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NeuroRobotic Model of Multimodal Habituation
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Abstract—Infants are able to adaptively associate auditory
stimuli with visual stimuli even in their first year of life, as
demonstrated by multimodal habituation studies. Different from
language acquisition during later developmental stages, this
adaptive learning in young infants is temporary and still very
much stimulus-driven. Hence, temporal aspects of environmental
and social factors figure crucially in the formation of pre-lexical
multimodal associations. Study of these associations can offer
important clues regarding how semantics are bootstrapped in
real-world embodied infants.

In this paper, we present a neuroanatomically-based embodied
computational model of multimodal habituation to explore the
temporal and social constraints on the learning observed in very
young infants. In particular, the model is able to explain empirical
results showing that auditory word stimuli must be presented
synchronously with visual stimulus movement for the two to be
associated.

Index Terms—artificial intelligence, cognitive science, embod-
ied cognition, neural model, developmental robotics

I. INTRODUCTION

HE human cognitive system is remarkable for many rea-

sons, but one of the most fascinating aspects is its ability
to acquire and use language. Regardless of whether one be-
lieves in innate grammar, language dispositions, or language-
related structures in the brain, the fact remains that humans
have to learn words and their meanings. While learners in later
developmental stages are able to use language itself to scaffold
the acquisition of new words and new concepts, building on
their previously-acquired linguistic and conceptual capabilities
to learn words with increasingly abstract meanings that are far
removed from the directly observable, early learners do not
have the luxury of relying on such developed structures. In
fact, very early learners typically lack knowledge about both
words and referents, with the result that learning is restricted
to words whose meanings are closely tied to perceptions. In
addition, early learners’ brains are still immature and neural
structures believed to underlie higher-level cognition do not
yet take part in the perception-action loop.

Because the information processing system of young in-
fants is simpler than that of the mature adult, we can use
it as the basis for an investigation of how much of the
language learning problem is “offloaded” onto simple neural
circuits, the body, and the environment. Even the simple
control architecture instantiated in a two-month old infant
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has the necessary categorization and processing faculties to
adaptively learn word-referent associations, as demonstrated
by its ability to habituate to multimodal audio-visual stimuli
presented by a human parent. This ability suggests that a large
portion of complex cognitive processing previously thought
to be necessary for early language learning in a complex,
unstructured environment can be more realistically explained
by much simpler circuits as long as they are situated in an
appropriately socially scaffolded environment.

This paper describes a robotic model of these early neural
circuits and looks at the behavior of the robotic system as
temporal properties of the multimodal environment created by
the human parent are varied.

II. BACKGROUND: WORD-REFERENT ASSOCIATION IN
INFANTS

Research in developmental psychology has investigated
different phases of infant language acquisition, which critically
depend on the infant’s developmental stage. A commonly
accepted view is that the co-occurrence of word and object
ought to be sufficient for word learning [1]. Based on this
idea, it has been suggested, for example, that infants learn
referents of words based on a large number of encounters with
words and referents across heterogeneous situations, “cross-
situational statistics” [2]); this statistical learning approach is
also supported by parent and infant behaviors in unstructured
play in 12-20 month old toddlers [3], [4].

While older infants are able to use cross-situational statis-
tics, complex social cues such as eye gaze, or linguistic expla-
nations to determine perceivable referents, younger infants do
not have these capabilities. Rather, a very young infant relies
primarily on the properties of the stimulus and the environment
to guide its cognitive system into states that benefit learning.
Hence, the social environment, as established and controlled
by the caregiver, provides an important constraining factor that
can facilitate (or inhibit) learning of word-referent associations
in infants. Empirical results show that parents are sensitive to
the cognitive limitations of infants and automatically tailor
their teaching behavior to the cognitive needs of infants at
different ages [5], [6].

Studies examining multimodal learning in young infants
have helped to tease out capabilities and constraints of these
stimulus-driven learners over a wide range of stimulus types
([71 provides an extensive overview and discussion). For
example, investigations into the conditions under which infants
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can associate multimodal stimuli has shown that even at
two days of age, neonates can habituate to a visual/auditory
stimulus pair if the teacher can time the utterance of the word
presentation so that it temporally (and spatially) co-occurs with
the perception of the referent object [8]. This suggests that
even at birth, structures capable of multimodal integration and
association must be present and functional.

Another body of research shows that very young infants
are also able to reliably habituate to pairs of stimuli between
modalities (even when not spatially/temporally co-located) if
there are properties that are common between the modalities.
This effect is shown to exist when the stimuli are naturalistic
(e.g., a mouth moving with a sound at 4-5 months old [9],
[10], [11], or physical properties of objects and the sound they
make while moving at 3-5 months, [12], [13]), or even if they
are arbitrary (e.g., objects of different colors/shapes impacting
surfaces with different sounds at 7 months [14], [15]). It seems
possible then that the ability to detect redundant properties of
relations across modalities also allows for other properties of
the multimodal stimuli to become associated, setting the stage
for the acquisition of (arbitrary) word-referent relationships.
Related studies, especially those by Gogate and colleagues
[16], [17], [18], [19] have examined the more difficult associ-
ation of arbitrary auditory stimuli with arbitrary visual stimuli
in infants from a range of age groups (2-14 months). It is the
results of these studies with the youngest of these infants that
we will focus on in this paper.

In these infant studies, the experimental setup is meant to
expose what happens during a normal parent-child interaction
in which the parent “shows” the child an object and names
it (Figure 1). The preferential looking paradigm [20]" is used
to examine whether there is a net change in looking time for
a visual stimulus (the “shown” object) after it is presented in
different manipulated conditions. A simple example involves
presenting a visual stimulus V' along with an auditory stimulus
A (a “word”) several times (the “habituation” phase), and
then testing whether showing V' with A results in significantly
different looking time than when V is presented with another,
different word B. It is inferred that any change in the looking
time between a test with the co-habituated word A, and the
test with the other word B, must be caused by some change
in the infant that is specific to the stimuli V' and A.2

The studies reported above demonstrate that infants are
learning, even at an early age, but it is important to be clear
about exactly what they are actually learning. The infants are
not learning language or even word-referent associations as

'Under the preferential looking paradigm, learning between (multimodal)
stimuli is detected by observing the mean “looking time”, which is the amount
of time the subject’s eyes are pointed at the general region containing the
stimulus of interest. The measure is then the ratio of the time spent looking
at the stimulus to the trial time.

2The logic behind this inference of why pairs of multimodal stimuli can
influence looking time is that signals from both modalities are integrated in a
region which influences looking time. Candidates for region(s) that actually
perform this function have been proposed in the neuroscience literature (some
of these are discussed in Section III). There is also behavioral evidence for this
assumption (e.g., manipulating the type of auditory stimulus can influence how
long infants look at a static visual stimulus [21]). In fact, there is evidence
suggesting that at these early ages, senses are not even differentiated yet,
i.e., the associations are performed via a network that is not structured to
differentiate inputs between modalities [22], [23], [24], [14].

they are found in adults (more-or-less permanent lexical entries
which can be recruited in a wide range of language situations).
The behaviors described above result from a phylogenically
older type of adaptive learning called habituation. Habituation
is a behavioral phenomenon that causes an agent’s reaction to
a stimulus to weaken if that stimulus is presented in the same
modality repeatedly (think of how after wearing sunglasses
for a while one stops consciously feeling their contacts on
the skin, or how one learns to filter out construction noises
in the background). Even though it is not the same long-term
lexical acquisition as is present in adults, this early adaptive
learning is informative for several reasons. It demonstrates
the stimulus-selective processing capacities of infants at this
early age—processing capacities which will also be available
for learning entries in a long-term lexicon. It has also been
demonstrated that habituation learning is a kind of category
learning, and not just learning of a particular stimulus token.
Infants were able to habituate to several exemplar stimuli and
then able to generalize the learned exemplars to a prototypical
(but never previously experienced) stimulus [25].

In the infant experiments, the interesting behavior is not
habituation itself. Infant experiments will often test whether
a multimodal stimulus (defined as the conjunction of stim-
uli from two different modalities) can be habituated. If the
habituation effect is observed only when the two stimuli
are presented in conjunction, but not when either one is
presented in isolation, then an “association” must have formed
between those two specific unimodal stimuli. Even though the
association does not last (disappearing within days/weeks),
this association still constitutes learning. How these early
associations are related to the permanent acquisition of a
lexicon in later years is unknown, but a plausible explanation
will be offered for how it would be accomplished in the model
presented in this paper.

Although any difference in looking time is taken to indicate
an association difference, typically the overall looking time in
the “associated” condition is expected to be less than in the
“control” condition (because the infant has been habituated to
that pairing and thus it no longer evokes a “novel” response).
In the experimental setup used by Gogate et al., there were
two conditions under which subjects could be habituated,
which differed in the relative timing of presentation between
the visual and object stimuli in each individual presentation
episode of the habituation phase. In these experiments, the
visual stimuli were visible to the infant the entire time; it
was periods of motion of the visual stimulus that constituted
“showing” episodes (the hand holding the object waved it
around).

