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Integration of Speech and Action in Humanoid
Robots: iCub Simulation Experiments

Vadim Tikhanoff, Angelo Cangelosi, and Giorgio Metta

Abstract—Building intelligent systems with human level compe-
tence is the ultimate grand challenge for science and technology
in general, and especially for cognitive developmental robotics.
This paper proposes a new approach to the design of cognitive
skills in a robot able to interact with, and communicate about, the
surrounding physical world and manipulate objects in an adaptive
manner. The work is based on robotic simulation experiments
showing that a humanoid robot (iCub platform) is able to acquire
behavioral, cognitive, and linguistic skills through individual and
social learning. The robot is able to learn to handle and manipu-
late objects autonomously, to understand basic instructions, and
to adapt its abilities to changes in internal and environmental
conditions.

Index Terms—Artificial intelligence, cognitive robotics, manipu-
lation, speech recognition.

I. INTRODUCTION

T HOUGH humanoid robots are becoming mechanically
more sophisticated, they are still far from achieving

human-like dexterous performance when manipulating ob-
jects. Cognitive systems research, including developmental
robotics, focuses on the development of bioinspired infor-
mation processing systems that are capable of perception,
learning, decision-making, communication, and action. The
main objective of cognitive systems research is to transform
human–machine systems by enabling machines to engage
human users in a human-like cognitive interaction [1]. A
cognitive system is based on computational representations
and processes of human behavior that replicate the cognitive
abilities of natural cognitive systems such as humans and
animals [2]–[4]. Using evidence from domains such as neuro-
science, cognitive science, and developmental and cognitive
psychology, it is possible to build artificial intelligence systems
that can possess human-like cognitive abilities.
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Developmental cognitive robotics is a growing area of cog-
nitive systems research at the intersection of robotics and de-
velopmental sciences in psychology, biology, neuroscience, and
artificial intelligence [5], [7], [8]. Developmental robotics is
based on methodologies such as embodied cognition, evolu-
tionary robotics, and machine learning. New methodologies for
the continued development of cognitive robotics are constantly
being sought by researchers, who wish to promote the use of
robots as a cognitive tool [6], [10], [11]. Amongst diverse so-
lutions to the programming of robots’ capabilities such as at-
tention sharing, turn-taking, and social regulation [12], a major
effort in developmental robotics has focused on imitation. A
considerable amount of research has been conducted in order to
achieve imitating intentional agents [13]–[15]. More recently,
researchers have used developmental robotics models in order
to study other cognitive functions such as language and commu-
nication. Given the developmental approach, linguistic skills are
designed in close integration with other sensorimotor and cog-
nitive capabilities [19].

Research into language learning in robots has been signif-
icantly influenced over the last ten years by the development
of numerous models of evolutionary and developmental emer-
gence of language [3], [16]–[19]. For example, Steels [17]
studied the emergence of shared languages in group of au-
tonomous cognitive robotics, which learn categories of object
shapes and colors. Cangelosi and collaborators analyzed the
emergence of syntactic categories in lexicons that supported
navigation [3] and object manipulation tasks [18], [19], in
populations of simulated agents and robots.

The majority of these models are based on neural network
architectures (e.g., connectionism and computational neuro-
science simulations) and adaptive agent models (multiagent
systems, artificial life, and robotics). There are many devel-
opmental robotic models involved in speech learning, such as
the development of vocabulary and grammar [20], [21]. The
goal of this section is to produce a real-time system of speech
understanding in humanoid robots.

Within the research conducted on linguistic cognitive sys-
tems, the focus has been not uniquely on the linguistic element,
but also on the close relationship between language and other
cognitive capabilities, such as the grounding of language in
sensorimotor categories [22]–[24]. Computational models
of language have, in the last few decades, focused on the
idea of a symbolic explanation of linguistic meaning [25].
Using this symbolic approach, word meanings are defined in
terms of other symbols, leading to circular definitions [26],
[27]. However, there has recently been an increased focus on
symbol grounding approach, i.e., on the important process of
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“grounding” the agent’s lexicon directly to its own represen-
tation of the interaction with the world. Agents learn to name
entities, individuals and states, while they interact with the
world and build sensorimotor representations of it. Language
grounding models provide a new route for modeling complex
cross-modal phenomena arising in situated and embodied
language use. As early language acquisition is overwhelmingly
concerned with objects and activities, which occur in a child’s
immediate surrounding environment, these models are of a sig-
nificant interest for understanding situated language acquisition
in developmental robotics.

As cognitive systems research is increasingly based on
robotics platforms, it is important to consider the contribution
of simulations in developmental robotics research. Robot sim-
ulators have recently become an essential tool in the design
and programming of robotic platforms, whether for industry or
research [29], [30]. Furthermore, these robotic simulators have
had a significant role in cognitive research, where they have
proven to be critical for the development and demonstration
of many algorithms and techniques (such as path planning
algorithms, grasp planning, and mobile robot navigation).

