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Cognitive Development in Partner Robots for
Information Support to Elderly People
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Abstract—This paper discusses an utterance system based on the
associative memory of partner robots developed through interac-
tion with people. Human interaction based on gestures is quite
important to the expression of natural communication, and the
meaning of gestures can be understood through intentional inter-
actions with a human. We therefore propose a method for associa-
tive learning based on intentional interaction and conversation that
can realize such natural communication. Steady-state genetic algo-
rithms (SSGA) are applied in order to detect the human face and
objects via image processing. Spiking neural networks are applied
in order to memorize the spatio–temporal patterns of human hand
motions and various relationships among the perceptual informa-
tion that is conveyed. The experimental results show that the pro-
posed method can refine the relationships among this varied per-
ceptual information that can then inform an updated relationship
to natural communication with a human. We also present methods
of assisting memory and assessing a human’s state.

Index Terms—Associative memories, cognitive science, intelli-
gent systems, robots, speech communication.

I. INTRODUCTION

O NE OF THE great problems of the aging of society is the
increased number of elderly people who live alone and

separate from their children. Such elderly people often do not
even experience daily conversation, a lack that can lead to cog-
nitive decline and a high risk of dementia. In particular, the de-
cline of their capacity for memory, attention, and planning can
have a terrible impact on the safety of their daily lives [1], [2].
Various types of useful tools have been developed to support the
memory of the elderly [3]. For example, there is a system that re-
minds us them of things they did in the past by taking snapshots
of their kitchen [4]. Most of these kinds of methods, however,
are not interactive, which is why communication robots are also
used to offer support to the elderly [5]. Paro, for example, is a
robotic baby seal designed for use in healthcare environments
[6], [7] that has a healing effect equal to that of real pets. The
conversational robot “ifbot” is also used in nursing homes [8]. It
is based on the principle that nursing care can foster the health
of the elderly by providing conversations with robots [9], [10].
Robotic conversation can activate the brain of the elderly and
improve both their concentration and memory. These kinds of
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Fig. 1. Mutual cognitive environment in communication between humans.

robots can gather information about a person and actually learn
from the contents of their dialog. In this way, the conversational
capability of a robot is applied to the prevention of dementia in
the elderly. It is difficult, however, for a robot to converse ap-
propriately with a person even if various contents of the conver-
sation are designed in advance. For this reason, personal infor-
mation that is natural to the flow of conversation is required for
more natural conversation with robots. That is, the robot should
be able to perceive personal information about the elderly in the
course of their actual communication and interaction with them.

The issue of social communication has been discussed in so-
ciology, developmental psychology, relevance theory, and em-
bodied cognitive science [11]–[16]. Cognitive psychology has
tried to construct a mind with a computer [17]. In the society
of mind theory proposed by Minsky, intelligence is explained
as a being a combination of multiple simpler things. He said
that although our agent is intelligence itself, it is not enough
to simply explain what each separate agent does. Rather, it is a
group of agents that can accomplish things [14]. The relevance
theory also offers insight to a discussion of human communi-
cation [15]. According to this theory, human thought is not just
transmitted, but is in fact a shared event between two people.
Each person has his/her own cognitive environment, as shown
in Fig. 1. One person can understand the meaning of an un-
known word spoken by another because the person makes the
symbol correspond to the percept, even though they speak dif-
ferent languages. Therefore, an important role of utterance and
gesture is their stimulation of attention, and utterances and ges-
tures can enlarge the cognitive environment of other people.
Such a shared cognitive environment is called a mutual cogni-
tive environment. To be effective, then, a robot should also have
a cognitive environment. To this end, the relationships among
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Fig. 2. Environmental state.

linguistic terms, gestures, and objects are built upon the envi-
ronmental state, as shown in Fig. 2.

To develop a cognitive environment in robots, we focus on
the refinement of associative memory by using the symbolic
information used for utterances and patterns, which is based on
visual information obtained through interaction with people.

