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Computational Developmental Neuroscience:
Capturing Developmental Trajectories
From Genes to Cognition

Jean-Philippe Thivierge

Abstract—Over the course of development, the central nervous
system grows into a complex set of structures that ultimately con-
trols our experiences and interactions with the world. To under-
stand brain development, researchers must disentangle the contri-
butions of genes, neural activity, synaptic plasticity, and intrinsic
noise in guiding the growth of axons between brain regions. Here,
we examine how computer simulations can shed light on neural
development, making headway towards systems that self-organize
into fully autonomous models of the brain. We argue that these sim-
ulations should focus on the “open-ended’’ nature of development,
rather than a set of deterministic outcomes.

Index Terms—Axonal growth, computational model, develop-
ment, intrinsic activity, synaptic plasticity.

I. INTRODUCTION

OST of the neural circuits involved in cognition have

developed an adult-like structure well before their in-
volvement in sensation, perception, and behavior [1]. For in-
stance, the topographic connectivity of primary sensory areas
(visual, somatosensory, etc.) is already in place in the embryo,
albeit lacking fine precision [2].

This ability of neurons to anticipate their final organization is
realized by a highly specific process of growth and refinement
of axonal projections that occurs independently of (and prior to)
any visual experience. To understand this process, researchers
across a variety of disciplines must account for several factors
contributing to brain development. These factors include, but
are not limited to, genetics, neural activity, synaptic plasticity,
and intrinsic noise.

What are the prospects for an integrated, systems-level com-
putational approach aimed at a mechanistic understanding of
these factors and their interactions? To address this question, we
begin by examining models of genetically driven development,
then consider models that incorporate endogenous neural ac-
tivity and synaptic plasticity. Building on insights from models
of local neuronal circuits, we go on to discuss the formation of
highly organized large-scale networks of anatomically distinct
brain regions. Based on recent advances in the field, we argue
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that the multiple intrinsic factors contributing to the wiring of
neuronal connections, along with the dynamical nature of de-
velopment, are within the grasp of an integrated computational
approach. Such an approach will require proponents in the
field of computational developmental neuroscience to adopt a
developmental program that is biologically grounded, highly
“open-ended,” and stochastic. This approach will shed light on
developmental processes, as well as their links to evolution,
cognition, and behavior in the adult brain. Here, our goal is not
to provide an exhaustive list of models, but rather to illustrate
key principles of computational approaches by describing a
few models at different levels of analysis, from single synapses
all the way up to the large-scale cytoarchitecture of the brain.

II. ACTIVITY-INDEPENDENT DEVELOPMENT—A BLUEPRINT
FOR THE BRAIN?

During an early stage of development, axonal elongations
“sniff out” their correct anatomical position by following molec-
ular guidance cues [3]. Several of these cues are expressed along
gradients of concentration across various regions (e.g., a low-to-
high concentration from ventral to dorsal retina; see Fig. 1). In
retinotectal projections (from retina to midbrain), for instance,
genetic markers are expressed along both the sending region
(retina) and the target region (superior colliculus or tectum) [4].
Axonal elongations from retinal ganglion cells use these molec-
ular signals to establish synaptic contacts in termination zones
of the target region such that point-to-point topography is main-
tained (in an inverse manner). This mechanism is not unique to
the visual system; similar genetic markers are responsible for
the layout of a rough topographic map in all primary sensory
areas of cortex [2].

Computer models of neural development, with a tradition
dating back several decades, have been instrumental in inves-
tigating the role of genes in shaping synaptic connectivity be-
tween brain regions. These models are not part of so-called “ge-
netic algorithms,” where a certain fitness function is known in
advance. Here, more often than not, the fitness function of ge-
netic markers is not assumed in advance.

One of the early theoretical constructs aimed at character-
izing genetically guided connectivity is the chemoaffinity hy-
pothesis [5]. A postulate of this viewpoint is that molecular la-
bels expressed across sending and target regions must specify
topographic maps. Following this proposal, several models have
shown that molecular gradients account for a large body of ex-
perimental findings on normal and aberrant map formation (for
a review, see [6]).
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Fig. 1. Molecular guidance cues are responsible for the establishment of a
rough topographic map between the retina and superior colliculus (SC, in the
midbrain). An object on the retina (depicted as a rooster) is reproduced in the
midbrain. Axons (colored lines) transmit information from the retina to the SC
(initial and corresponding termination zones shown by filled circles). Only a
single axis is shown here. Examples of gradients of expression for complemen-
tary molecular guidance cues (Eph/ephrin, [4]) are shown in triangles. These
gradients provide information relevant to the migration of axons to correct to-
pographic positions.

Most of these models, however, leave largely unanswered
the question of whether gene expression follows particular op-
timization principles for guiding the growth of axonal projec-
tions. Several hypotheses about the nature of these optimization
principles have been proposed. For instance, developmental pro-
cesses may aim to minimize the wiring length necessary to link
two regions of the brain [7]. Few models have attempted to re-
late optimization principles to the growth of axons, and those
that have done so have resulted in conflicting accounts. Some
models claim that growing axons make optimal decisions on
growth direction in the presence of noise in molecular gradients
[8], [9], while others claim that these growth decisions attempt
to minimize the number of steps necessary to reach a target site
[10].