This paper proposes a new approach to the design of a robotic
system that is able to take advantage of all the functionalities
that a humanoid robot such as the iCub robotic platform [28]
provides. This work will focus on object manipulation capabili-
ties, where refined motor control is integrated with speech “un-
derstanding” capabilities. The paper describes cognitive experi-
ments carried out on the iCub simulator [29]. More specifically,
the research focuses on a fully instantiated system integrating
perception and learning, capable of interacting and communi-
cating in the virtual (simulated) and real world and performing
goal directed tasks. This system allows a tighter integration be-
tween the representation of the peripersonal space (tactile, pro-
prioceptive, visual, and motor) and the ability to move different
effectors. In particular, the goal is to develop a controller that
learns to use the available effectors to solve cognitive tasks,
potentially by transferring and generalizing already acquired
skills. Cognitive experiments will focus on the humanoid iCub
robot with vision, touch, audition, and proprioceptive sensorial
abilities.

Section II provides a detailed description of the development
of the iCub simulator used for the experiments. The cognitive
experiments are then presented within the Sections II and III.
Section III concentrates on the motor control system, which con-
sists of a reaching and a grasping module. Section IV presents
a description of the speech module, and reports simulation ex-
periment results on speech understanding behavior. Both exper-
imental Sections III and IV will also include introductory sec-
tions that review current progress in the robotics literature on
motor and language learning. An overview of the different mod-
ules involved, in the iCub behavior tests, is presented in the fol-
lowing figure, Fig. 1.

II. METHODS

A. The iCub Simulator

Computer simulations play an important role in robotics
research. Despite the fact that the use of a simulation might not

Fig. 1. Architecture of the iCub Cognitive system.

provide a full model of the complexity present in the real envi-
ronment and might not assure a fully reliable transferability of
the controller from the simulation environment to the real one,
robotic simulations are of great interest for cognitive scientists
[30]. There are several advantages of robotics simulations for
researchers in cognitive sciences. The first is that simulating
robots with realistic physical interactions permit to study the
behavior of several types of embodied agents without facing the
problem of building in advance, and maintaining, a complex
hardware device. The computer simulator can be used as a
tool for testing algorithms in order to quickly check for any
major problems prior to use of the physical robot. Moreover,
simulators also allow researchers to experiment with robots
with varying morphological characteristics without the need to
necessarily develop the corresponding features in the hardware
[31]. This advantage, in turn, permits the discovery of properties
of the behavior of an agent that emerges from the interaction be-
tween the robot’s controller, its body, and the environment [32].
Another advantage is that robotic simulations make it possible
to apply particular algorithms for creating robots’ controllers,
such as evolutionary or reinforcement learning algorithms [33].
The use of robotics simulation permits to drastically reduce
the time of the experiments such as in evolutionary robotics.
In addition, it makes it possible to explore research topics like
the coevolution of the morphology and the control system [31].
A simulator for the iCub robot magnifies the value a research
group can extract from the physical robot, by making it more
practical to share a single robot between several researchers.



TIKHANOFF et al.: INTEGRATION OF SPEECH AND ACTION IN HUMANOID ROBOTS: ICUB SIMULATION EXPERIMENTS 19

Fig. 2. Photograph of the simulated iCub (a) and of the real iCub as of July
2009.

The fact that the simulator is free and open makes it a simple
way for people interested in the robot to begin learning about
its capabilities and design, with an easy “upgrade” path to the
actual robot due to the protocol-level compatibility of the sim-
ulator and the physical robot. And for those without the means
to purchase or build a humanoid robot, such small laboratories
or hobbyists, the simulator at least opens a door to participation
in this area of research.

The iCub simulator has been designed to reproduce, as accu-
rately as possible, the physics and the dynamics of the robot and
its environment. The simulated iCub robot is composed of mul-
tiple rigid bodies connected via joint structures (see Fig. 2). It
has been constructed collecting data directly from the robot de-
sign specifications in order to achieve an exact replication (e.g.,
height, mass, degrees of freedom) of the first iCub prototype
developed at the Italian Institute of Technology in Genoa. The
environment parameters on gravity, objects mass, friction, and
joints are based on known environment conditions.

The iCub simulator presented here has been created using
open source libraries in order to make it possible to distribute the
simulator freely to any researcher without requesting the pur-
chase of restricted or expensive proprietary licenses. Although
the proposed iCub simulator is not the only open source robotics
platform, it is one of the few that attempts to create a 3-D dy-
namic robot environment capable of recreating complex worlds
and fully based on nonproprietary open source libraries.