With regard to associative memory, Nakano, Kohonen,
and Anderson proposed it in 1970s [18]–[20]. After that, the
Hopfield network that was proposed, which applied associative
memory in 1982 [21]. In general, the Hopfield network is
an autoassociative fully connected network that consists of a
single layer of nodes. On the other hand, the architecture of
bidirectional associative memory (BAM) is not a matrix, but
rather, is a two-layer neural network. BAM is a heteroassocia-
tive, nearest-neighbor, pattern-matching network that encodes
binary or bipolar pattern pairs using Hebbian learning [22].
There are two types of recall, autoassociative means recalling
the whole part from a piece, heteroassociative means recalling
one thing to another. Heteroassociative memory is used in daily
conversation.

We have proposed the concept of associative learning and dis-
cussed the importance of the total architecture of the learning
mechanism [23]. Association is defined that the relation has al-
ready been learned and new information is learned over the rela-
tion. Recall is performed using this relation. A role of associa-
tive learning is to associate new information with information
he/she has already possessed. We use BAM to associate many
elements.

In the case of using temporal information like voice recog-
nition, a time-delay neural network was used. We use spiking
neural network because it can learn spatio–temporal patterns
and avoid sequential spike output.

Our system enables a robot to communicate with a human and
to exchange appropriate content. Beyond this, the robot actually
learns from the content of a conversation, and from that point
forward, it understands certain individual characteristics of the
person it has spoken with.

This paper is organized as follows. Section II introduces the
idea of partner robots. Section III explains computational in-
telligence technologies and the total architecture of associative

Fig. 3. Partner robot, MOBiMac.

learning. Section IV presents the experimental results obtained
from partner robots based on the proposed method.

II. COGNITIVE DEVELOPMENT OF PARTNER ROBOTS

A. Partner Robots

We have developed a partner robot, which is a mobile PC
called MOBiMac [24], in order to realize social communication
with a human (see Fig. 3). The robot has two CPUs and many
sensors, such as a CCD camera, microphone, and ultrasonic sen-
sors, which enable the robot to perform image processing, voice
recognition, target tracing, collision avoidance, map building,
and imitative learning.

In this paper, we focus on the cognitive development of
partner robots through their interaction with people. In this ap-
plication, then, no movement is required of the robot. As a basic
policy of this study, we employed flexible and adaptive methods
for search and learning. Various types of methods have been
proposed that can accomplish this; we selected steady-state
genetic algorithms (SSGA) for the search, and spiking neural
networks (SNN) for the memorization of spatio–temporal
information [25], [26].

Fig. 4 shows a total architecture of the perception, decision
making, learning, and action. First, the voice recognition and
image processing are performed to extract visual and verbal in-
formation through the interaction with a person. In this paper,
the robots use perceptual modules for various modes of image
processing, such as differential extraction, human detection, ob-
ject detection, and human hand-motion recognition. We used
Voice Elements DTalker 3.0, which was developed by EIG Co.,
Ltd., Japan, for voice recognition and synthesis in the robot [27].
It was able to perform voice recognition using a sound segment
network that made speaker-independent recognition possible. In
addition, with the number of words that are recognized depen-
dent on the memory, it achieved a recognition rate of 96.5% (for
200 words).

After that, the robot selects the conversation mode from:
1) scenario-based conversation; 2) daily conversation; and 3)
learning conversation. In the scenario-based conversation mode,
the robot makes utterances sequentially according to the order
of utterances in a scenario. In the daily conversation, the robot
uses a long-term memory based on SNN. The robot selects an
utterance according to the long-term memory corresponding
to the internal states of spiking neurons. In the learning con-
versation, the robot updates the relationship between spiking
neurons used in long-term memory by the associative learning.
Finally, the robot makes utterance. In the following sections, we
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Fig. 4. Flow of learning.

explain the image processing based on SSGA, and associative
learning between perceptual information and verbal words.

