (a—ap)
+o0o Y
— - . /8 . a—1 . ex —
= </}\20010g(/\) e A exp {—0A} d)\)

“(a —ag) = (¢ () = log (B)) - (a — o). (38)

Using (28), (30), and (31), we obtain 7} by

1 r+o00 +oo
Ty=— / [)\uz —2)\/1,7'0—{—)\7'3] -p (, A) dppdA
200 A=—0c0 J p=—oc0
1 5 o 9 a]
=— 7" =+0—-2797- = +75 5| (39)
200 { p R R
Similarly, we obtain T; by
Lo e 2 2
Ts=— — [/\/1, —2AuTHAT ]~p(u,/\) dpdA
20 A=—o00 J p=—00

1 5 O 9 @ 5 o __l
—%[T-B+U—2T'E+T'ﬁ:|— . (40)
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