One recent model, for instance, assumes that the path chosen
by migrating axons can be described by a Bayesian “ideal ob-
server” whose goal is to extract directional information from
molecular gradients [9]. In this model, the growth cone (i.e., the
tip of the axonal elongation that is sensitive to changes in molec-
ular concentration) is attempting to determine whether the gra-
dient is increasing or decreasing, given solely information on
its receptor occupancy (Fig. 2). This is achieved by calculating
the probability P(u|/3) of sensing a relative change in gradient
concentration () given receptor bindings 3
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Fig.2. A Bayesian model of growth cone migration [9]. Receptors are located
at different positions (71, ..., 7s) on the growth cone. The concentration of a
molecular gradient is shown above the cone; + is the concentration at the center
of the gradient sensor; 4 is the relative change in gradient concentration across
the sensing surface. Only a fraction of receptors are bound; these are shown by
colored ellipses and form the set 3. In the model, a relative value is assigned to
the probability that p is a decreasing or increasing gradient, given the receptor
occupancy. In the example illustrated, the growth cone would move towards the
right, as indicated by the asterisk (‘“*”).
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where NV is the total number of receptors and r is a receptor
position. Equation (1) is based on the probability p = v/(1+7)
that a receptor is bound, where + is the gradient concentration
at the center of the gradient sensor. By estimating P(u|/3) using
(1), it can be shown that the growth cone maximizes its chances
of correctly estimating the gradient direction.

Of course, caution is warranted in interpreting models based
on principles of optimality, because alone they do not constitute
an explicit means of implementing an optimal strategy for ax-
onal growth.

Leaving aside debates about the optimal nature of axonal
growth, the prevalence of genetically driven circuit formation
makes it difficult to deny its role in the development of cog-
nitively relevant circuits. More controversial, however, are the
manifestations of that role. Many models of learning focus on
the statistical extraction of information from structured envi-
ronments, and fail to account for how experience-independent
(i.e., endogenously driven) processes bias knowledge acquisi-
tion mechanisms in the first place [2]. There are many exam-
ples of ways in which gene expression influences the represen-
tation of knowledge. For instance, recent functional magnetic
resonance imaging (fMRI) findings suggest that visual topog-
raphy is preserved in higher regions of associative cortex that
have traditionally been described as receiving a massive con-
vergence of afferences from lower cortical areas [11]. The pres-
ence of topography in frontal cortex suggests that spatially or-
ganized information may be preserved beyond primary cortical
layers. Given the known expression of molecular guidance cues
in cortex [12], it is likely that these cues provide an early con-
tribution to the organization and functionality of higher-order
cortical circuits.
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Fig. 3. The establishment of visual projections from retina to midbrain involves
a series of processes that unfold over the course of development. In an early stage
of prenatal development, axonal elongations are guided by molecular guidance
cues. Subsequently, when synaptic contacts are established, highly correlated
patterns of retinal activity emerge and propagate to the superior colliculus. Fi-
nally, during postnatal development, experience-dependent map formation is re-
sponsible for the refinement of connectivity.

Taken as a whole, the body of work on computational models
of genetically driven brain development offers many potential
avenues for devising developmental programs that bias partic-
ular forms of neural wirings and, ultimately, both sensory and
cognitive processes. Molecular guidance, however, cannot tell
the whole story on brain development, as it is limited to a well-
defined period in vertebrate development (Fig. 3). Furthermore,
the axonal projections resulting from molecular cues are typi-
cally imprecise in terms of their anatomical specificity. These
considerations make it unlikely that molecular markers provide
a deterministic blueprint for brain development.

III. WHEN ACTIVITY-DEPENDENT DEVELOPMENT
IS MAKING WAVES

A large corpus of experimental work shows that electrical
activity in the developing neural system contributes to the re-
finement of connectivity. The rate at which neurons produce
action potentials, for instance, is related to their dendritic ex-
tent [13]. The facilitatory effect of activity in the early neural
system is captured by computer models of neurite outgrowth
[14]. Neural activity, however, has more than a simple facilita-
tory (all-or-none) effect on neural wiring. The patterns of spon-
taneous activity produced during development of the retina, for
instance, are highly correlated in space and in time, providing a
rich signal that can be used to drive map formation [15].

A. Models of Endogenous Neural Activity

In recent years, computational models have successfully cap-
tured the “wave-like” nature of spontaneous activity [16]-[19].
In particular, mean-field models (abstracting away details of
single action potentials) can be designed to generate bursts of
activity that propagate across the retina and produce highly cor-
related patterns among neighboring ganglion cells.
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Fig. 4. Spontaneous wave-like activity in a model of retinal cells. Different
frames show 300 ms of activity for a 2-D sheet of neurons. Color maps show
the activation of retinal cells obtained from (4). For further details, see [34].