The important empirical finding that we target for ex-
planation using an embodied computational model is that
learning in the above experiments only occurred during the
period in which the auditory and visual stimuli were presented
“synchronously” during the habituation phase, and not when
they are presented “asynchronously”. Following Gogate et al.,
we can categorize each presentation episode into one of these
two groups using two criteria: onset lag (L,) and offset lag
(Ly) (see Figure 2). Onset lag is the mean time between the
onset of the speech act and the onset of movement of the
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Fig. 1. A parent interacting with a child, “showing” the child a toy while
saying, e.g., “bai”.
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Fig. 2. Timing of stimulus presentations with onset lag and offset lags

labeled. Word and object would not overlap (much) in asynchronous condition.

visual stimulus, whereas offset lag is the mean time between
the offset of the speech act and the offset of the visual stimulus
movement. In the asynchronous condition, L, and L, are
greater than in the synchronous condition, which effectively
results in the word being presented more “between” object
motion episodes than “within” them.

The effect of the synchrony/asynchrony condition on
whether or not learning occurs is very robust and occurs
with a variety of constraints in a wide age range of infants,
from as young as 2 months [17]. Yet, there is currently no
biologically realistic neural model that explains exactly how
real-time multimodal processes affect the formation of word-
referent associations in infants when the relative timing of
those processes can be characterized more precisely than just
being “synchronous” or “asynchronous”.

III. TOWARDS A COMPUTATIONAL BIOLOGICALLY
PLAUSIBLE MODEL OF WORD-REFERENT ASSOCIATION
LEARNING IN HUMAN INFANTS

The aim of this research is to develop a biologically plausi-
ble computational model of the essential processes underlying
multimodal habituation. In particular, we are interested in
modelling the properties of word-referent association learning
observed in 2-month old infants. The model should be as faith-
ful as possible to the functionality and the neural architecture
of the infant brain. Most importantly, it should replicate the
ability of infants to neurally “encode” raw auditory and visual
streams, their ability to shift focus of attention using movement
(of the eyes, head, body, etc.), and their ability to associate
multimodal (in this case, auditory and visual) stimuli.

The model includes analogues of relevant parts of the human
auditory system, containing a cochlear model to extract low-
level features of sound and an auditory circuit intended to
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Fig. 3. A sketch showing the major architectural pieces of the model.

represent a column of the primary auditory cortex Al. It
also instantiates a plausible visual system, using a saliency
map to represent the neural response of relevant regions of
the LGN and visual cortices and the superior colliculus to
control attention (eye location). A second recurrent circuit
(the “integration circuit”) is included that receives primary
inputs from V1 retinotopic visual feature representations, and
also receives projections from the auditory circuit. Based on
the differential development of brain areas and connectivity
at 2 months of age and current understanding of the sub-
strate of (unimodal) habituation, evidence points to the early-
developing perirhinal/entorhinal corticies in the hippocampal
structure as a convincing candidate for the location of this
integration/association of multimodal stimulus information.

Unique encoding of temporally-extended unimodal stimuli
is accomplished by the two recurrent circuits: the auditory
circuit for auditory stimuli, and the integration circuit for
visual stimuli (and as a second level for auditory stimuli). Each
of these circuits can differentiate between unimodal stimuli
in its respective modality because many different feature
combinations from sensors are injected into different subsets
of the circuits’ constituent neurons. In addition, the recurrent
connections within these circuits ensure that the state of a
circuit at a given point is to some extent influenced by its
previous state (i.e. it integrates some information over time).
The model learns conjunctions of auditory-visual stimuli as
a result of changes in connections between neurons in the
auditory circuit and neurons in the integration circuit. The
synapses are sensitive to the timing of activity in the neurons
that they connect; their strength changes dependent on the
degree to which activity in the two circuits is synchronized.
This results in association learning because it is essentially
establishing a linear mapping (weighting) between the two
encoding spaces.

The elements included in the model were carefully chosen
such that their combination will display several key char-
acteristics that we believe must be accounted for by any
model that purports to faithfully represent (both functionally
and mechanistically) the behavior of very young infants. The
most important characteristic is agnosticism towards explicit
categories. There are no neurons in the system that are wired
or intended for a pre-determined purpose, or to represent
a specific thing, except where biological analogs exist in
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Fig. 4. The Nao robot platform on which the computational model was
developed.

infants.? In addition to being biologically valid, this constraint
ensures that we make no assumptions regarding unimodal
cognitive development in infants—we are agnostic regarding
the formation of independent, modality-specific categories. All
behaviors that arise from the model will be explainable without
recourse to modality-specific categories. This is crucial, since
neurological evidence for young infants suggests that it is
unlikely that the brain differentiates between stimuli from
different modalities, so they may not have access to such
categories [14].

In addition to the exclusive use of biologically plausible
neural mechanisms in the architecture, we also ensure that
results obtained using the computational model are consistent
with infant behavior by adhering to two important real-world
constraints: the nature of the visual and auditory stimuli, and
real-world human-robot interactions analogous to parent-infant
interactions. Hence, auditory and visual stimuli are fed to the
model in the format provided by the microphone and camera
sensors without pre-processing.

The robot can interact with human teachers in the same
way that infants do in real-time, thus allowing the systematic
exploration of the phenomenon of interest: the effect on the
model of different social timing behaviors exhibited by the
parent.

The robot implementation will allow us to gather evidence
for a conjecture: that the empirical results found in develop-
mental psychology about the kinds of multimodal association
learning possible in early stages of human development can
be explained solely in terms of very simple and minimal
“reactive” stimulus responses in an infant’s sensory processing
and integration areas. The following subsections provide the
design rationales (and neurological support) for each of the
major subsystems of the model and describe details of how
they were implemented computationally so that they can be
run in real-time on the physical robot (Figure 4).

Recurrent circuit
Sound

e

CGChfea

Fig. 5. Visualization of the auditory network, from where sound enters the
system and is passed through the cochlear model (left), producing activity in
output channels that are injected into the recurrent circuit (right).

A. Auditory Processing

Raw audio streams are converted into neural activations
by a cochlear model ([26], [27]) which effectively applies
band-pass filters and transformations to the sound wave to
approximate the firing activity of a set of neural channels
along the cochlea. These cochlear channel neurons project
synapses into a recurrent neural circuit intended to model
primary auditory cortex (or at least a single column in it, see
Figure 5). This architecture was chosen based on evidence
(e.g., from [28]) that such a circuit instantiates a fading-
memory filter which contains sufficient unique information of
the correct type to independently train spoken word classifiers.
The circuit accomplishes this by reliably entering different,
yet consistent, state-space trajectories in response to different
real-time stimulus streams. In other words, if the cochlear
model converts the sound streams of two different spoken
words into sufficiently different patterns of firing over 500
ms in its various channel neurons, then the recurrent circuit’s
response should (consistently) differ between the two input
stimuli as well.* The same paradigm will be invoked to
propose a plausible account of how to handle complex stimulus
responses in the visual modality as well.

Implementation details: The cochlear model described in
[27]° was modified and updated to run in real time. Param-
eter defaults are retained (exceptions: decimationFactor=16
and stepFactor =0.5) producing 41 output channels which
encode on each simulation step the probability that a spike
occurs in that channel on that step (1 ms for the experiments
below). The auditory recurrent circuit is implemented with
few changes using parameters drawn from [28] (based on
empirical recordings from rat somatosensory cortex), and is
comprised of a 15 X 3 X 3 column of current-based leaky
integrate-and-fire (LIF) neurons (for a total of 135 neurons,
20% of which are randomly chosen to be inhibitory), whose
membrane potential’s (V;,,) dynamics are described by the

3Examples include the lowest-level feature-tuned neurons in the cochlea
and the saliency map. Also, prototypical color selective neurons were hard-
wired for the vision system implementation used in the experiments in order
to simplify the analysis of learning.

4Mathematically, the circuit does this by mapping its input onto a much
higher-dimensional vector space (i.e., the super-dimensional system repre-
sented by the configuration of all the parameters of the neural circuit over
time) such that different inputs will occupy regions of this high-dimensional
space in different orders; see [28] for details.

5C source available from http://www.slaney.org/malcolm/pubs.html
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following equation:
OWVin _ =(Vim = Vrest) + R - (Iog + Lsyn) (1)

ot Tm

where R,, is the membrane resistance (uniformly 1.0 M}
for all neurons), I, the background current (uniformly 13.5
mV for all neurons) and I,,, the total current impinging
from afferent synapses. The —V/,, represents the leakage term,
causing the membrane potential to decay exponentially with
time constant 7, (uniformly 30 ms for all neurons). The
resting potential of the membrane Vs is assumed to be 0
mV. When the membrane potential of the neuron exceeds a
threshold V;p,esp, (uniformly 15.0 mV), the neuron is assumed
to fire an action potential. The membrane potential is reset to
Vieser (uniformly 13.5 mV) and the neuron enters a refractory
period during which the dynamics of the neuron model are
frozen. The refractory period of excitatory neurons is 3 ms
(inhibitory neurons 2 ms). I,,, at a given time is equal to
the sum of the post-synaptic responses (PSR) of excitatory
afferent synapses minus the sum of the PSRs of inhibitory
afferent synapses.