B. Physics Engine

The iCub simulator uses open dynamic engine (ODE )[34] for
simulating rigid bodies and the collision detection algorithms to
compute the physical interaction with objects. The same physics
library was used for the Gazebo project and the Webots com-
mercial package. ODE is a widely used physics engine in the
open source community, whether for research, authoring tools,
gaming, etc. It consists of a high-performance library for simu-
lating rigid body dynamics using a simple C/C++ API. ODE was
selected as the preferred open source library for the iCub sim-
ulator because of the availability of many advanced joint types,
rigid bodies (with many parameters such as mass, friction, sen-
sors, etc.), terrains, and meshes for complex object creation.

Fig. 3. Detail of the architecture of the simulator with YARP support.

C. Communication Protocol

As the aim was to create an exact model of the physical iCub
robot, the same software infrastructure and interprocess com-
munication will have to be used as those used to control the
physical robot. iCub uses yet another robot platform (YARP)
[35] as its software architecture. YARP is an open-source soft-
ware tool for applications that are real-time, computation-inten-
sive, and involve interfacing with diverse and changing hard-
ware. The simulator and the actual robot have the same inter-
face either when viewed via the device API or across network
and are interchangeable from a user perspective. The simulator,
like the real robot, can be controlled directly via sockets and a
simple text-mode protocol; use of the YARP library is not a re-
quirement. This can provide a starting point for integrating the
simulator with existing controllers in esoteric languages or com-
plicated environments.

D. Software Architecture

The architecture of the iCub simulator supporting YARP can
be seen in Fig. 3. The User code can send and receive informa-
tion to both the simulated robot itself (motors/sensors/cameras)
and the world (manipulate the world). Network wrappers allow
device remotization. The network wrapper exports the YARP in-
terface so that it can be accessed remotely by another machine.
This provides an easy path for any system to be extended to the
physical robot.

E. The iCub Body Model

The iCub simulator has been created using the data from the
physical robot in order to have an exact replica of it. As for the
physical iCub, the total height is around 105 cm, weighs approx-
imately 20.3 kg, and has a total of 53 degrees of freedom (DoF).
These include 12 controlled DoFs for the legs, three controlled
DoFs for the torso, 32 for the arms, and six for the head.

The robot body model consists of multiple rigid bodies at-
tached through a number of different joints. All the sensors were
implemented in the simulation on the actual body, such as touch
sensors and force/torque sensors. As many factors impact on
the torque values during manipulations, the simulator might not
guarantee to be perfectly correct. However, the simulated robot
torque parameters and their verification in static or motion are a
good basis and can be proven to be reliable [36].
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Fig. 4. Diagram of the motor control modules.

All the commands sent to and from the robot are based on
YARP instructions. For the vision, we use cameras located at the
eyes of the robot which in turn can be sent to any workstation
using YARP in order to do develop vision analysis algorithms.

The system has full interaction with the world/environment.
The objects within this world can be dynamically created, mod-
ified, and queried by simple instruction resembling those that
YARP uses in order to control the robot.

III. MOTOR CONTROL LEARNING

A. Introduction

This section proposes a method for teaching a robot how to
reach for an object that is placed in front of it and then to attempt
to grasp the object. The first part of the work focuses on solving
the task of reaching for an object in the robot’s peripersonal en-
vironment. This employs a control system consisting of an artifi-
cial neural network configured as a feed-forward controller [37].
The second part of the motor learning model incorporates the
above reaching module within an additional controller needed
for the robot to actually grasp the object. This employs another
control system consisting of a neural controller configured as a
Jordan neural network [38].

Fig. 4 provides a diagram overview of the motor control sec-
tion that is described in this section.

B. Learning to Reach

In recent years, humanoid research has focused on the poten-
tial for efficient interaction with the environment through motor
controls and manipulation. Reaching is one of the most impor-
tant assignments for a humanoid robot, as it provides the robot
with the ability to interact with the surrounding environment,
and permits the robot to discover and learn through the task of
manipulation. However, this task is not a simple problem. Sig-
nificant progress has been made to solve these problems and
this section will briefly explain some of the past applications
that have been used towards the reaching problem.

In computational neuroscience, research on reaching has
focused on the development of neurocognitive models of
human behavior, that can also be employed in humanoid
robots to achieve human-like reaching [39]. Additionally,
neuroscience research considers the issue of pregrasping as
defined by Arbib et al. [40]. This deals with the configuration

Fig. 5. Architecture of the employed feed-forward neural network.

of the fingers for successful grasping, while performing the
reaching movement. These finger configurations must satisfy
some form of predefined knowledge on the object affordances
for appropriate grasping, and predefined knowledge about the
task to accomplish. However, the model presented in this paper
is not concerned with generating a reaching system consistent
with human models of pregrasping, but assumes that reaching
and grasping can be performed independently [41].