One model simulates the membrane potentials of amacrine
and retinal ganglion cells in order to produce wave-like
dynamics

Xiretina(t) — Xiretina(t _ 1) . eXp(_At/Trctina) + Nac
XA = XAC(t — 1) - exp(—At/Tac) + Nac 4

where ¢ is a time-step of update; ¢ indexes different cells of
the retinal (i.e., retinal ganglion cells) and amacrine popula-
tions; At is the time-step of the model; Nac corresponds to
the number of amacrine cells that fired at the previous time-step
(t — 1) within the spatial region ¢Ac; Tretina and Tac are the in-
tegration times of retinal and amacrine cells, respectively. In the
model, amacrine cells receive their input from each other, and
send their output to ganglion cells; the latter do not receive input
from each other, and do not send activity back to the amacrine
cells. At any given time-step, cells can fire spontaneously with
a random probability (set to p = 0.03 in order to obtain low
firing rates). In addition, cells fire when either their membrane
potential rises above threshold (fa¢) or if they are within an
UP state (lasting for a predefined period of time). Further de-
tails and simulation results are available elsewhere [18], [34];
for an example of retinal wave-like activation, see Fig. 4.

A key aspect of the above model is that stochasticity is
required to initiate waves at random spatial locations and
with a random direction of propagation. Because spontaneous
neural activity of a highly stochastic nature has been reported
throughout the central nervous system in a variety of vertebrate
species [20], it likely plays a ubiquitous role in development.
Moreover, this role likely extends into adulthood, where in-
trinsic activity modulates sensory and behavioral processes
[21], [22].

In order to understand how spontaneous activity inscribes it-
self in the developmental program of the brain, several con-
ceptual gaps must be filled. Advances in computational models
should aim to capture not just the influence of spontaneous ac-
tivity at a particular period of development, but, more broadly,
its trajectory from early to late stages of neural growth—a goal
that is in line with the concept of a developmental program that
spans the whole course of brain formation.
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Let us illustrate one of the challenges in modeling spon-
taneous activity from the vantage point of its developmental
trajectory. In the forebrain, inhibitory interneurons are the
first to develop functional synapses [23]. Initially, the neu-
rotransmitter GABA functions in an excitatory fashion and
drives spontaneous activity. The establishment of excitatory
neurotransmission then switches GABA from excitatory to in-
hibitory. This peculiar aspect of development may explain why
spontaneous waves of activity are limited to a brief period of de-
velopment preceding eye opening [24]. Computational models
that autonomously transition between stages of development
would shed light on this phenomenon. A key question that these
models must address is that of commitment—to what extent
are developmental “decisions” at one stage subject to change
during a subsequent stage? While complete determinism of
early developmental stages would be implausible, some degree
of commitment likely prevents rewiring of an initial map laid
out by genes [25].

B. Interplay Between Spontaneous Activity and Synaptic
Plasticity

Equally important is the question of how spontaneous activity
interacts with mechanisms of synaptic plasticity to drive map
formation. Because the influence of spontaneous waves on map
formation is restricted to a brief time period (roughly 4-6 days),
there is some developmental pressure to efficiently extract infor-
mation from these waves and use it to refine axonal projections.
As a consequence, the nervous system is likely to favor mecha-
nisms of synaptic plasticity that quickly and accurately lead to
a correct connectivity. While the role of synaptic plasticity as
a major driving force in neural development is well established
[26], how synaptic plasticity fulfils that role is a topic of sus-
tained interest. The most likely candidates for synaptic plasticity
are rules that detect correlated activity— most prominently, ver-
sions of Hebbian learning [27]. Models that incorporate such
a principle can successfully account for map formation in the
early visual system [28]. In essence, the mechanism at play is
simple: neurons that “fire together” on the retina will tend to
“wire together” in the midbrain. A variety of models have com-
bined this mechanism with some form of competition for estab-
lishing postsynaptic contacts [29].

Taken together, these models suggest that a number of dif-
ferent possible rules, from spike-timing-dependent plasticity
(STDP) to more coarse-grained rules based on mean firing rates
(Fig. 5), can account for some aspects of map formation. This
leaves unanswered the question of which specific rule is most
plausible.

On the one hand, proponents of spike-based models argue
that STDP is a well-documented rule for plasticity in the early
visual system [30]-[32]. In addition, simulations show that it
can successfully refine a rough topographic map and produce
precisely organized projections [33], [34].

A phenomenological version of STDP relating changes in
synaptic efficacy (Aw;;) to spike timing at a particular time-
point ¢ can be described as follows

W, - exp(—=Atij/74)
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Fig. 5. Different rules for synaptic plasticity rely either on the STDP or on the
latency between bursts (burst-timing-dependent plasticity), where each burst is
composed of multiple spikes. Both plots relate spike/burst latency to changes in
synaptic strength between two neurons. Blue: long-term potentiation (increase
in strength); red: long-term depression (decrease in strength).

where At;; = t; — t; reflects the difference between the last
spike arrival times of presynaptic (¢;) and postsynaptic (¢;) neu-
rons; W, and W_ control the magnitude of change in synaptic
efficacy; 7, and 7_ control the time-course of plasticity.