The 41 channels from the cochlear model diverge to inject
current directly into a randomly selected 30% of circuit
neurons via static synapses (i.e., the current is added directly to
Isyn). The amplitude A of each of these input synapses was
drawn from a Gaussian distribution with mean A,,.4,=18.0
when the post-synaptic neuron was excitatory and A, ¢q,=9.0
when it was inhibitory. The standard deviation was chosen to
be 100% of the mean. Negative weights were set appropri-
ately from a uniform distribution between 0.001 - A,,cq, and
2. Amean-

The output of each channel of the cochlear model was
linearly scaled by a constant value (200.0) to normalize it to
the correct magnitude and range of the circuit neurons. Neu-
rons within the auditory recurrent circuit are probabilistically
connected based on a function of their Euclidean distance that
gives priority to local connections. Specifically, the probability
that a synapse exists between neurons at 3-D points ¢ and b is
C-e(=DP(@b)/N)? where ) is a global parameter controlling the
density of connections (=2.0), D(-) is the Euclidean distance
function, and C' is a parameter to modulate the probability of
a synapse depending on properties of the connected neurons.
In our case, C' = 0.3 if a is an excitatory neuron and b is an
excitatory neuron (EE), C' = 0.2 for excitatory and inhibitory
neurons (EI), C' = 0.4 for inhibitory and excitatory neurons
(IE), and C' = 0.1 for two inhibitory neurons (II).

Synapses have transmission delays of 2 ms (i.e., from pre-
synaptic neuron firing, it takes 2 ms for the action potential
to impact the synapse and have an effect on the post-synaptic
neuron) in the case of excitatory-excitatory neurons and 1 ms
otherwise, and are modelled as exponential-decay synapses.
The dynamics of the post-synaptic response ¢y, of a synapse
is thus:

a(g)sr _ 7(]psr (2)
t Tsyn

where 7, is the time constant of the synapse (7y, = 3.0 ms
for excitatory synapses and 6.0 ms for inhibitory synapses).

The synaptic dynamics of intra-circuit synapses are modeled
according to the UDF model proposed in [29], [30] using
the parameters described in [28]. In this model, the arrival
of a spike k (represented as a Dirac-delta function, §(t)) after
an interspike interval Ay_; induces an increase in the post-
synaptic charge of amplitude Ay:

A = w - ug - Ry (3)
up = U +up_1(1 —U)e 2r2/F 4)
Ry =1+ (Rj—1 — ug—1Ry—1 — D)e 25-1/P(5)

where w is the weight of the synapse (synaptic efficacy),
up and Ry are hidden dynamic variables maintaining the
facilitatory and depressionary tendencies of the short-term
plasticity of the synapse, and U, D and [ are the parameters
modulating local synaptic use, time constant of depression
(in seconds), and time constant of facilitation (in seconds),
respectively. Initially, Ry, = 1 and u = U. The parameter
triples (U,D,F") were selected for each synapse depending on
the type of neurons that were connected, i.e., EE, EI, IE,
and II, and were drawn from a Gaussian distribution with
means (0.5, 1.1s, 0.05s) for EE, (0.05, 0.125s, 0.120s) for
EI (0.25, 0.7s, 0.02s) for IE, and (0.32, 0.144s, 0.06s) for
II (the standard deviation was 50% of the respective means
in all cases). Negative results were redrawn from a uniform
distribution between 0.001 of the mean to double the mean.
The weights w of the synapses were drawn from Gamma
distributions with means 0.3 (for EE), 0.6 (for EI), 0.19 (for
IE), and 0.19 (for II); SD of 100% was used for each mean,
with negative results redrawn from a uniform distribution as
described above. Simulation of the model is performed via
Euler integration with dt=1 ms. While closed-form solutions
to the dynamics of each of the neuron/synapse/STDP models
exist, a closed-form solution for the entire network does not,
and must be numerically approximated.

B. Visual Processing

While auditory stimuli can be separated based on the se-
quence of onsets, offsets, and strengths of frequencies present
in the sound stream, a corresponding method for vision that
will convert a sequence of raw camera frames to a unique re-
sponse is not obvious, even after a review of the neuroscience
literature [31]. In humans, it is known that some neurons in the
optical ganglia, and subsequently in the LGN, are responsive
to certain basic color stimuli, and that there exist columns in
visual areas V1 and V3 that are tuned to the orientation (e.g.,
45° or 90°) of visual lines that fall within their receptive fields
[32], [33]. Additionally, columns responsive to the direction of
motion have been reported reliably in area MT [34], and there
is evidence for simple color maps in V1 (“blobs”, [35]), and
even hue-maps representing the continuum of color hues (from
“stripes” in V2 [36], and “globs” in V4 [37]). Recent research
has attempted to determine the method by which contours
are perceived based on combinations of lower-level feature
detectors of this type [38].

These empirical findings point to what we will consider
a set of basic visual features that can be used to differentiate
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stimuli. However, these results are based on studies with adult
animals, while we are interested in infants, who are only
partway through the developmental trajectory to adulthood.
It turns out that many of the above cited visual processing
capabilities do not emerge for quite some time postnatally (see
[39] for an overview). Hence, they can not possibly contribute
to the observed behavior of infants. This permits us to base
our model on a much simpler neuroanatomical circuit than the
full “adult” visual circuit.

The developmental neuroanatomy literature indicates that
at 2 months of age the only pathways by which information
can proceed from the retina to the muscles that control eye
movement are via a cortico-collicular (corticotectal) route:
retina, magnocellular lateral geniculate nucleus (mLGN), V1
deep layers 5/6, superior colliculus (SC) deep layers, brainstem
[40], or a thalamic relay via extrastriate area MT: retina,
SC superficial layers, pulvinar, V5/MT, SC deep, brainstem
[39]. This latter route is associated primarily with processing
motion signals. However, since the primary feature dimensions
defining objects in our paradigm are not motion-related, we
will focus on the former (direct cortico-collicular) route. A
retinotopic representation of the visual field is present in layers
5/6 of the primary visual cortex (V1), receiving its inputs from
the retina via the magnocellular pathway of the LGN (mLGN).
This magnocellular pathway is the “broadband” pathway and
mostly encodes information about rod-cells (light intensity-
detecting) from the retinal array. It thus encodes very coarse-
grained, flicker/intensity information.® This retinotopic map
in V1 then projects retinotopicically to deep layers of the
superior colliculus ([41]), which contains neurons which in
turn project to motor control related regions in the brainstem
which elicit an eye movement based on the activation distri-
bution in the SC. The genesis of these retinotopic maps is not
addressed in this paper, but they are probably mediated by
both experientially-based and molecular mechanisms [39].

The circuit described above purports to explain the mech-
anisms by which the eyes are directed to locations in the
environment based on the activation of regions of a retinotopic
map in, e.g., V1 and then SC. These activations are based on
bottom-up activation (i.e., based on properties of the stimuli
in the environment and how the system is built to filter these
properties). In reality, all locations in the retinotopic map
would be activated in parallel (and so have effects on deeper
areas) but for computational simplicity it is assumed that only
the “winning” (maximal) region is uninhibited and able to
innervate the deeper areas.

The above mechanism to determine the activations of retino-
topic regions and to select the highest one is implemented via a
saliency map. The saliency map allocates higher “activation”
to (retinotopic) regions of globally high bottom-up contrast
across many different scales and feature types [42]. The
theory is that these regions are more likely to contain the

6The parvocellular pathway, which is not developed yet, is believed to be
what processes, e.g., color information. These projections into more superficial
layers of V1 only become myelinated later in development and so likely do
not play a role in control at 2 months of age. In the experiments we will
be using color information instead of configurations of these flicker/intensity
features because it is more straightforward.

Recurrent Circuit

Top-down Bias

Fig. 6. The pathway and connectivity of the visual system, which also
controls bottom-up and top-down biasing of attention. (1) Pixels on the visual
field are sampled in combinations, producing neural correlates of saliency
map channels. (2) The active neurons in the saliency maps (V1) influence a
recurrent neural circuit in combinations that reflect their location and feature-
type. (3) Feature-tuned neurons in the saliency map level that correspond to
the currently active trajectory-encoding are inhibited, causing those regions
to be disadvantaged.

most informative stimuli, and useful information to uniquely
encode the informative visual stimuli. Thus, directing the
eyes to maximally encompass those stimuli will allow quicker
and more efficient encoding of the information, allowing the
animal to respond appropriately.