This work considers reaching as a hand–eye coordination
task, which greatly depends on vision for tracking of objects,
whether static or moving, and their depth estimation. The
control system that has been designed for reaching does not
depend on heavy camera calibration and extensive analysis
of the robot’s kinematics. The reaching system uses the un-
calibrated stereo vision system to determine the depths of the
objects. A suitable system for a humanoid robot must take into
consideration the movement of the robot’s head and eyes [42].
Metta et al. [42] have developed a humanoid robot controller
based on single motor mapping, where the mapping from the
two eyes can control two joints in the arms. They then added
the eye vergence in order to determine the depth of an object
[43]. Even with the addition of the eye vergence, there were
some limitations due to errors in the hand positioning. In an
earlier paper, Marjanovic et al. [44] proposed a system that was
able to correct mapping errors by redirecting the robot’s eyes
to focus on its hand, after looking at the object. This permitted,
to some extent, an improvement in the results by using simple
motor mapping. There have also been several systems that have
used learning with endpoint closed-loop controls 45.

The reaching module developed in this work is based on
the learning of motor–motor relationships between the vision
system of the head/eyes and the iCub’s arm joints. This is
represented by a feed-forward neural network trained with a
back propagation algorithm. The only constraint in the initial
condition is that the hand is positioned in the visual space of the
robot to initiate the tracking of the visual system. This will then
calculate the three-dimensional coordinates of the hand itself,
and consequently move the head accordingly. The robot will
then be able to compute the required motor outputs to reach
an object at a specific , , and coordinate. A feed-forward
multilayer perceptron, with back propagation algorithm [46]
was modeled to simulate reaching for diverse objects that reside
within their surroundings. The neural network architecture as
depicted in Fig. 5 was used.
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TABLE I
DESCRIPTION OF THE DIFFERENT JOINTS USED FOR THE REACHING MODULE

Fig. 6. Example of the 150 end positions of the robot arms during training.

TABLE II
TRAINING PARAMETERS OF THE REACHING

FEED—FORWARD NETWORK MODULE

The input to the feed-forward neural network is a vector of
three dimensional coordinates ( , , and ) of the robot’s
hand, normalized from 0 to 1. These coordinates were deter-
mined by the vision system, by means of the template matching
method [47], and depth estimation [48]. The output of the net-
work is a vector of angular positions of five joints that are lo-
cated on the arm of the robot. The joints used for the reaching
module are described in Table I.

The hidden layer comprises of 10 units. This is the optimal
number of hidden units identified after preliminary experiments.
During the training phase, the robot generates 5000 random se-
quences, while performing motor babbling within each joint’s
spatial configuration/limits. When the sequence is finished, the
robot determines the coordinates of its hand and what joint con-
figuration was used to reach this position. Fig. 6 shows an ex-
ample of 150 positions of the endpoints of the robot hands used
during training, by representing them as green squares.

The feed-forward neural network controller was trained with
the parameters listed in Table II.

Fig. 7. RMSE value during training of the reaching module.

Fig. 8. First 150 results of the 2500 samples given to the network. Each graph
represents the different joint degrees at each of the 150 positions.

After multiple tests of 50 000 iterations, the final RMSE (root
mean squared error) ranged from 0.15 to 0.16 (e.g., sample
training curve Fig. 7). Although low, an RMSE of 0.15 indicates
that the neural network did not achieve optimal performance.

By analyzing the results, in contrary to just base on the final
RMSE, we can see that the network has actually been successful
in learning to reach the specific position, with its joint configu-
ration. But it has discarded the last joint completely, as shown
in Fig. 8. Fig. 8 displays the first 150 results of the 2500 testing
samples provided to the network. Each graph represents the dif-
ferent normalized (from 0 to 1) joint degrees ( axis) at each of
the 150 positions ( axis).

The reason for such a high RMSE is due to several factors.
The main one is the fact that the wrist pronosupination (forearm
rotation along the arm principal axis) is not needed for the robot
to reach a specific position and therefore, it is eventually dis-
carded by the network when learning the training data. The de-
sired mappings of the remaining joints of the iCub have been
satisfied as much as possible without the use of this joint.
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Fig. 9. Images taken from the robot during the testing of the reaching module.

Fig. 10. Comparison of 62 random�� � positions of objects, with the actual
resulting position of the robot’s hand.

In order to test the performance of the model, a pretrained
reaching neural network was loaded onto the simulation, while
random objects were placed in the vicinity of the iCub robot.
The results of these generalization tests showed that the model
was capable of successfully locating and tracking the object in
new positions, and finally reaching the target. Fig. 9 is a col-
lection of images taken after the detection of the object (by the
vision system) and the attempt to reach the tracked object.