B. Human Detection and Tracking

Various types of pattern matching methods such as template
matching, a cellular neural network [28], neocognitron [29],
and dynamic programming (DP) matching have been applied
to human detection in image processing. In general, pattern
matching is composed of two steps: target detection and target
recognition. The aim of target detection is to extract a target
candidate from an image, and the aim of target recognition is to
identify the target from among the classification candidates.

Since image processing consumes much costly computa-
tional time, full-size image processing of each image is not
practical. We therefore used a reduced size image to detect a
moving object to achieve rapid human candidate detection.
First, an image of RGB color space is taken by a CCD camera
installed on the partner robot. Next, the robot calculates the
center of gravity (COG) of the pixels that are different from
those in the previous image as a differential extraction. The size
of the image used in the differential extraction is updated ac-
cording to the previous result of human detection. Here, the area
generated by the differential extraction is called an attention
range. If the robot does not move, the COG of the difference
represents the location of the moving object. To achieve rapid
human detection, then, the main search area for detection of a
human is formed according to the COG in the attention range.
In this paper, the original size of an image is 640 480, and
the size of this image is reduced to 320 240 as an attention
range according to the reduction level ( ) and
the origin of the attention range (see Fig. 5). If the
reduction level is 1, the same resolution of the image is cut off

Fig. 5. Human face detection for joint attention. (a) Original image (b) Atten-
tion range.

Fig. 6. Template used for human detection in SSGA-H.

from the original image. Otherwise, each pixel in the attention
range is interpolated according to the four surrounding pixels
based on the reduction level.

The robot must swiftly recognize a human face against a com-
plex background. To achieve this, as one of the search methods
we used a SSGA for human detection. Using template matching,
the SSGA extracts the human face candidate positions based on
human skin and hair colors (see Fig. 6).

SSGA is used as one of the stochastic search methods be-
cause it can easily obtain feasible solutions through environ-
mental changes with low computational cost. SSGA simulates a
continuous model of the generation, which eliminates and gen-
erates a few individuals in a generation (iteration) [30], [31]. The
genotype is represented by ( , )
and the fitness value is represented by . One iteration is com-
posed of selection, crossover, and mutation. The worst candidate
solution is eliminated (using a “delete least fitness” selection
strategy), and is replaced by the candidate solution generated
by the crossover and the mutation.

We used elitist crossover and adaptive mutation [24]. Elitist
crossover randomly selects one individual and generates an in-
dividual by combining genetic information from the selected in-
dividual and the individual with the best crossover probability.
If the crossover probability is satisfied, the elitist crossover is
performed. Otherwise, a simple crossover is performed between
two randomly selected individuals. Next, the following adaptive
mutation is performed upon the generated individual:

(1)

where is the fitness value of the th individual, and
are the maximum and minimum fitness values in the popula-
tion, denotes a normal random variable with a mean of
zero and a variance of one, and and are the coefficients
( ) and offset ( ), respectively. In adaptive
mutation, the variance of the normal random number is changed
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relatively according to the fitness values of the population in the
case of maximization problems.

Fig. 6 shows a candidate solution of a template used for de-
tecting a human face. A template is composed of the numerical
parameters , , , and . The number of individuals
is . A superscript stands for the parameter for human de-
tection. The fitness value of the th individual is calculated by
the following equation:

(2)

where , and indicate the numbers of pixels
of the colors corresponding to human skin, human hair, and
other colors, respectively; and and are the coefficients
( ). Because this results in the problem of maximiza-
tion, the iteration of SSGA is repeated until the termination con-
dition is satisfied. Here, the SSGA for human detection is called
SSGA-H.