It is informative to look at the behavior of the system when
only one feature-type contributes to the encoding of visual
stimuli. This is also closer to the situation of an infant. By
simplifying the system in this way, one can sidestep com-
plexities of dealing with combinations of too many different
feature-types—problems which are not central to the main
research questions addressed in this paper.” We implement and
examine the visual system outlined above, but with the maps
and detectors for all feature-types except for color lesioned.
Thus, the only dimension along which the system will be
able to differentiate between two stimuli is if they are of
different (R-G/B-Y) colors. The motion map is also active, but
does not influence the higher-level encoding. In other words,
only combinations of color-sensitive saliency map neurons
project into the integration circuit. However, both motion and
color neurons contribute to deep SC projections that drive
eye movements. Based on the developed circuit at 2 months
postnatal, real infants would only have access to intensity
(and thus possibly orientation), and flicker-type information to
encode stimuli in V1. Area MT may additionally have other
types of motion encoded. How to uniquely represent, e.g.,
rotation and translation invariant visual stimuli based on these
basic feature types (as in the brain) is not well-understood and
not the focus of this paper. The problem was side-stepped by
using the easy-to-represent feature “color” as the only defining
feature of visual stimuli, even though infants of the target age

7We can do this without affecting the ability of the system to behave in
the real world, “up to” its ability to discern visual stimuli. It is similar to the
situation of a color-blind man who behaves normally until he comes upon
two stimuli, one red and one green, that he cannot discern.
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Fig. 7. The architecture of the vision system as implemented. From right to
left: Retinal image projects in various combinations onto neurons in saliency
maps, called “green” (in green) or “motion” (in black) neurons depending
on what the projections they receive implement. Here, green are only feed-
forward feature-tuned neurons, whereas motion maps inhibit laterally and
within map, thus implementing saliency map. Green-tuned map neurons
project onto a neuron in a simple contrived circuit—the green circuit neuron
represents “green” because of the combinations of inputs it gets from saliency
maps (not because it’s a predetermined green-tuned neuron).

probably can not actually use color.

Even in such a seemingly simple domain as color, neu-
rological evidence cannot support one explanation over all
others regarding which representations of colors (i.e., full hue
maps, or coarse color opponencies) are engaged in which
behaviors [31]. Lacking an empirical basis for constructing
the network, we implemented it in the most straightforward
manner possible (diagrammed in Figure 7). The “recurrent cir-
cuit” comprising the integration region has been simplified and
reduced to a four-neuron circuit with no lateral connections,
contrived to demonstrate how individual circuit neurons gain
identities based on the combination of inputs they received
(here the bottom-most neuron is visually ‘“green” because
it happens to receive positive inputs from green-tuned V1
neurons, and no connections from other neurons).

Implementation details: The “fully neural” saliency map
is approximated by an optimized version (“envision”) of the
common implementation of the saliency map ([42]) available
under the GPL license.® The code was modified to run in
real time with top-down biases (i.e., to V1 state). Fixations
are determined by a winner-take-all (WTA) network (intended
to correspond to SC) implemented as a 2-dimensional array
of LIF neurons with a uniform membrane time constant 20
ms, which receives input from the instantaneous saliency map
calculation (i.e., V1 state) run on the current visual frame
every 20 ms. The input to each neuron in the WTA network
is determined by application of a Gaussian filter to the level-4
output of the instantaneous saliency map, normalized to the
range [0, 1]. The filter’s width is 1/6 of the pixel-width of the
visual field. LIF neurons in the WTA network are modeled
without a refractory period, and are assumed to continuously
fire while above threshold. The WTA network is fully laterally
connected with inhibitory connections (static, linear synapses
with amplitude A=0.2). After a WTA neuron reaches threshold
and a fixation is executed, a region equivalent to the width
of the Gaussian filter is inhibited by a constant signal of

8http://ilab.usc.edu/bu/

strength A=0.3 beginning 300 ms after the onset of firing of
the winning WTA neuron and ending 500 ms after the onset of
firing. The average color (the only distinguishing feature type)
is extracted from the region of the visual frame corresponding
to the location of the WTA neuron by averaging the RGB
color channel values for all pixels that lie within a circle of
radius 1/20 of the width of the visual field.

The average rgb-space color of the foveated region is
converted into R-G/B-Y color space based on the equations
used in [42]:

R:r—(g;b) ©6)
G=g- 20 ™
B:bfw ®)
Y=r+g-2(r-gl+b) )

LIF neurons (with parameters identical to those in the auditory
circuit) tuned to each of the 4 colors are injected directly
with the value of the corresponding (R/G/B/Y) color channel,
linearly scaled by 75.0 to convert from the color space range
to the neural parametal range, with synaptic scaling parameter
uniformly A=1.0. These 4 neurons are intended to represent
the firing activity of the population of color-tuned neurons in
the V1 area with the highest response strength (to save having
to represent all regions in the retinotopic map in parallel).

The “integration circuit” is modeled as an additional 4
LIF neurons that receive static input from the 4 V1 color-
tuned neurons in a color-preserving manner (connected only
to the corresponding color neuron, A=5.0). These parameters
produce a constant firing rate of roughly 50Hz in the circuit
with sustained input of a pure color.

C. The Integration Region

We postulate that the perirhinal/entorhinal cortex could
play the role of multimodal integrator for stimulus quality,
and parahippocampal/entorhinal for spatial. The perirhinal
cortex receives afferent projections from both V1 and from
primary auditory cortex Al and is well-developed and ac-
tive even prenatally [43]. Additionally, the hippocampus and
the surrounding “old” cortices (parahippocampal, entorhinal,
perirhinal) have been shown to be involved in habituation
and preferential looking based on novelty detection [44],
[45], [46]. Synaptic plasticity (STDP) mechanisms have been
shown to be active within these cortical areas, providing an
explanation for how associations could be learned between
some multimodal stimuli but not others [47]. Finally, it
has been shown that extensive recurrent connections project
back from perirhinal/parahippocampal cortex to the (primary)
sensory areas V1 (and Al) [48], [49]. Also, stimulus or
location-selective neurons have been shown to exist in inferior
temporal cortex (the rhinal sulcus) [50] and visual regions [51],
which show interesting biased behavior during simple memory
tasks. In particular, this bias is manifest in that neurons
which are selective to a particular stimulus S will actually
become inhibited about 100 ms after stimulus presentation
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if the stimulus they select for is not the “target” stimulus.
Meanwhile, the target stimulus will stay maximally active
until finally an eye movement is made (a further 100 ms
later). This is evidence that top-down (or lateral) inhibition
can actually be modulating the magnitude of a representative
response. In the case of the above studies the top-down
inhibition was memory of which stimulus is the “target” (via
an unspecified mechanism which maintains state for a short
time—i.e., short-term memory). In our case it will be top-down
inhibition of whichever perirhinal “multimodal representation”
is most active. In normal, unimodal visual habituation this
would be caused by a straightforward growth in afferent
connections to the representative neural population/system in
perirhinal cortex. Note that the same unimodal (e.g., V1) input
would evoke a stronger perirhinal response, and thus increased
feedback inhibition to itself via the feedback connections. This
inhibition would decrease the activation of that location in V1,
and then in SC, thus reducing the probability of looking to that
location.

In this paper the perirhinal visual “representations” are kept
simple (just colors); only the weights of the multimodal input
coming from auditory cortex are learned. The modification of
these weights has the effect of modulating the bias that a given
auditory response will have on a given visual representation (in
our case, canonical color). This way multimodal habituation is
modeled without addressing the effects of unimodal visual (or
auditory) habituation, which are assumed to be constant for all
stimuli. Thus, the whole system will serve as a mechanistic
“novelty filter” for conjunctions of audio and visual stimuli,
since there is no mechanism in the system to “learn” visual
categories (only auditory categories), and the only mechanism
to direct the eyes and orient towards a stimulus is via the visual
system. Yet, it can habituate to multimodal stimuli because the
inhibition to the retinotopic map which directs eye movement
increases as A and V are associated, causing less looking time
to V only in the simultaneous presence of A.

Neuroanatomically, the connections from sensory areas fo
the parahippocampal cortex are probably not the synapses
whose plasticity is responsible for habituation. Rather, it
is more probably connections between neurons within the
perirhinal/entorhinal cortex that play this role, because it
would be difficult to get sufficient complexity in the sensory-
perirhinal synapses to recognize complex stimuli to which
people can habituate. Thus, in reality, it would be the case
that the primary sensory areas would feed with (mostly
static) projections into different subsets of the recurrent circuit
representing the peri/entorhinal cortex, and then it would be
the weights between constituent neurons of this recurrent
circuit that would be plastic. For both computational and
conceptual simplicity, we have removed one of these two
locations of change. This leaves the qualitative mechanism
of the habituation in place, while making later analysis and
understanding of the system simpler and paving the way for
future mechanistic additions. However, we found that the
model manifests some undesirable properties, possibly as a
result of the simplification, which we will discuss in section V.

D. Association Mechanism: Spike-Time Dependent Plasticity

Spike-time dependent plasticity (STDP) is a mechanism
whereby the efficacy of a synapse is modulated dependent
on the relative timing of pre- and post-synaptic spikes [52].
Learning in the neural model is accomplished via the plasticity
of synapses between the recurrent auditory circuits (“auditory
cortex””) and the integration region (peri/entorhinal cortex) that
receives inputs in static configurations from the saliency map’s
(i.e., VI’s) output.