On the other hand, spike-based rules are problematic because
immature developing neurons are unreliable in propagating in-
formation at the level of single spikes, because they lack fine
temporal resolution [35] and exhibit high levels of noise [36].
One alternative is a rule based on bursts of action potentials [37].
One version of this rule proposes a linear relationship between
synaptic change and burst latency where a burst is composed of
multiple spikes (Fig. 5). In recordings of the developing lateral
geniculate nucleus, this burst-based rule captured a higher pro-
portion of spikes than a spike-based rule, even when the latter
rule was modified in a number of ways.

An intriguing possibility is that different rules for synaptic
plasticity contribute to specific developmental stages. While an
early stage may recruit a burst-based rule to extract information
from spontaneous waves, a later stage may recruit a spike-based
rule to extract information from the environment. A burst-based
rule may be well-suited to spontaneous waves, which lead to
much more correlated activity than natural visual environments.
Future computational work examining developmental trajecto-
ries could address this question and propose rules for a plausible
developmental program.

IV. MODELS OF LARGE-SCALE BRAIN DEVELOPMENT

The need to develop a biologically informed developmental
program is further illustrated by zooming out of the individual
synapse and examining development at the scale of broad
anatomical regions. At this larger scale of neural connectivity,
we find principles of development and organization that hold
across mammalian species.

A prominent example of one such principle is the “inside-out”
pattern of circuit formation. The development of local circuit
properties occurs during a stage when different brain regions
are functionally isolated from each other. The later growth of
inter-region connectivity links these specialized modules into
integrated neuronal networks. One example of the inside-out
principle is the development of thalamocortical projections,
where thalamic nuclei are functionally segregated prior to the
establishment of synaptic contacts within specific cortical areas
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[38]. A local-to-distributed development, characteristic of the
inside-out principle, is also reported in human resting-state
fMRI [39], suggesting that this principle may subserve both
anatomical and functional aspects of brain development.

At the functional level, an inside-out course of development
contributes to the establishment of anatomically defined clus-
ters with distinct functional roles, including visual, auditory,
somatosensory-motor, and frontolimbic clusters in the mam-
malian brain [40]. The integration of information from these dis-
tinct clusters occurs through long-range projections and relay
centers such as the thalamus. One crucial consequence of an
inside-out development is that small changes in the local cir-
cuit properties of individual clusters can have a large impact
on information processing once these clusters become inter-
connected.

Computational models are well-suited to test the con-
sequences of local circuit properties on global neuronal
processing. Importantly, these models can examine the link
between developmental trajectories based on the inside-out
principle and cognitive outcomes. Already several models
of large-scale brain development have been proposed. These
models capture several aspects of global connectivity, including
a small-world organization [41], [42], dependence on spatial
distance [43], economy of wiring length [44], and economy of
processing steps [45]. In sum, these models suggest that sev-
eral competing requisites shape neuronal connectivity during
development.

To illustrate this idea, let us consider a relatively simple model
of motor cortex organization [46] (Fig. 6). The goal of this
model was to account for several mapping requisites, including
a somatotopic map of the body, a map of hand location in space,
and a partitioning of cortex into regions that emphasize different
complex, ethologically relevant movements. A Kohonen net-
work [47] was employed to balance out these conflicting req-
uisites. This network was composed of a series of nodes laid
out topographically. During training, these nodes received a set
of inputs and learned to represent these inputs in a structured
manner. After training, each node captured a subset of the in-
puts, with nodes that are close together sharing similar repre-
sentations.

More formally, stimuli v from a stimulus space V' are mapped
onto neurons located on the vertices r of a grid in an output space
A. Each neuron has a center field w.(€ V). The stimulus v is
mapped in a winner-take-all fashion onto the neuron r that has
a field center w, closest to v

vt fwe = vI| = min W) ©)

The map is learned by successive presentation of stimuli v, and
by shifting the field center of the winning neuron r, as well as
those of its neighbors r’ towards the stimuli
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Fig. 6. Motor cortex organization is the result of a competition among map
requisites. A. Design of the input vectors for the Kohonen network described
in main text. Each input vector is comprised of three parts describing the body
parts that are moved, the position of the hand, and the ethological category of the
movement. The example shown represents a complex hand-to-mouth movement
with activation of several limbs. B. Example of three body parts (tongue, face,
and torso) that are mapped in a somatotopic fashion (left-most figure: complete
body map used in the Kohonen network). C. Nonsomatotopic mapping of body
parts involved in complex movements. D. Reorganization of the arm represen-
tation following lesion (black: site of lesion). B-D adapted from [46].

A two-dimensional grid of nodes was employed to repre-
sent the organization of motor cortex. These nodes received
input vectors that described simple, as well as more complex
movements. For instance, a complex hand-to-mouth movement
consisted in the activation of the tongue, lips, jaw, neck, arm,
and hand. In the model, this was described by an input vector
[Fig. 6(A)] with three distinct parts: 1) a ten-dimensional bi-
nary vector identifying the body parts that are moved; 2) con-
tinuous values for the position of the hand in 3D Cartesian space
(centimeters relative to the mouth); and 3) binary values for the
ethological category of the movement.

A total of 12800 input vectors were presented during
training. These vectors included complex movements for an
equal proportion of ethological categories. The input vectors
also included simpler movements of the foot, leg, mouth, lips,
jaw, tongue, as well as movements of the arm to a variety of
locations in space.