Fig. 10 supports the previous argument, by showing the ,
, and coordinates of 62 random objects that were placed

within the vicinity of the iCub (desired position), and then com-
pares them with the actual resulting position of the robot’s hand
(achieved position).

Overall, the experimental setup and results show a robotic
system that is able to perform reaching using stereo cameras
from the iCub simulator. Between the vision module and the
reaching module, eleven degrees of freedom were used: six for
the head and eyes, and five for the arm joints. The reaching
module was able to learn an approximation of the randomly
placed object in its vicinity, while autonomously discarding un-
necessary joint motion to achieve its goal.

The next step will be to attempt to grasp the object that the
robot has successfully reached. In Section IV, after a brief dis-
cussion on recent work on grasping, we will describe the ap-
proach that was used to solve the well known grasping problem.

C. Learning to Grasp

One of the major challenges in humanoid robotics is to repro-
duce human dexterity in unknown situations or environments.
Most of the humanoid robotic platforms have artificial hands
with varying complexity. Attempting to define their configura-
tion, when seeking to grasp an object in its environment, is one
of the most difficult tasks. Many parameters must be accounted
for, such as the structure of the hand itself, the parameters of the
object, and the specification of the assignment. To take these pa-
rameters into consideration, the ability to receive sensing infor-
mation from the robot is crucial when implementing an efficient
robotic grasp. The quality of the sensing information must also
be taken into consideration, as signals may limit precision and
can potentially be noisy. In recent years, there have been several
models implemented to perform a grasping behavior. The dif-
ferent models can be divided into the following methodological
approaches [49]:

• knowledge-based grasping;
• geometric contact grasping;
• sensory driven and learning-based grasping.
Knowledge-based grasping takes into account techniques

where the hand parameters are adjusted according to the knowl-
edge and experience behind human grasping, therefore taking
advantage of the human dexterity capabilities. This approach is
based on diverse studies on human grasping. These have been
classified depending on parameters, such as the hand shape,
the world, and the tasks requirements, and have been used to
suggest solutions in the robotic field [50], [51].

Although these methods are effective and produce good re-
sults, they have the requirement to require sophisticated equip-
ment, such as data gloves, to utilize motion sensors. Further-
more, there is a significant drawback: the ability of the robot
to generalize grasping in different conditions, as the robot can
only learn what has been demonstrated. Additionally, knowl-
edge-based grasping have to deal with the issue of pregrasping,
which requires anticipation of the grasp before reaching the ob-
ject, and depends on the task and the object. Geometric contact
grasping is used in conjunction with algorithms to find an op-
timal set of contact points, according to the requirements, such
as feedback from forces and torques [52]. This is an optimal
approach, as it can be applied to a large amount of dexterous
robotic hands while finding a suitable hand configuration. The
main issue with the geometric contact grasping is that there must
be a predefined scenario to be performed, and therefore gener-
alization cannot be easily achieved. Finally, the sensory driven
grasping approach tries to solve the previously mentioned prob-
lems by using learning and task exploration [53].

The approach proposed here relies on artificial neural net-
works in order for the humanoid robot to learn the principles of
grasping. Sensory driven models have been previously utilized
to perform grasping with a robotic hand, using a limited amount
of degrees of freedom for circular and rectangular shaped ob-
jects [54]. More recently, Carenzi et al. [55] developed neural
network models which are able to lean the inverse kinematics of
the robotic arm, to reach an object, depending on information
such as size, location, and orientation. The model is then able
to learn the appropriate grasping configurations (using a mul-
tijoint hand) dependent on the object size. Although this work



TIKHANOFF et al.: INTEGRATION OF SPEECH AND ACTION IN HUMANOID ROBOTS: ICUB SIMULATION EXPERIMENTS 23

Fig. 11. Architecture of the employed jordan neural network.

is interesting, it is highly simplified and both wrist position and
orientation need to be predefined.

In our model of the iCub grapsing, a new method based on the
sensory driven grasping approach is proposed. This is achieved
by modeling an additional artificial neural network that is able
to learn how to grasp the different objects in its environment,
by feeding it with the sensory information of the hand itself.
There are many ways in which this can be accomplished, and
a number of interesting proposals have appeared in the litera-
ture. One of the most promising approaches was proposed by
Jordan [38], who proposed a neural network with recurrent con-
nections copying the output unit values and feeding them back to
the context or state units. To briefly recap; in his paper, Jordan
described a neural network as carrying recurrent connections,
which are implemented to associate a stable pattern, are con-
sidered as a plan with a continual output pattern, and as a se-
quence of actions. The recurrent connections permit the neural
network’s hidden units to discover its own previous output. This
is useful for the subsequent behaviors as they will be influenced
by the previous responses.