STDP is a mechanism well-suited for multimodal integra-
tion because the potentiation of synapses will only occur where
pre- and post-synaptic neurons are firing in a synchronous
pattern—in particular when the action potential from the pre-
synaptic neuron’s firing reaches the synapse before the post-
synaptic neuron fires. Depression of the synapse will tend to
occur if the synapses are out of synchrony, or if they randomly
switch between preceding and trailing one another.

Thus, increase in weight will be more likely to happen
when stimuli are presented synchronously. We hypothesize
that the increased weight will allow the auditory circuit to
“entrain” the integration circuit, biasing it towards continuing
to fire in synchrony, allowing more learning to occur. Firing
in synchrony can also result in increased information flow
between circuits, since action potentials will be less likely to
arrive when the neuron is least ready to integrate them (i.e.,
in its refractory period).

Implementation details: Static exponential decay synapses
connect every excitatory neuron in the auditory circuit with
each of the 4 integration region circuit neurons. STDP is
modeled for each of these synapses between the two input
maps using the STDP model described in [53], with 74 = 7_
= 20 ms and A;=0.005 and A_=0.006. In this model, the
change in synaptic efficacy (weight) of each of N afferent
synapses to a post-synaptic neuron is modeled according to
N + 1 functions. One function, M(t) is used to decrease
synaptic strength. The others, P, (¢) (for a = 0,1,2...N — 1)
are used to increase synaptic strength. All of these functions
P,(t) and M (t) are initially zero, and decay exponentially,
ie.

oM —M
B T (10)
P, —P,
8t o 7'+ (11)

Every time the postsynaptic neuron fires, M(t) is decre-
mented by A_. When synapse a receives a presynaptic action
potential at time ¢, its weight is modified: w, = w, +
M (t)Wimaz- Wmae 1s the maximal weight parameter, represent-
ing physical constraints on synaptic transmission efficiency per
synapse, globally set at wy,q, = 3.0 for the experiments. The
value of w, is clipped if it would be greater than w,,,, or
less than zero.

P,(t) is incremented by A, every time synapse a receives
an action potential. When the post-synaptic neuron fires at
a time ¢, w, is modified: w, = wy + Py(t)Wmas- Again,
w, is clipped if it would be greater than w4, or less than
zero. Initial weights for all synapses are zero so that the net
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Fig. 8. The time line for a single learning episode. Phases in both auditory
(A) and visual (V) modalities are shown side-by-side. In this case the word
is slightly longer than, and has a negative offset to, the object motion.

change can be used as a direct learning metric in the empirical
experiments.

IV. EVALUATING THE ROBOTIC MODEL IN LEARNING
TRIALS

The measure of success for the robotic model evaluation is
how closely the observed behavior of the robot implementation
matches the infant experiment results described in Section II.
If the robotic model is able to produce behaviors consistent
with the infant studies, i.e., if it shows evidence of learning
word-referent associations in the synchronous condition but
not in the asynchronous condition, then we have succeeded in
demonstrating that the proposed model is plausible, given the
additional measures taken to construct it based on current neu-
rological evidence. Note that given the experimental paradigm
used for infants and the available psychological results, it is
not possible to do more detailed model fitting than these two
data points.

A. The Role of Synchrony

For the evaluations, we use a design based on the model
employed by Gogate and colleagues [16], [17]. In particular,
we examine single episodes of word-object presentations to
determine the effects of various parameter combinations on
learning performance; a single experimental run consists of
a human experimenter waving an object in the robot’s visual
field and speaking a word at a given offset from the onset of
the object stimulus (see Figure 8). The conditions are defined
on two dimensions: word length (two distinct words presented
by the speaker) and word offset relative to object motion (i.e.,
the difference between the temporal onset of the word stimulus
and the temporal onset of the object stimulus).

The model was implemented using our distributed robot
infrastructure ADE (the Agent Development Environment [54]).
The ADE development model encapsulates major functional
components as ADE servers (e.g., the vision server that
provides frames to the saliency map, or the server used to
control the Nao robot’s movement). ADE provides facilities for
establishing and maintaining connections between servers and
invoking actions in other (possibly remote) servers, allowing
the system architect to focus on implementing the functional
capabilities of the robot. In this case, the learning model itself
is implemented as multiple threads in a single ADE server that
calls on other ADE servers (e.g., vision) as needed.

During a teaching episode, the teacher faces the robot,
monopolizing much of its visual field. The teacher holds the
visual stimulus (a green ball that takes up roughly 1/16 of the
visual field) so that it is fully visible during the whole episode.

Fig. 9.  Typical frame from visual stimulus motion, and saliency map
visualization. The average color of the foveated region is indicated in the
bottom-right sub-box; the upper-left is the final output, and the yellow square
indicates the winning area (i.e., currently being foveated).

%. jﬁ Loopframe

Vis Static Phase 1 Static Phase 2
Aud Silent Phase 1 Word Silent Phase 2
I f } Ly
Moise Inject word Nolse

Fig. 10. The time line for an “unsupervised” learning episode. The video fed
during the “static” phases is a loop of the frames immediately preceding and
succeeding the motion phase, and the audio fed during the “silent” phases is
background noise.

The ball is held still except during the object stimulus motion,
during which the teacher waves it back and forth (primarily
lateral movement no more than half the ball’s size in the visual
field). The auditory stimulus is spoken at the appropriate time
(for the given offset), and the performance (i.e., the degree
to which an association is established, which is proportional
to the decrease in probability of looking to the object in the
future) is recorded.

Note that it is impossible for any human to consistently
present the stimuli with the degree of precision required
for comparisons of very subtly differing (e.g., by 40 ms)
conditions. Moreover, it will be very difficult to eliminate
all sources of noise during the “non-stimulus” portions of a
trial (e.g., variations in background audio or slight movements
of the object, which could bias the system, or even lead to
erroneous associations under certain circumstances). While
the system is fairly robust to such noise, particularly over
multiple episodes, it is useful to isolate the effects of the
stimuli from the influence of noise while at the same time
ensuring consistent, precise variations of each parameter.

The computational implementation affords us the flexibility
to control those factors, as we have direct control over the
inputs and how they are presented. We eliminate the sources
of imprecision: instead of having an experimenter repeatedly
present the stimuli to the robot, we construct audio and video
input streams of the episode and feed these directly to the
robot architecture for processing in real time, just as if the
data were arriving by microphone and camera.

Image sequences were recorded under realistic conditions
in the native frame rate (30 Hz) and format (320x240 raster)
of the onboard camera (Figure 9, left). Timestamps for each
incoming frame were logged to allow the accurate reconstruc-
tion of the stream, including realistic variation due to system
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Fig. 11. Mean activations of the green-tuned neuron (top) and LSM word-
probe neuron (bottom) for each offset in the 420 ms word condition. The word
activation is the integrated output of a readout neuron, described in section V

load, etc. Extraneous motion is eliminated from the pre- and
post-stimulus phases by repeating the frame immediately pre-
ceding the motion onset for the entire pre-stimulus phase and
repeating the frame immediately succeeding the end of motion
for the entire post-stimulus phase. The robot architecture does
not distinguish these “static” frames, so the effect is of the
teacher holding the ball perfectly still. The audio stream is
constructed in much the same way: the word itself is recorded
and combined with recordings of “clean” background noise
from the same environment for the pre- and post-stimulus
phases. Figure 10 shows the progression of a learning trial
conducted using these “idealized” input streams.

The lengths of the three phases of the video input are held
constant for all trials (1600 ms pre-motion, 360 ms motion,
1200 ms post-motion). Hence, the motion stimulus onset is
always 1600 ms, and the word-motion offset variation is
introduced by manipulating word onset in the audio stream.
The offset was varied from -680 ms to +720 ms, with a
granularity of 40 ms, for a total of 35 offsets (and audio
stream permutations). Two different word stimuli (/bal/ and
/da/) were tested, with lengths of 420 ms and 250 ms, re-
spectively, making non-overlapping presentations of the word
stimulus possible both before and after the motion stimulus
and providing examples in which the word length is longer
and shorter than the motion length.

As noted above, the robot model runs in exactly the
same way with the prepared input as it would with dynamic
input; the only adjustment to the ADE servers is to allow
sensory input from the recorded streams (e.g., a group of
image frames instead of a camera). The learning module
acquires frames in the same way whether they are live or
recorded. The learning component processes the inputs in real
time in multiple threads subject to operating system process
scheduling, which introduces a small amount of variability
in the phase lengths; the error is controlled by aborting and
restarting trials in which the threads became more than 10
ms out of step. Figure 11 shows the mean output from the
visual (top) and auditory (bottom) subsystems of the model
for each of the offset values examined in the 420 ms word
condition. The curves for each modality appear very similar
across all offsets, and one-way ANOVAs for each modality

Word-presentation offset vs. learning - /bal/
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Fig. 12.  Mean learning performance for 420 ms (/bal/) word trials (with
standard error bars).

with offset condition as the independent variable and activation
as the dependent variable confirm that the differences are
insignificant for both video (F'(34,62265)=.222,p=1.0) and
audio (F'(34,62265)=.0001,p=1.0); we take this as verification
that the architecture achieves the consistency desired and the
results presented below are not attributable to input bias.