Since SSGA extracts the area of skin colors and hair colors
for human detection, various objects other than humans might
also be detected. For this reason, human tracking is performed
according to the time series position of the th human candidate

obtained by SSGA-H. The position of the th human
candidate in the human tracking is updated by the
nearest human candidate position within the tracking range. In
addition, the width and height of the human candidate for human
tracking are updated by the size of the detected
human . This update is performed as follows ( ,
2, 3, 4):

(3)

Furthermore, a time counter is used to provide reliability in the
human tracking. If the position of the human candidate in human
tracking is determined, the time counter is incremented; if not, it
is decremented. If the time counter exceeds the threshold (HT),
a human count is started. Sometimes, several human candidates
are close to one another, because human detection is able to
generate several human candidates in a single human. When
human candidates coexist within the tracking range in this way,
removal processing is performed.

The direction the face is pointing can be approximately ex-
tracted using the relative positions of the hair and face. We apply
spiking neurons to extract the direction of the detected human
face, and we use the relative position of the COG of areas corre-
sponding to the hair and face. The relative positions of the COG
against the central position of the detected face region are used
as inputs to the spiking neurons in order to extract the direc-
tion that the face is pointing. Fig. 7 shows experimental results
of human detection. The snapshots show the system can detect
face regardless of the person has hair or not [see Fig. 7(a), (b)].

C. Object Recognition

We will now explain a method for object recognition. We
focus on color-based object and shape recognition using SSGA
based on template matching. Here, the SSGA for object recogni-
tion is called SSGA-O. The shape of a candidate template is gen-
erated by the SSGA-O. We used an octagonal template. Fig. 8

Fig. 7. Results of human face detection in SSGA-H. (a) The person who has a
thick head of hair. (b) The person who wears a swim cap to hide his hair.

Fig. 8. Template used for object detection in SSGA-O.

shows a candidate template used for detecting a target in which
the th point of the th template is represented by

, ,
; is the center of a candidate

template on the image; and and are the number of can-
didate templates and the searching points used in a template,
respectively. A superscript stands for the parameter for ob-
ject recognition. Therefore, a candidate template is composed
of the numerical parameters of ( ). The fit-
ness value is calculated as follows:

(4)

where is a coefficient for penalty ( ), and and
denote the number of pixels of the colors corresponding

to a target and to other colors included in the template, respec-
tively. The target color is selected according to the pixel color
that occupies most of the template candidate, so that the largest
area of a single color is then extracted on the reduced color space
of the image.

Furthermore, we apply a -means algorithm for the clus-
tering of candidate templates in order to find several ob-
jects simultaneously. The inputs to the -means algorithm
are the central positions of the template candidates:
( , ). The number of clusters is .
When the reference vector of the th cluster is represented by

, the Euclidian distance between the
th input vector and the th reference

vector is defined as

(5)
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Next, the reference vector minimizing the distance is se-
lected by

(6)

where is the cluster number that the th input belongs to. After
selecting the nearest reference vector to each input, the th ref-
erence vector is updated by the average of the inputs belonging
to the th cluster. If the update is not performed during the clus-
tering process, the updating process is complete. The crossover
and selection are performed with the template candidates from
each cluster. Therefore, SSGA-O tries to find different objects
within each cluster according to the spatial distribution of ob-
jects in the image.

D. Human Hand Motion Extraction and Learning

To extract and classify human hand gesture, we use a SNN
and self-organizing map.

Cluster analysis is used for grouping or segmenting ob-
servations into subsets or clusters based on similarity. A
self-organizing map (SOM), a -means algorithm, growing
neural gases, and a Gaussian mixture model are often applied
as clustering algorithms [32]. An SOM can be used for in-
cremental learning, while a -means algorithm and Gaussian
mixture model use all the data observed in the learning phase
(batch learning). In this paper, we apply SOM to the clustering
of the spatio–temporal patterns of pulse outputs from the SNN.
Furthermore, the neighboring structure of units can be used in
a further discussion of the similarity of clusters.