A Jordan type neural network was implemented in this model
to train the simulated iCub to learn to grasp diverse objects lo-
cated in the robot’s environment. The neural network architec-
ture can be seen in Fig. 11.

The input layer of the Jordan neural network consists of the
vector of the touch sensors information of the robot’s hand (ei-
ther 0 or 1). The output is a vector of normalized (0 to 1) angular
positions of the eight finger joints, which are located on the hand
of the robot. The hidden layer comprises five units. This is the
optimal number of hidden units that have been identified after
preliminary experiments. The output activation values (normal-
ized joint angular positions) are fed back to the input layer, to a
set of extra neurons called the state units (memory). An image,
showing the location of the hand sensor, can be seen in Fig. 12
and a detailed description of the hand joints used can be seen in
Table III.

Fig. 12. Location of the six touch sensors on the iCub’s simulator hand.

TABLE III
LIST OF FINGER JOINTS USED IN THE GRASPING MODULE

The touch sensors work in an “off and on mode,” meaning
that the touch sensor is always off (0), unless there is a collision
with a foreign body (object) that triggers the activation of the
sensor (1).

The training of the grasping Jordan neural network is
achieved online and therefore no training patterns have been
predefined to teach grasping; hence no data acquisition is
required. A reward mechanism has been implemented in the
network to adjust the finger positions. The associative reward
penalty (ARP) algorithm is implemented in order to train the
network connection weights. A description of this algorithm
can be found in [56]. This method is used for associative rein-
forcement learning, as the standard back-propagation algorithm
is not able to perform such a task. The neural network needs to
adapt to maximize the reward rate over time.

During training, a static object is placed under the hand of
the iCub simulator, and the network at first randomly initiates
joint activations. When the finger motions have been achieved,
or stopped by a sensor activation trigger, the grasping is tested
by allowing how gravity affects the behavior of the object. The
longer the object stays in the hand (max 250 time steps) the
higher the reward becomes. If the object falls off the hand, then
the grasping attempt was not achieved and therefore a negative
reward is given to the network.
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Fig. 13. Reward rate during the grasping neural network training phase.

Fig. 14. Graph showing the total boxes used, total boxes grabbed, and total
boxes lost, during a simple grasping experiment with an object of specific size.

A number of experiments were carried out in order to test the
model ability to learn to grasp an object that was shown, and
also to ultimately learn how to differentiate between objects by
grasping them in different ways (object affordance and finding
a solution in order to accomplish its task).

The charts in Figs. 13 and 14 show the results of an experi-
ment where the iCub robot’s goal was to attempt to successfully
grasp an object (cube) that was placed under its hand, as seen in
Fig. 15. The object size parameters (in meters) are:

• , , .
The object was then modified to a cube with parameters:

• , , .
The object was placed at different coordinates in order to fur-

ther test the system under simple conditions. Fig. 13 displays
the reward rate of the grasping neural network during a training
phase of 15 attempts; the maximum reward was obtained after
four attempts. Fig. 14 shows the number of total boxes used,
grabbed, and the total number lost during a simple grasping

Fig. 15. Grasping of three different objects.

experiment, with the object of size , , and
.

A further experiment was conducted which aimed to test
the potential of the grasping module by placing different static
sized and shaped objects in the vicinity of the iCub simulator.
A pretrained grasping neural network was then loaded onto the
simulation to demonstrate that the system is able to generalize
grasping with different objects.

Fig. 15 shows an example of the learned grasping module that
was performed on three different objects: a small cube, a ball,
and a complex object (teddy bear).

IV. WORKING WITH SPEECH

A. Introduction

As mentioned in Section I, language and speech shape a large
part of human–human and even human–machine interaction
[57]. In speech, there is an immense potential for diversity,
as speech is very flexible. This flexibility is apparent when
interacting with children or pets; therefore, a similar approach
would be ideal for robots. The goal of this section is to produce
a real-time system of speech understanding.

Speech recognition can be applied successfully for a large
user population across noisy conditions [58] such as basic
vocabulary typically used for queries, or using a good quality
headset and extensive user training typically used in dictations
with a large grammar. At this stage it is important to establish
where robot directed speech lies depending on the task given to
the robot.

It has been shown that infant-directed words are usually kept
short with large pauses between words [59]. Brent and Siskind
[60] present evidence that isolated words are in fact a reliable
feature of infant-directed speech, and that infants’ early word
acquisition may be facilitated by their presence. In particular,
the authors find that the frequency of exposure to a word in iso-
lation is a better predictor of whether the word will be learned,
than the total frequency of exposure. This suggests that isolated
words may be easier for infants to process and learn.
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Fig. 16. Architecture of the integration of YARP and Sphinx.