450 trials were conducted for each word/offset combination.
To avoid possible effects of a preferred fixation length and to
ensure that the model is not always in the same fixation state at
the onset of the motion stimulus, the model is reset to its base
state at a random point in the first 400 ms of each trial, which
is well before the onset of either stimulus, and hence does
not directly affect the resultant activity of either. The state of
the model is logged at regular intervals throughout each trial,
and each trial’s outcome is recorded when it completes. To
measure learning, instead of employing an analogue to the
“switch” test used in the infant experiments, we calculate the
net change in synaptic efficacy of the plastic synapses that
run between the auditory recurrent circuit and the integration
circuit neuron that corresponds to (in our case) the color of
the stimulus.’

Figures 12 and 13 show for each of the two words the
mean learning measured in 450 trials of each offset. Aside
from minor differences in the curves (attributable to the two
words’ distinct activation patterns), both words exhibit the
same general pattern: a range of word-motion offsets in which
association strength is low (attributable to chance/noise), fol-
lowed by a range in which learning is observed, and then
another range of low association. In each case, the range
in which learning occurs is roughly centered around the
point at which the co-occurrence from the activations from

9This metric most accurately encodes the “strength” of the association
between the auditory stimulus response and the visual stimulus response. It
corresponds to the strength of the “bias” caused on the visual circuit by the
auditory circuit when it is activated by the same auditory stimulus. It can
thus be easily converted to a bias in looking times by having activation in the
visual circuit inhibit the saliency of regions containing corresponding features.
In the “same” case, activation of the associated auditory stimulus will push
the vision circuit towards the trajectory that would correspond to the visual
stimulus actually being present, inhibiting the saliency of the corresponding
regions and resulting in lower probability of fixation and shorter fixations
on those regions. Activation of a non-associated auditory stimulus (“‘control”
condition), on the other hand, would not inject meaningful activation, and
thus attention would not be allocated significantly differently than normal.
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Fig. 13.  Mean learning performance for 250 ms (/da/) word trials (with
standard error bars).

the two sources is greatest. Note that this does not occur
when the offset At=0 ms (i.e., when the presentations start
simultaneously), but rather when A¢=120 ms, which is the
peak for both words. This delay corresponds directly to the
mean attention shift “lag” (an effect of the inhibition-of-return
mechanism of the saliency map implementation) and, is thus
due to the particular implementation of the robot model; in
other implementations the peak could occur earlier or later.

Significant learning is observed only for offsets that allow
a period of overlap in the two subsystems’ activations. When
At < Oms, word length determines the amount of overlap
(i.e., how much of the word activation phase remains when the
color activation begins). Hence, the range of offsets for which
learning occurs is wider and present for more negative offsets
(see Figure 12). Conversely, when At > Oms, the determinant
of co-occurrence is motion length (i.e., how much of the word
activation phase occurs before the word activation ends). The
result is that learning trails off at roughly the same offset (520
ms) for both words.

A 2-way 2x35 ANOVA with word and offset as inde-
pendent variables and learning performance as the depen-
dent variable finds that both word (F'(1,31430)=5.442,p=.02)
and offset (F'(34,31430)=2456.569,p <.001) are significant
main effects. The main effect on word is obviously ex-
pected given the difference of the employed words. The
more interesting main effect of offset indicates that learning
performance does improve above the baseline in the region
of overlap. Moreover, there is a highly significant 2-way
interaction (F'(34,31430)=250.138,p <.001) resulting from
the different possible overlaps associated with different word
lengths: longer words have more potential for overlap with the
visual stimulus. Post-hoc analysis confirms that the average
learning performance of every offset in the no-overlap ranges
([-640, —240] and [480,720]) is significantly lower than the
average learning performance for every offset in ([—200, 440]),
the region of overlap (p <.01, Tukey’s HSD). In addition, for
offsets in [—240, 0], learning performance is greater for the 420
ms stimulus than for the 250 ms stimulus, while the reverse
is true for offsets in [80, 360] (p <.01, Tukey’s HSD).

These results strongly indicate that stimulus co-occurrence
(i.e., simultaneity) plays a key role in learning multimodal
associations. Other effects are clearly present in the results

(e.g., the kurtosis seen in Figure 12), but these are entirely
unsurprising given the constraints imposed by our design goals
(cf. Section III). The model is designed to be biologically
plausible in both its constituent parts and their interactions;
some variation is inevitable from one trial to the next, and
characteristics of the neural architecture prevent the system
from instantaneously tracking the input (e.g., the attention shift
delay). In addition, the input, although “unnaturally” consistent
across learning episodes, is taken from a real-world interaction
and contains much of the noise that is normally found in
data from audio and video sources. Finally, the two stimulus
words are different (and therefore generate different activation
patterns in the auditory circuit). However, these other effects
are relatively small compared to the influence of overlap; co-
activation appears to be the strongest indicator of learning
performance.

B. Functional Category Learning

The evaluation above demonstrates that learning in the
model scales with the amount of synchrony overlap between
the auditory/visual stimuli. Further experiments were neces-
sary to verify that the model components and learning mech-
anism are actually capable of categorization of stimuli into
“habituated” stimuli (“same’) condition and “novel” stimuli
(“switch”) condition, as infants are. Gogate and colleagues
[17] determined that at 2 months of age, while infants were ca-
pable of habituating to one multimodal stimulus at a time (only
if the multimodal stimuli were presented synchronously) they
were unable to simultaneously habituate to two multimodal
stimuli even if the stimuli were presented in synchrony.

To investigate the behavior of the model in similar circum-
stances, we simulated habituation of the model to multimodal
word-color pairings and then tested the response of the model
when presented with the habituated word versus a novel word.
If the model was successfully able to extract information
specific to the habituated word stimulus and associate it with
the visual color stimulus, then the co-habituated (integration
region) color neuron’s activation should increase more when
the “same” word is presented than when a non-co-habituated
“switch” word is presented. Since both the “same” and
“switch” word share a neural substrate (the auditory cortex),
both will necessary excite the integration region neuron to
some extent as a result of the changes in synaptic strengths
that resulted from the co-habituation to the “same” word. How-
ever, simultaneous experience of the visual stimulus and the
word stimulus should have caused weight changes that select
specifically for properties of the auditory circuit’s response to
the “same” word, whereas no such learning will have happened
for any non-co-experienced word stimuli. Thus, the channels
between the auditory circuit and the integration region neuron
should be set up in a way that selects for co-incidence of
the “same” word and the visual stimulus, but not necessarily
for co-incidence of the visual stimulus with any other word
stimulus.

Two sets of stimuli were prepared to test the multimodal
category-learning ability of the network. The same stimuli
used in the synchrony experiments /bal/ and /da/ were com-
pared, and also /bal/ was compared with a reversed version of
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itself /iab/ as an easy way to control for length. For each pair
of stimuli, in two different sets of experiments each stimulus
was used as both the habituated stimulus and as the novel
stimulus in turn. Thus, 4 conditions were run, comparing (/bal/
habituated, /da/ novel), (/da/ habituated, /bal/ novel), (/bal/
habituated, /iab/ novel), and (/iab/ habituated, /bal/ novel).
Within each condition, a novel model was generated randomly
according to the process and parameters described in Section
III, habituated to the target stimulus over 10 repetitions of
the target word stimulus while simultaneously stimulating the
color-responsive neuron in the integration region at 200Hz
beginning at word onset and ending at word offset. 100 ms of
audio/visual silence was inserted between each word repetition
during which the network was updated but there was no input.
Finally, both the habituated word and the non-habituated word
were presented in turn (with 100 ms of separation) while
hyperpolarizing the integration circuit color-responsive neuron
so that it would not fire an action potential (this effectively
prevented synapses from being modified during the test phase).
The net change in membrane potential of the color-responsive
neuron over the duration of each of the “same”/“switch”
words was recorded. To measure the change between each
of the 10 familiarization presentations, the test was actually
administered between every stimulus repetition, and not just at
the end of the 10 presentations. It was also administered once
before any familiarization presentations to generate a baseline
value (which was always zero because of the initial weight
distribution).

In order to account for differing word-lengths and acoustic
power (translating to increased pre-synaptic activity and thus
increased post-synaptic activation) between words, the net
change over the length of the word was divided by the total
number of pre-synaptic spikes recorded over the duration of
the word stimulus presentation. This is necessary because
the auditory network is input-driven (i.e., it has no passive
spiking activity without input), and so words with differing
power can significantly change the amount of energy present
in the system to begin with. This is a shortcoming that is
recognized in the literature (solutions, such as synaptic tuning,
self-scaling, etc., have been proposed) and that we plan to
reconcile in the future (see discussion below). The number of
presynaptic spikes simultaneously represents both the length
of the word and the average power per unit time, and is thus
an ideal normalization measure for our purposes. 500 trials
were conducted for each condition (each with 10 repetitions
for habituation and 11 tests of each word). Figures 14 and
15 plot the mean difference between the normalized increase
in activation of the color-responsive integration neuron in
response to each word stimulus being presented separately.