After training, the result is an artificial motor cortex that
contains many features seen in actual motor cortex. One such
feature is that many individual body parts in the artificial
motor cortex followed somatotopic coordinates [Fig. 6(B)].
In addition, as in actual motor cortex, body parts involved
in complex ethological movements did not respect a strict
topography [Fig. 6(C)]; this is because these body parts were
often coactivated with several other limbs. In other words, the
strong correlation between activation of different limbs during
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execution of complex movements gave rise to nontopographic
representations.

The idea that mapping is use dependent and sensitive to the
statistics of the training input is illustrated by simulating a lesion
where part of the map no longer received activity [Fig. 6(D)].
This simulation led to a reorganization of the map whereby the
region surrounding the lesion “took over” the activation of the
ablated area.

While the above example is a clear instance of anatomical
segregation based on particular functional roles, the origins of
functional specialization in large-scale brain organization (e.g.,
across several regions of cortex) are far less clear. Although few
models have examined this issue, two conflicting viewpoints
have emerged. One view is that functional specialization results
from the modular nature of environmental goals [48]. This is
supported by the findings that an artificial network faced with
a variety of tasks can learn to self-organize into distinct (spe-
cialized) clusters. When applied to biology, this explanation be-
comes problematic, as the nervous system develops modular
specialization well before any sensory experience [38]. By the
age of two, the brain is already strongly modular and exhibits
patterns of correlated resting state activity (i.e., in the absence
of a task or stimulus) that are highly similar to those of adults
[49].

A more plausible scenario is that endogenous mecha-
nisms—such as molecular guidance cues and spontaneous
activity—drive the emergence of modular specialization. That
is not to say that endogenous processes are the sole driving
force, as functional modules are reshaped until maturation
[39]. Rather, the propensity towards a modular development
emerges from endogenous rules. In accord with this viewpoint,
recent computational work shows that, under a minimal set
of assumptions, large-scale brain development organizes itself
spontaneously into distinct modules [50].

In turn, a modular organization may impose important con-
straints on the neural dynamics underlying cognition [51]. Re-
cent computational models have successfully captured some as-
pects of the relationship between the large-scale organization
of anatomical connections and resting-state activity [52], [53].
Models of autonomous development should build on these ef-
forts to examine the mutual influence of connectivity and neural
dynamics at different stages of maturation.

V. THE ROLE OF DEVELOPMENTAL
TRAJECTORIES IN EVOLUTION

It is likely that the characteristics of brain development
described thus far, from the molecular guidance of individual
axons all the way up to interactions of large regions, are con-
strained by natural selection. According to one theory, natural
selection can influence the presence, anatomical localization,
and size of “cortical fields” that form basic functional units in
neocortex [54].

One way in which natural selection influences brain archi-
tecture is through the expression of genes at specific stages of
development. While many aspects of cortical organization are
conserved across mammals, the slight “tweaking” of gene ex-
pression at a particular developmental stage can have drastic ef-
fects on neural structure. For instance, knockout mice that lack

the 32 subunit of the nicotinic acetylcholine receptor have ab-
normal forms of spontaneous activity during a brief period of de-
velopment, in turn affecting the activity-dependent refinement
of retinocollicular projections [24].

By considering developmental trajectories, as proposed here,
we may gain insights into the relation between evolution and
development. The mechanisms by which development tweaks
gene expression may offer a principled way to control pheno-
typic outcomes, with earlier gene alterations leading to large
effects compared to later gene alterations. Developmental alter-
ations in gene expression are, however, under strict evolutionary
constraints, as large changes in gene expression may jeopardize
viability.

In computational work, fitness functions have been used to
evaluate the viability of neural systems over a wide range of
parameters [55]. However, it is not yet clear how fitness func-
tions relate to evolutionary pressures, including the specific ac-
tion of genetic, environmental, and intrinsic factors. These fac-
tors could become part of the next generation of computational
theories, allowing more direct links between development and
evolution.

VI. TOWARDS AN OPEN-ENDED, STOCHASTIC
DEVELOPMENTAL PROGRAM

What avenues could lead to an integrated computational ap-
proach to autonomous development that incorporates biological
principles of single neurons as well as large-scale systems? As
a starting point, recent models of the adult brain incorporate
anatomical constraints and capture broad features of large-scale
brain dynamics [52], [56]. To recast these models in a devel-
opmental context, one could begin with an under-developed ar-
chitecture and explore developmental programs that give rise
to appropriate brain circuits. Crucially, such programs should
incorporate genes (e.g., molecular gradients), stochastic neural
activity, and synaptic plasticity. How these factors are incorpo-
rated will depend upon the particular choice of model. For in-
stance, a large-scale model of spiking neurons with STDP [56]
could straightforwardly incorporate waves of endogenous ac-
tivity (4) in early development [34].

Several questions could be asked with such a model. What
programs would give rise to an inside-out development of con-
nectivity (see Section IV)? Would the development of functional
connectivity mirror the growth of anatomical connections? How
does the development of individual cortical regions affect more
global aspects of information processing in the brain? What is
the impact of different developmental trajectories on outcomes
such as learning and memory in the mature brain?