B. Speech Recognition

The speech recognizer system developed at Carnegie Mellon
University was used [61]. The Sphinx-3 system is a flexible
hidden Markov model-based speech recognition system. Its
components can be configured at run-time along the spectrum
of semi-to-fully-continuous operation. These include a series of
speech recognizers (Sphinx 2–4) and an acoustic model trainer
(SphinxTrain). CMU Sphinx is perhaps the only open source,
large vocabulary, continuous speech recognition project that
consistently releases its work under the liberal BSD-license.

C. CMU Sphinx Recognition Structure

The sphinx recognition system is composed of number of
sequential stages. In particular, we can identify the following
seven stages (adapted from [61]).

— Segmentation, classification, and clustering:
Initially, the long audio streams are chunked into smaller
segments. The segmentation points are chosen such that
these coincide with acoustic boundaries.

— Initial-pass recognition:
Preliminary recognition is done with a straight-forward
continuous-density Viterbi beam search producing a word
lattice for each subsegment.

— Initial-pass best-path search:
These lattices are then searched for the global best path
according to the trigram grammar.

— Acoustic adaptation:
The HMM means is then adapted using maximum like-
lihood linear regression (MLLR). This adaptation is per-
formed with a single regression matrix.

— Second-pass recognition:
Each sub segment is then decoded again, using the acoustic
models adapted in the previous step. Again a lattice is pro-
duced for each subsegment.

— Second-pass best-path search:
The lattice is searched for the global best path and an
N-best search over the lattice is also done.

— N-best rescoring:

Fig. 17. Goal selection neural network architecture used.

The N-best lists generated using the supplemented vocab-
ulary were processed to convert the phrases and acronyms
into their constituent words and letters.

D. YARP and CMU Sphinx Integration Architecture

YARP includes an abstract interface, named IAudioGrabber-
Sound, that decouples streaming audio functionality from the
underlying hardware, platform, or format. This interface may be
used either live using the robot’s microphones, or alternatively
using prerecorded samples. The left hand side of Fig. 16 shows
the IAudioGrabberSound interface and some concrete imple-
mentations thereof.

The Sphinx module is designed such that it only depends
on this interface in order to obtain streaming audio input. This
design provides implementation independence and facilitates
reuse of the module on different platforms and hardware, as well
as allowing the reproduction of experiments from recordings.
Fig. 16 gives an overview of the global architecture entailing
both the Sphinx module and the YARP audio interface.

E. Learning to Integrate Speech and Action

An essential skill, of any type of cognitive system, is the
ability to acquire and generate a variety of actions, and to ex-
hibit the behavior that corresponds to social and environmental
conditions. This requires that the robot is endowed with a certain
amount of knowledge concerning the past and present, or even
future events, which will permit it to perform precise motor con-
trols, while also communicating using a speech understanding
module.

The integration of the speech signals, visual input, and motor
control abilities was based on a goal selection neural network,
a feed forward neural network. This is able to learn and catego-
rize speech signals so that it can form corresponding visual cat-
egories and finally determine the appropriate action to perform.

The input to the network consists of seven parameters from
the vision acquisition system (e.g., object size and location) and
the output of the Sphinx speech signals. The output consists
of four units corresponding to the following action: idle, reach,
grasp, and drop. For example, the output “reach” consists of just
one sequence, whereas “grasp” and “drop” consist of multise-
quences that are composed of different actions; “grasp” is com-
posed of reaching and then grasping, and “drop” is a sequence
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TABLE IV
LIST OF SPEECH SIGNALS USED IN THE COGNITIVE EXPERIMENT

TABLE V
TRAINING PARAMETERS OF THE GOAL SELECTION

NEURAL NETWORK MODULE

Fig. 18. RMSE value during training of the goal selection module.

of reaching the object, grasping it, reaching a position, and then
releasing the object by inverting the grasping module to return
to the original joint configuration of the hand. The hidden layer
comprises 15 units. The neural network’s architecture can be
seen in Fig. 17. During the training phase, the robot is shown an
object along with a speech signal. The list of objects and speech
signals, used in this experiment, can be seen in Table IV.

The goal selection feed-forward neural network was trained
with the above data, using the parameters in Table V. After
multiple tests of 50 000 iterations, the root mean squared error
(RMSE) was ranging at 0.0368, which indicates a successful
learning of the neural network (see Fig. 18).