If the system is able to learn the correct categorization,
it is expected that the difference be always positive, as this
indicates that the co-habituated (“same”) word is able to elicit
more energy per spike than a novel (“switch”) word which
was never co-experienced with the visual color stimulus. Both
plots show that this is indeed the case for all combinations
of the stimuli tested. Paired one-sided T-tests for each of
the 4 conditions and 11 repetitions (for each of the 44
possibilities, t(499) > 3.75, p < 0.00001) show that the
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observed difference is significantly positive for every case.

The results demonstrate that with repeated synchronous
presentation of the audio/visual stimulus pair, the model’s
dynamics are such that the strengths of weights will be orga-
nized to transfer more energy per spike for the corresponding
auditory stimulus than for a novel auditory stimulus. However,
it also seems that a single encounter with the stimulus is
sufficient for the model to extract all the information necessary
to maximally select for that stimulus. This is possibly due
to learning rate-related parameters in the model being too
high, or the visual stimuli representations being excessively
simple. However, it also raises an important issue, which is
that stimuli are continuous and temporally extended. To an
infant, what constitutes a single “stimulus encounter” is not
well understood. For instance, how much effect does exposing
an infant to only a portion of an auditory stimulus have?
Empirical studies do not address this issue, treating stimulus
presentations as discrete and atomic. This is the first attempt to
bridge the explanatory gap which exists between mathematical
models of habituation (e.g. [55], [56]) which measure stimuli
in arbitrary dimensions (“presentations”) and the actual real-
world stimuli and motor motions which produce the empirical
measurements that lead to those models.

There is some evidence that infants’ systems could be inter-
preted as experiencing the world as atomic, discrete periods of
stimulus presentations. This is based on the observation that
infants enter periods of “attention” (alertness/arousal, usually
measured in terms of deccelerated heart-rate), during which
they are better able to learn. In the extreme, when not in an
alert state, the infant is not able to habituate. It has been
shown that presenting a stimulus to infants for 5 seconds
during the “sustained attention” phase results in the same
amount of learning that presenting a stimulus for 20 seconds
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(at a random time) normally would [57]. In neonates, alert
states are endogenously generated and cyclic, similar to the
circadian rhythm. As the infant develops, it becomes possible
to elicit alert states using engaging external stimuli [58], [59].
However, other research shows that infants actually recognize
stimuli less well when not aroused. This is taken to imply
that at least part of the observed benefit of arousal is that it
facilitates the processing of stimuli, instead of (just) facilitating
learning [58], [59].

If interpreted as recruitment of low-level functions that
facilitate learning and/or encoding/processing, then several
mechanisms could be postulated involving modulations to the
overall system by arousal state that move the system into
states receptive to learning. The identity of the biological
structures and their functions will need to be addressed in
future models as they obviously play a major role related
to stimulus processing and learning in infants. Arousal is
thought to be elicited functionally by ascending (subcortical)
pathways from the brainstem reticular formation. These target
common limbic and cortical regions, including those that
figure centrally in the present model such as the parahip-
pocampal structures. The functional effects of the release
of these (extracellular/horomonal) neurotransmitters (nora-
drenaline, acetylcholine, seratonin, and dopamine) associated
with these ascending pathways probably play a large role in
learning and memory, and will need to be addressed in future
model iterations.

For example, we can hypothesize based on neurobiolog-
ical and computational modelling evidence that the arousal
functions described are involved in the generation of bene-
ficial passive/baseline circuit activity, bias of afferent input
over intracortical connections, and even increased synaptic
plasticity (role of ACh is reviewed in [60], for reward-based
plasticity see [61], [62]). Such baseline activity could also
prove to be a solution to the strong dependence of the current
model on stimulus energy, and the bias towards afferent inputs
could have the effect of tightening cortical representations
of stimulus input for each modality, producing higher-fidelity
associations.

C. Discussion of Results/Model Evaluation

Based on the model evaluations presented above, it is clear
that several improvements can be made to future models
to account for additional properties of recognition memory
and multimodal habituation as they occur in human infants.'?
Many of these seem to stem from oversimplification of the tar-
get biological circuit, which is not necessarily negative, since
our goal was to determine a minimal functional circuit. While
it turned out that the proposed circuit was able to demonstrate
some aspects of infant multimodal habituation, it was unable
to account for others. An example of this is the current model’s
dependence on low-level stimulus energy. Some desirable
properties that are expected to alleviate the dependence of
results on stimulus power include: baseline network activity,

10The authors would like to thank the two anonymous reviewers for
their constructive comments which enabled these additional avenues for
improvement of the model.

improved synaptic learning mechanisms, and more processing
of stimuli before they reach the plastic synapses. The addition
of an additional cortical layer to model the internal dynamics
of the integration region (in our case peri/entorhinal cortices)
is expected to solve this last problem, and in addition will
bring the model closer to the actual anatomy. With baseline
activity the amount of energy in the network would stay
relatively constant, but the distribution of energy would be
perturbed by incoming stimuli. This would reduce the drastic
change in network response to different stimuli, as is observed
in the current input-driven network. It is known that the
human cortices demonstrate baseline activity, especially during
periods of alertness elicited by ACh diffusion. Integration of
similar horomonally-induced changes is a possible solution
to this problem, though balancing complex models to have
constant baseline activity is not a trivial problem. Finally, the
Song et al model of STDP implemented in the current model
is one of the simplest computational models of STDP and only
takes into account the relative timing of every pre-post spike
pair. It does not take into account recent data and models
which recognize the modulatory effects of spike triples or
quadruples (e.g., [63], [64]) which have been shown to better
approximate the functions defined by pre-synaptic input [65].

V. GENERAL DISCUSSION

The computational model of infant word-referent learning
presented here includes biologically plausible neural compo-
nents of the relevant portions of the auditory/visual sensory,
attentional control, and sensory integration systems of human
infants. The robotic implementation of the model was tested
using an experimental paradigm taken directly from the infant
learning literature. The results demonstrate that the robot’s
responses to manipulations of the relative timing of the pre-
sentation of auditory/visual stimuli are consistent with those
of young human infants in early language learning studies.

Most notably, our model is capable of learning multimodal
categories without needing to (explicitly) learn unimodal cate-
gories. Agnosticism with respect to explicit categories sets this
model apart from previous models of word-referent association
(addressed in section VI), which construe it as the association
between independent representations abstracted away from the
temporally extended processes that activate them. However,
the results described here demonstrate that it is precisely
the description at sub-stimulus temporal timeframes that can
explain the synchrony/asynchrony phenomena in young in-
fants. In our model, stimuli are only uniquely identified by
the particular temporally-extended trajectory of circuit state
space through which a recurrent circuit travels in response
to the stimulus being presented. Thus, our explanation of the
mechanism of association learning must operate only on the
temporally local state of the system. A consequence of this is
that the circuit cannot “represent” input for more than about 30
milliseconds (the time constant of the neural membranes). This
does not seem to be enough to, e.g., recognize whole words
(or even phonemes) and associate them with visual objects at a
category level. The fact that the model can accomplish robust
association learning under these extreme constraints is perhaps
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its most interesting and novel contribution. It demonstrates
that the multimodal associations can be accounted for by very
simple mechanisms that are driven entirely by perceptual input
in very simple circuits. It also explains the reason behind the
synchrony and environmental variables that are observed to
constrain the learning behavior.

This is not to say that unimodal categories never form, or
do not exist at all. Indeed, the trajectory of state-space that
the circuit takes in response to a stimulus can be thought
of as an “implicit” category representation. It is possible to
extract the equivalent of an “explicit” category representation
by taking a specific weighted projection of the neural state.
This projection will respond only when it is likely that the
sequence of states the circuit travels through corresponds to
that of the stimulus the projection classifies. The projection is
an example of “readouts” presented in [28], and we used one
to represent “word activation”.!!

The weights learned via STDP that project into the inte-
gration circuit can be viewed as a special type of “readout”,
specifically one that represents the existence or non-existence
of a category in the auditory circuit in terms of the integration
circuit’s state-space. It is as if specialized categories whose
only purpose is to “inform” the integration circuit (and then
bias the visual circuit, to bias looking) have been learned.
These categories can be seen as similar to ‘“‘action-based
representations” in that they only encode the category in the
way necessary for it to perform its role in producing system
behavior (in our case, biasing looking behavior). Since the
post-synaptic vision circuit activation effectively served as
a supervisor (but only during synchronous presentations!),
this is a satisfyingly plausible conceptualization of what is
happening.