Computational models could complement experimental
data by providing a more complete account of development,
unconstrained by the limitations of current technologies. For
instance, fMRI can estimate patterns of brain activation, but
lacks single-neuron resolution and cannot be employed in early
stages of development. More invasive techniques, including
two-photon imaging as well as the use of knockout models,
allow only limited parallels with human development, in part
because of incomplete homologies between humans and other
mammals [57]. Computational models composed of large
networks of artificial neurons could reach beyond experimental
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insights by simulating how genes and neural activity con-
tribute to the growth of connectivity from the early stages of
development.

When devising such models, one must be cognizant of poten-
tial pitfalls, including the over-interpretation of results obtained
from abstract models as well as the design of overly complex
models that lack testable predictions. Models must strike a bal-
ance between abstracting away neurobiological details of neural
circuits, and generating precise hypotheses on the role of partic-
ular developmental events.

VII. CONCLUSION

In the current work, we have emphasized that developmental
programs in the brain are “open-ended,” meaning that they
are not fixed from the early stages of neural outgrowth. The
noisy expression of molecular guidance cues, combined with
the stochasticity of spontaneous neural activity, suggest that the
developmental program of the brain is highly nondeterministic
in nature. One advantage of an open-ended developmental
trajectory is that processes at later stages can build upon earlier
ones to refine axonal projections (as is the case with activity-de-
pendent mechanisms) or to link together specialized modules
with distinct yet complementary functional roles (as is the case
with large-scale connectivity).

The success of computational approaches in capturing sev-
eral aspects of neural development opens prospects for an inte-
grated systems approach leading to embedded models of brain
development. This approach will shed light on the causal rules
linking genes, connectivity and cognition, serving as both an ex-
planatory and predictive tool. Because of the open-ended nature
of development, computational approaches must focus on pro-
cesses— chains of events that drive development— and not just
a set of deterministic (or seemingly optimal) outcomes.

ACKNOWLEDGMENT

The author is thankful to O. Sporns and E. Balaban for in-
sightful discussions, as well as two anonymous reviewers for
their useful comments.

REFERENCES

[1] E. Balaban, “Cognitive developmental biology: History, process and
fortune’s wheel,” Cognition, vol. 101, pp. 298-332, 2006.

[2] J. P. Thivierge and G. F. Marcus, “The topographic brain: From neural
connectivity to cognition,” Trends Neurosci., vol. 30, pp. 251-259,
2007.

[3] A. Martinez and E. Soriano, “Functions of ephrin/Eph interactions in
the development of the nervous system: Emphasis on the hippocampal
system,” Brain Res. Rev., vol. 49, pp. 211-226, 2005.

[4] T.McLaughlin and D. O’Leary, “Molecular gradients and development
of retinotopic maps,” Annu. Rev. Neurosci., vol. 28, pp. 327-355, 2005.

[5]1 R. W. Sperry, “Chemoaffinity in the orderly growth of nerve fiber
patterns and connections,” Proc. Nat. Acad. Sci. USA, vol. 50, pp.
703-710, 1963.

[6] G. Goodhill and J. Xu, “The development of retinotectal maps: A re-
view of models based on molecular gradients,” Netw.: Comput. Neural
Sys., vol. 16, pp. 5-34, 2005.

[7]1 G. Buzsaki, C. Geisler, D. A. Henze, and X. J. Wang, “Interneuron di-
versity series: Circuit complexity and axon wiring economy of cortical
interneurons,” Trends Neurosci., vol. 27, pp. 186—193, 2004.

[8

[t}

[9]

[10]
(1]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

[31]

[32]

[33]

B. W. Andrews and P. A. Iglesias, “An information-theoretic char-
acterization of the optimal gradient sensing response of cells,” PLoS
Comput. Biol., vol. 3, p. e153, 2007.

D. Mortimer, J. Feldner, T. Vaughan, I. Vetter, Z. Pujic, W. J. Rosoff,
K. Burrage, P. Dayan, L. J. Richards, and G. J. Goodhill, “Bayesian
model predicts the response of axons to molecular gradients,” Proc.
Nat. Acad. Sci. USA, vol. 106, pp. 10296-10301, 2009.

J. P. Thivierge and E. Balaban, “Getting into shape: Optimal ligand
gradients for axonal guidance,” Biosystems, vol. 90, pp. 61-77, 2007.
M. A. Silver and S. Kastner, “Topographic maps in human frontal and
parietal cortex,” Trends Cogn. Sci., in press.

E. Stein, N. Savaskan, O. Ninnemann, R. Nitsch, R. Zhou, and T.
Skutella, “A role for the Eph ligand ephrin-A3 in entorhino-hip-
pocampal axon targeting,” J. Neurosci., vol. 19, pp. 8885-8893, 1999.
Z. F. Mainen and T. J. Sejnowski, “Influence of dendritic structure
on firing pattern in model neocortical neurons,” Nature, vol. 382, pp.
363-366, 1996.

C. van Oss and A. van Ooyen, “Effects of inhibition on neural network
development through activity-dependent neurite outgrowth,” J. Theor.
Biol., vol. 185, pp. 263-280, 1997.