The testing phase, reported in this section, consisted of the
presentation of a simple object (blue cube) to the iCub simu-

Fig. 19. Selection of images showing: (a) the setup of the cognitive experiment;
(b) the input of the linguistic command; (c) the reaching and grasping of the blue
box; (d) the dropping of the blue box.

lator. At first, the object presented was not selected as the system
did not know what to do with it, since it was expecting an extra
feature (the speech signal). Initially, the hand was positioned in
the visual space of the robot, so that it would initiate tracking of
the visual system, calculate the three dimensional coordinates
of the hand itself, and consequently move the head accordingly.
The most complex behavior sequence is then sounded out “drop
blue cube into basket” and the robot would now focus its atten-
tion to the complex object by means of head tracking. The robot
will then attempt to reach the object and grasp it in sequence.
When the grasping is achieved, it will then look visually for the
bucket. It will then move its arm towards the object by means
of retrieving its , , coordinate, and then feeding it into the
reaching module and attempting to release the object into the
bucket. This sequence of actions can be seen in Fig. 19.

The successful results demonstrate that the cognitive model
is capable to understand continuous speech, to form visual cat-
egories that correspond to part of the speech signals, and thus
develop action manipulation capabilities.

V. CONCLUSION

This experiment described a system which focuses on the
learning of action manipulation skills, in order to develop
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object–action knowledge, combined with action–object–name.
The system developed here was influenced by the way infants
tend to learn speech from sounds [62], and then associate them
with what is happening in their neighboring world. This work
assumes that, for a robot to understand and categorize what
is being said, its vocabulary initially needs to be limited and
focused. Therefore, by providing a robot with such a system
it will be able to quickly learn the vocabulary that is needed
for the appropriate task. In addition to the visual perception
and speech understanding system, the robot is able to receive
tactile information and feedback from its own body. Neural
network modules are used to permit the robot to learn and
develop behaviors, so that it may acquire embodied representa-
tion of the objects and actions. Furthermore, a novel merging
of active perception, understanding of language, and precise
motor controls, has been described. This will enable the robot
to learn how to reach and manipulate any object within the
joint’s spatial configuration, based on motor babbling, which
again has been influenced by how infants tend to discover
joint configurations [63]. New experiments used the complete
embodied cognitive model that has been endowed with a
connection between speech signals understood by the robot,
its own cognitive representations of its visual perception, and
sensorimotor interaction with its environment. The detailed
analysis of the neural network controllers can be used to in-
creasingly understand such behavior that occurs in humans,
and then deduct new predictions about how vision, action, and
language interact between them.

This work provides some useful insights towards the building
a reliable cognitive system for the iCub humanoid robot, so it
can interact and understand its environment. Further research
will aim to enhance and expand the cognitive and linguistic
skills of the humanoid robot. The proposed cognitive control ar-
chitecture reported here has been based on the iCub simulator,
but has also been transferred to the physical iCub robot with
comparable results.

VI. FUTURE WORK

Current work is now focusing on modeling of visual attention,
with particular focus on how a robotic visual attention system
can develop in an autonomous manner, through interacting with
its environment. An object, in terms of computer vision, is often
defined in terms of restricted sets of visual cue responses or ab-
stractions thereof. Instead, we generalize the notion of an ob-
ject as a visual surface at fixation exhibiting spatiotemporal co-
herence, regardless of its cue responses. A spatiotemporal zero
disparity filter (SpTZDF) encodes the likelihood that an image
coordinate projects to a spatio–temporally coherent visual sur-
face [64]. Subsequently, a Markov random field refinement step
converts the generated probability maps into image segmenta-
tions. A tracking algorithm is instantiated such that the visual
surface remains at fixation by detecting spatio–temporal coher-
ence rather than explicitly encoding permitted motion models.
The approach elicits real-time active monocular and/or coor-
dinated stereo fixation upon arbitrarily translating, scaling, ro-
tating, reconfiguring visual surfaces, and marker-less pixel-wise
segmentation thereof. Segmentation and tracking is shown to

be robust to lighting conditions, defocus, foreground and back-
ground clutter, and partial or gross occlusions of the visual sur-
face at fixation [64].

The propensity to attend and segment spatio–tempotrally
coherent visual surfaces (objects) yields significant benefits
in terms of object classification. Classifying a presegmented
object removes background regions that could induce error in
the classification. Moreover, such segmentations can be used
to significantly improve the training stage of classifier devel-
opment. Training images can be acquired autonomously by the
same apparatus that uses query stage. Prior segmentation addi-
tionally allows segmentation prescaling and autocentering such
that additional constancy is induced before training. To further
induce constancy, the segmentations (both training and query
images) are processed with a difference-of- Gaussian filter
that imposes intensity invariance. This system takes inspiration
from biology. Primates train and query using the same visual
apparatus [64], [65]. Primates have the propensity to attend and
discern spatiotemporally coherent objects from backgrounds.
Mechanisms to induce constancy, including ganglion responses
similar to that of a difference-of- Gaussian filter, are known to
exist in the primate visual system.

The development of the visuo–attentional system described
above, and its integration with the speech-action model pre-
sented in this paper, provides a novel and useful approach for
the development of integrated cognitive systems for develop-
mental robotics.
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