Various types of artificial neural networks have been pro-
posed to realize clustering, classification, nonlinear mapping,
and control [33]–[35]. Basically, artificial neural networks
are classified into pulse-coded neural networks and rate-coded
neural networks, from the viewpoint of their level of abstraction
[33]. A pulse-coded neural network approximates the dynamics
of the ignition phenomenon of a neuron and the propagation
mechanism of the pulse between neurons. The Hodgkin–Huxley
model, one of the classic neuronal spiking models, has four
differential equations. An integrate-and-fire model with a
first-order linear differential equation is known as a neuron
model of a higher abstraction level. A spike response model
is slightly more general than the integrate-and-fire model, be-
cause the spike response model can choose kernels arbitrarily.
Rate-coded neural networks, on the other hand, neglect the
pulse structure, and are therefore considered to be neuronal
models of a higher level of abstraction. McCulloch-Pitts and
the Perceptron are also well known as famous rate-coding
models [34], [35]. One important feature of pulse-coded neural
networks is their temporal coding capability. In fact, various
types of SNNs have been applied to the memorization of spatial
and temporal context.

We use a simple spike response model to reduce the compu-
tational cost. First of all, the internal state is calculated as
follows:

(7)

Here, a hyperbolic tangent is used to avoid the bursting of
neuronal fires, is the input to the th neuron from the
external environment, and , which includes the output
pulses from other neurons, is calculated by

(8)

Furthermore, indicates the refractoriness factor of the
neuron, is a weight coefficient from the th to th neuron,

is the excitatory postsynaptic potential (EPSP) that is
approximately transmitted from the th neuron at the discrete
time , is the number of neurons, and is the temporal
discount rate. The presynaptic spike output is transmitted to the
connected neuron according to the EPSP, which is calculated as
follows:

(9)

where is the discount rate ( ), is the output of
the th neuron at the discrete time , and is the time sequence
to be considered. If the neuron is fired, is subtracted from the
refractoriness value in the following:

if
otherwise

(10)

where is the discount rate. When the internal potential of
the th neuron is larger than the predefined threshold, a pulse is
outputted as follows:

if
otherwise

(11)

where is the threshold for firing. The weight parameters are
trained based on the temporal Hebbian learning rule as follows:

(12)
where is the discount rate and is the learning rate.

SOM is often applied to extract a relationship among ob-
served data, since it can ascertain the hidden topological struc-
ture from the data. The inputs to SOM are given as the weighted
sum of pulse outputs from the neurons

(13)

where is the state of the th neuron. In order to consider the
temporal pattern, we use as , although the EPSP is
used when the presynaptic spike output is transmitted. When the
th reference vector of SOM is represented by , the Euclidian

distance between an input vector and the th reference vector is
defined as

(14)
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Fig. 9. Spiking neurons for gesture recognition.

where and the number of reference vec-
tors (output units) is . Next, the th output unit that minimizes
the distance is selected by

(15)

Furthermore, the reference vector of the th output unit is trained
by

(16)

where is a learning rate ( ), and is
a neighborhood function ( ).

The robot extracts human hand motion from a series of im-
ages using SSGA-O, in which the maximal number of images is

. The sequence of hand positions is represented by
where . Here, the spiking neu-

rons are arranged on a planar grid (see Fig. 9) and . By
using the value of a human hand position, the input to the th
neuron is calculated by the Gaussian membership function as
follows:

(17)

where is the position of the th spiking neuron
on the image, and is the standard deviation. The sequence of
pulse outputs is obtained using the human hand positions

. Because the adjacent neurons along the trajectory of the
human hand position are easily fired as a result of the temporal
Hebbian learning, the SNN can memorize the temporal firing
patterns of various gestures.

Accordingly, the output unit that is selected is the pattern that
is most similar to the previously learned human hand motion
patterns.

For example, we show the person moving the ball. The robot
recognizes the ball and gesture (see Fig. 10).