Another interesting hypothesis is that the development of
more abstract, time-invariant categories (like readout neurons)
can explain later phases in infant development, such as the
development of unimodal categories. The association between
these time-invariant categories could then be referenced to ex-
plain later lexicon development (i.e., permanent word-referent
association).

Although the performance of the computational model is
encouraging, there are areas where improvements can be made.
The empirical results suggest some unforeseen effects of the
model implementation. These should be addressed since they
may cause the behavior of the model to diverge from the
behavior of the modeled infant in model extensions.

One such effect is a result of the adopted association
mechanism, STDP. Because every pre- or post-synaptic spike
results in depression or potentiation of the synaptic weight,
denser spiking activity will cause much faster weight change.
The circuits receive input directly from world-facing feature
detectors, so input activity is only lightly filtered and thus may
reflect physical properties of the stimulus itself. In addition,

1 The 135-dimensional state of the auditory circuit had to be visualized, so a
readout neuron was trained via linear regression to respond positively when the
circuit state corresponded to the word being present, and negatively otherwise.
The instantaneous activation can be low-pass filtered with an exponential
decay kernel (time constant 30 ms) to obtain the continuous function that
is plotted in Figure 11.

the model of synaptic dynamics that is implemented in the
recurrent circuit synapses makes it likely that the onset of a
stimulus will evoke high firing rates, and it will take a finite
amount of time before the firing stabilizes. This makes it more
likely that weight change will occur during the more active
portion of the stimulus presentation, which is not something
that we took into account. In the end, the distribution of firing
rates during the course of a stimulus can affect the amount of
learning that occurs, in addition to stimulus overlap/synchrony.
Whether this is also the case with infants cannot be determined
decisively, since it is not possible to sufficiently control the
timing of their responses to stimuli nor to accurately measure
the “amount” of learning that resulted from one particular
auditory-visual stimulus presentation. However, it is certainly
a phenomenon that could have a significant effect on the
performance space of learning of the associations, and the
exact implications should be explored in future studies.

VI. RELATED WORK

The use of robots in the study of language learning is not
unique to the present study. Sugita and Tani [66] proposed a
neural model that could learn grammatical sentences and their
meanings via association with referent action sequences. Their
approach to language learning focuses on motor experience, in
particular on sequences of motor actions and/or proprioceptive
feedback from them. The model was implemented on a robot,
which was then required to learn the arbitrary relation between
linguistic expressions and their meanings based on supervised
co-occurrence between the motor modality and the linguistic
modality. Thus, while their proposed model takes advantage
of the co-activation phenomenon investigated above, they do
not investigate how the temporal relationship between the
two modalities affect learning. Moreover, the Sugita and Tani
model is intended to demonstrate a principle without being
constrained to fit any specific empirical data, unlike the model
described here, which was developed specifically to model
multimodal information integration and association learning
as it occurs in early infants who are engaged in interaction
involving “showing” and naming behavior by a parent.

A robotic model for the more specific task of word-referent
association learning was proposed by Roy and Pentland [67].
Similar to the model presented in this paper, their model op-
erates directly on unprocessed visual and auditory inputs and
relies on the co-occurrence of multimodal stimuli to generate
associations. However, there are important differences between
the two models. For one, the Roy and Pentland model was not
explicitly designed with the goal of biological plausibility or
with the intent to model the behavior of a specific age of
infant. The model associates strings of phoneme probabilities
generated by a pre-trained recurrent neural network (“words”)
with pre-trained visual objects (defined by histograms of local
shapes from various angles of the unoccluded object). It does
this by storing instances of co-occurrences as “prototypes” in
a “long-term memory” list, and then saving them as “lexical
items” if the mutual co-information between the word and
object is high enough. A “short-term-memory” decides when
to introduce prototypes into LTM based on how often phoneme
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sub-sequences co-occur with the visual categories. In contrast,
our computational model is specifically based on empirical and
neuroscientific results about the abilities of young infants. It
does not require any pre-training or pre-processing of auditory
or visual streams, nor does it rely on abstract structures such
as long-term or short-term memory buffers. In fact, our model
makes no assumptions about the (pre-)existence of auditory
or visual categories (not even of phonemes), as it is not even
possible for the model to explicitly learn or extract “category”
representations (e.g., of words) in the way required for the Roy
and Pentland model. All parameters of the network specific
to each modality (i.e., the connections from the feature-tuned
neurons to the recurrent circuits, and synapses within the
recurrent circuits) are determined randomly at the beginning,
and do not change.

Another proposal by Rolf et al. [68] uses a robotic model to
investigate the distinguishing characteristics of child-directed
versus adult-directed teaching, and in particular the per-
formance of different models/parameterizations of attention
allocation. They found that child-directed teaching tended
to involve more synchrony than adult-directed teaching. As
such, attentional models that are tuned to this synchrony
will tend to direct gaze more beneficially for infants who
need this synchrony to learn the associations. Our model
complements that work by focusing on the effect of varying
degrees of synchrony on learning itself. Thus, it explains the
crucial importance for learning of both a correct attentional
system (that will focus on stimuli with high synchrony) and a
caretaker sensitive to the constraints of the system (i.e., who
will tend to present multimodal stimuli synchronously). It also
explains how learning breaks down when one of these criteria
is not fully met (e.g., in a situation where the caretaker is
presenting stimuli in an adult-directed fashion—mnot reliably
maintaining synchrony). In sum, our model highlights the fact
that the word-referent learning problem in young infants is
really dependent on the combination of the infant’s internal
configuration (e.g., attentional system) and the correct social
action of the caretaker sensitive to the young learner’s needs
for synchrony. It shows what will happen when the latter
criterion breaks down to different degrees, and offers a plat-
form to investigate what will happen when the former is not
parameterized correctly.

VII. CONCLUSION

We presented an embodied cognitive model of word-referent
association learning based on a biologically plausible neural
architecture. Implemented on a robot, the model demonstrates
young human infant-like word-referent association behavior in
response to real-world stimuli in a learning task taken from
developmental psychology studies of learning in young infants.
Confirming empirical findings, it shows sensitivity to the same
timing constraints as young human infants: multimodal stimuli
need to be presented simultaneously for the looking-time
biasing effects of habituation to occur.

The model and evaluation task were explicitly designed to
replicate the critical architectural, environmental, and social
aspects of word-learning in infants. Great care was taken to

ensure that the architecture is consistent with current accounts
of infant cognition in psychology and neuroscience. Realistic
processing of environmental cues (i.e., auditory and visual
stimuli) is ensured by using unprocessed sensory stimuli that
are directly fed into the relevant architecture components.
Successful learning in the model relies on social interaction,
and the experimental paradigm explicitly allowed us to vary
the parameters of the interaction to determine their effects on
learning performance.

While the model is interesting in itself, it has also enabled
us to run empirical trials with a high level of stimulus timing
control (which is impossible with real infants) to reveal what
learning occurs for different levels of synchrony between the
visual and auditory stimuli. We found that the shape of this
space is succinctly approximated when framed as the “co-
activation” of the neural response to the visual and auditory
stimuli respectively, i.e., the amount that they overlap. This
supports previous hypotheses which suggested that synchrony
and temporal contiguity were necessary for multimodal habit-
uation learning, but also provides a mechanistic explanation
for why these conditions must be met.

The empirical results also explain why parents adopt dif-
ferent behaviors when teaching children the names of things
compared to when they do the same for adults, highlighting
the crucial role that the parent’s environmental scaffolding
plays in the early development of language in human infants.
Moreover, the results highlight how learning mechanisms at
play in infants at these early stages of development differ
significantly from those in older infants who have more
complex cognitive structures to rely on.

A logical next step for the model development would thus
be to expand the model and use it to explain the change
in language capabilities of infants as they enter subsequent
developmental stages and additional cortical regions develop
and become active. For instance, the model may be able to
provide insight into the question of how symbolic categories
develop and become associated to form lexical entries later in
life, and what role the early multimodal associations play in
that development.

It will also be beneficial to explore how including the
ability to manipulate objects, as seen in slightly older infants,
affects learning. Older infants demonstrate a tendency to bring
attended objects closer to their faces, which seems to result in
self-initiated feedback loops that configure the environment in
a way that is beneficial to the learning problem. This would
be an analogue to the parent-initiated scaffolding presented in
this paper, and demonstrate how developed cognitive abilities
will actually begin to take over for the work that must be done
by an external social interactor for very young infants.

Finally, physical motion (of the infant’s eyes and head)
serves both to reorganize the perceptual field and to provide
cues to the caregiver regarding the infant’s learning processes.
This can result in interesting feedback loops and couplings
between the teacher and learner which may have effects on
the dynamics of the neural model. Interactive experiments
with real humans teaching the robot could expose the effects
of these head and eye motions. While the model has been
tested on what is theoretically the full range of possible
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behaviors that could be adopted by human teachers, it would
be interesting to see whether distinct teaching strategies exist
and investigate how close people actually get to presenting
stimuli at the optimal time for the learner, especially when
the learner is a robot.
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