E. Ruthazer, C. Akerman, and H. Cline, “Control of axon branch dy-
namics by correlated activity in vivo,” Science, vol. 301, pp. 6670,
2003.

D. A. Butts, M. Feller, C. Shatz, and D. Rokhsar, ‘“Retinal waves are
governed by collective network properties,” J. Neurosci., vol. 19, pp.
3580-3593, 1999.

T. Elliott and N. Shadbolt, “A neurotrophic model of the development
of the retinogeniculocortical pathway induced by spontaneous retinal
waves,” J. Neurosci., vol. 19, pp. 7951-7970, 1999.

M. Feller, D. A. Butts, H. Aaron, D. Rokhsar, and C. Shatz, “Dynamic
processes shape spatiotemporal properties of retinal waves,” Neuron,
vol. 19, pp. 293-306, 1997.

M. H. Hennig, C. Adams, D. Willshaw, and E. Sernagor, “Early-stage
waves in the retinal network emerge close to a critical state transition
between local and global functional connectivity,” J. Neurosci., vol. 29,
pp. 1077-1086, 2009.

M. Feller, “Spontaneous correlated activity in developing neural cir-
cuits,” Neuron, vol. 22, pp. 653-656, 1999.

A. Sapir, G. d’Avossa, M. McAvoy, G. L. Shulman, and M. Cor-
betta, “Brain signals for spatial attention predict performance in a
motion discrimination task,” Proc. Nat. Acad. Sci. USA, vol. 102, pp.
17810-17815, 2005.

M. D. Fox, A. Z. Snyder, J. L. Vincent, and M. E. Raichle, “Intrinsic
fluctuations within cortical systems account for intertrial variability in
human behavior,” Neuron, vol. 56, pp. 171-184, 2007.

Y. Ben-Ari, “Developing networks play a similar melody,” Trends Neu-
rosci., vol. 24, pp. 353-360, 2001.

T. McLaughlin, C. Torborg, M. Feller, and D. D. M. O’Leary, “Retino-
topic map refinement requires spontaneous retinal waves during a brief
critical period of development,” Neuron, vol. 40, pp. 1147-1160, 2003.
A. Chandrasekaran, D. Plaas, E. Gonzalez, and M. Crair, “Evidence for
an instructive role of retinal activity in retinotopic map refinement in the
superior colliculus of the mouse,” J. Neurosci, vol. 25, pp. 6929-6938,
2005.

T. H. Brown, E. W. Kairiss, and C. L. Keenan, “Hebbian synapses:
Biophysical mechanisms and algorithms,” Annu. Rev. Neurosci., vol.
13, pp. 475-511, 1990.

D. O. Hebb, The Organization of Behavior. New York: Wiley, 1949.
D. Tsigankov and A. Koulakov, “A unifying model for activity-depen-
dent and activity-independent mechanisms predicts complete structure
of topographic maps in ephrin-A deficient mice,” J. Comput. Neurosci.,
vol. 21, pp. 101-114, 2006.

L. Benuskova, F. F. Ebner, M. E. Diamond, and M. Armstrong-James,
“Computational study of experience-dependent plasticity in adult rat
cortical barrel-column,” Network, vol. 10, pp. 303-323, 1999.

K. Fox and R. Wong, “A comparison of experience-dependent plas-
ticity in the visual and somatosensory systems,” Neuron, vol. 48, pp.
465-4717, 2005.

Y. Mu and M. M. Poo, “Spike timing-dependent LTP/LTD mediates
visual experience-dependent plasticity in a developing retinotectal
system,” Neuron, vol. 50, pp. 115-125, 2006.

L. Zhang, H. Tao, C. Holt, W. Harris, and M. M. Poo, “A critical
window for cooperation and competition among developing retino-
tectal synapses,” Nature, vol. 395, pp. 3744, 1998.

S. Song and L. F. Abbott, “Cortical development and remapping
through spike timing-dependent plasticity,” Neuron, vol. 32, pp.
339-350, 2001.



IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 2, NO. 1, MARCH 2010

[34] 1. P.Thivierge, “How does non-random spontaneous activity contribute
to brain development?,” Neural. Netw., vol. 22, pp. 901-912, 2009.

[35] A.S.Ramoa and D. A. McCormick, “Enhanced activation of NMDA
receptor responses at the immature retinogeniculate synapse,” J. Neu-
rosci., vol. 14, pp. 2098-2105, 1994.

[36] J.E.Lisman, “Bursts as a unit of neural information: Making unreliable
synapses reliable,” Trends Neurosci, vol. 20, pp. 38—43, 1997.

[37] D. A. Butts, P. O. Kanold, and C. J. Shatz, “A burst-based “Hebbian”
learning rule at retinogeniculate synapses links retinal waves to ac-
tivity-dependent refinement,” PLoS Biol., vol. 5, p. e61, 2007.

[38] P. Vanderhaeghen and F. Polleux, ‘“Developmental mechanisms
patterning thalamocortical projections: Intrinsic, extrinsic and in
between,” Trends Neurosci., vol. 27, pp. 384-391, 2004.

[39] D. A. Fair, A. L. Cohen, J. D. Power, N. U. Dosenbach, J. A. Church,
F. M. Miezin, B. L. Schlaggar, and S. E. Petersen, “Functional brain
networks develop from a “local to distributed” organization,” PLoS
Comput. Biol., vol. 5, p. e1000381, 2009.

[40] C. C. Hilgetag, G. A. Burns, M. A. O’Neill, J. W. Scannell, and M. P.
Young, “Anatomical connectivity defines the organization of clusters
of cortical areas in the macaque monkey and the cat,” Philos. Trans.
Roy. Soc. London B, Biol. Sci., vol. 355, pp. 91-110, 2000.

[41] M. Rubinov, A. R. Mclntosh, M. J. Valenzuela, and M. Breakspear,
“Simulation of neuronal death and network recovery in a computational
model of distributed cortical activity,” Amer. J. Geriatr. Psychiat., vol.
17, pp. 210-217, 2009.

[42] C. W. Shin and S. Kim, “Self-organized criticality and scale-free
properties in emergent functional neural networks,” Phys. Rev. E, Stat.
Nonlin. Soft Matter. Phys., vol. 74, p. 045101, 2006.

[43] M. Kaiser and C. C. Hilgetag, “Spatial growth of real-world networks,”
Phys. Rev. E, Stat. Nonlin. Soft Matter. Phys., vol. 69, p. 036103, 2004.

[44] C. Cherniak, Z. Mokhtarzada, R. Rodriguez-Esteban, and K. Changizi,
“Global optimization of cerebral cortex layout,” Proc. Nat. Acad. Sci.
USA, vol. 101, pp. 1081-1086, 2004.

[45] M. Kaiser and C. C. Hilgetag, “Nonoptimal component placement, but
short processing paths, due to long-distance projections in neural sys-
tems,” PLoS Comput. Biol., vol. 2, p. €95, 2006.

[46] T. N. Aflalo and M. S. Graziano, “Possible origins of the complex to-
pographic organization of motor cortex: Reduction of a multidimen-
sional space onto a two-dimensional array,” J. Neurosci., vol. 26, pp.
6288-6297, 2006.

[47] T. Kohonen, Self-Organizing Maps. London: Springer-Verlag, 2001.

[48] N. Kashtan and U. Alon, “Spontaneous evolution of modularity
and network motifs,” Proc. Nat. Acad. Sci. USA, vol. 102, pp.
13773-13778, 2005.

[49] W. Gao, H. Zhu, K. S. Giovanello, J. K. Smith, D. Shen, J. H. Gilmore,
and W. Lin, “Evidence on the emergence of the brain’s default network
from 2-week-old to 2-year-old healthy pediatric subjects,” Proc. Nat.
Acad. Sci. USA, vol. 106, pp. 6790-6795, 2009.

[50] M. Kaiser and C. C. Hilgetag, “Development of multi-cluster cortical
networks by time windows for spatial growth,” Neurocomputing, vol.
70, pp. 1829-1832, 2007.

[51] S. L. Bressler, “Large-scale cortical networks and cognition,” Brain
Res. Brain. Res. Rev., vol. 20, pp. 288-304, 1995.

[52] C.J. Honey, R. Kotter, M. Breakspear, and O. Sporns, “Network struc-
ture of cerebral cortex shapes functional connectivity on multiple time
scales,” Proc. Nat. Acad. Sci. USA, vol. 104, pp. 10240-10245, 2007.

[53] M. Muller-Linow, C. C. Hilgetag, and M. T. Hutt, “Organization of
excitable dynamics in hierarchical biological networks,” PLoS Comput.
Biol., vol. 4, p. €1000190, 2008.

[54] L. Krubitzer, “The magnificent compromise: Cortical field evolution in
mammals,” Neuron, vol. 56, pp. 201-208, 2007.

[55] P. Achard and E. De Schtter, “Complex parameter landscape for a com-
plex neuron model,” PLoS Comput. Biol., vol. 4, p. €94, 2006.

[56] E. M. Izhikevich and G. M. Edelman, “Large-scale model of mam-
malian thalamocortical systems,” Proc. Nat. Acad. Sci. USA, vol. 105,
pp. 3593-3598, 2008.

[57] M. L. Sereno and R. B. H. Tootell, “From monkeys to humans: What
do we now know about brain homologies?,” Curr. Op. Neurobiol., vol.
15, pp. 135-144, 2005.

Jean-Philippe Thivierge received the B.A. degree in
psychology from the University of Ottawa, Ontario,
Canada, in 2001, the Ph.D. degree in psychology
from McGill University, Montreal, Canada, in 2006.

He is currently an Assistant Scientist in the
Department of Psychological and Brain Sciences, In-
diana University, Bloomington. His research focuses
on computational models of neural development,
with an emphasis on the role of genes, spontaneous
activity, and synaptic plasticity in the formation of
circuits relevant to sensory and cognitive processes.
He has authored or coauthored over 30 journal publications and conference
proceedings.

He is actively involved in the organization of the IEEE International Joint
Conference on Neural Networks, where he has acted as local chair, workshop
chair, and technical committee cochair.