E. Associative Learning for Cognitive Development

This subsection explains a method for associative learning in
the perceptual system for cognitive development. Symbolic in-
formation is quite useful and helpful for learning the relation-
ships among patterns. In this paper, we focus on refining the as-
sociation of the perceptual information with other information
(see Fig. 11). To do this, we use SNNs.

Various types of utterance systems and language processing
systems have been proposed [36]–[39]. Expert systems and
guide robots have only to answer questions, therefore they

Fig. 10. Gesture recognition of the person. (a) The gesture of horizontal direc-
tion. (b) The gesture of vertical direction.

Fig. 11. Learning relationship with SNN.

do not need to learn and it is desirable to have knowledge in
advance. They have only to do scenario conversation. On the
other hand, the robot living with human needs to be able to
support effectively by exchanging information each other. To
know him/her, we developed learning conversation mode for
the robot. And talking from the robot, we also developed usual
conversation mode. It is thought that the robot adapts actual
environment not only having knowledge but also getting it by
learning. In [39], bayesian network is used but we used SNN to
learn temporal patterns. In this paper, we propose an utterance
system in which there are three modes. In the scenario-based
conversation mode, a human speaks to the robot using words
of greeting. In the usual conversation mode, the robot speaks
words it has learned in the learning conversation mode ac-
cording to a human’s state. Basically, the robot speaks from
input images. The learning conversation mode begins when the
human says, “look this.”

In the scenario-based conversation mode, the robot utters
words that are prepared in advance. In the usual conversation
mode, the robot utters words it has learned. In the learning
conversation mode, a human teaches the robot regarding the
name, color, shape, and use of an object. The robot obtains
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Fig. 12. Gesture pattern of respective objects and as an example of book
gesture.

human information from this and utters words that are appro-
priate to the individual and/or the context. The robot relates the
input from the voice and image by associative learning. Using
this relationship in the usual conversation mode, the robot can
then utter the appropriate words. The selection probability ( )
of the th utterance group is calculated using a Boltzmann
selection scheme as follows:

(18)

where is a positive parameter called the temperature. When
the temperature is high, the robot randomly selects an utterance
group. As the temperature decreases, the robot deterministically
selects the utterance group with the highest selection strength.
This system enables the robot to integrate perceptual informa-
tion and symbolic information and to produce utterances based
on the external environment.

III. EXPERIMENTAL RESULTS

This section presents the experimental results of a conver-
sation with a partner robot. The number of utterance words is
50. The population size of SSGA-H and SSGA-O is 100. The
number of spiking neurons in the gesture recognition is 25. The
number of gestures in SOM is 50. The gesture recognition for
object handling begins if the position of the hand and object is
near and their velocity is also similar. Gestures used in the ex-
periment is shown in Fig. 12. We use three types of gestures.

Fig. 13 presents different stages of image processing: (a) the
original image; a photograph; (b) differential extraction; (c) the
reference vectors of SOM corresponding to gestures; (d) ob-
ject recognition results by SSGA-O; (e) human detection re-
sults by SSGA-H; and (f) EPSP of the spiking neurons. The
subject was reading a yellow book, which he held in front of
himself throughout this experiment. The proposed method for
human detection and tracking extracted his face and his hands.
In Fig. 13(e), the green box indicates the candidates for human
face position produced by SSGA-H, the red box indicates the
face position produced by human tracking, and the pink box in-
dicates the hand position. SSGA-O was able to detect a red cup,
a yellow book, and a blue ball, as shown in Fig. 13(d). The robot
noticed the yellow book because there is a white rectangle on
it. Fig. 13(f) shows the degree of EPSP from a spiking neuron,
which indicates the spatio–temporal pattern captured from the
subject’s hand motion. The red rectangle is EPSP, and it grad-
ually diminishes, turns blue, and becomes smaller. Fig. 13(c)
shows the reference vectors of SOM that are learned through
the interaction with the subject.

Fig. 13. Robot performs associative learning interacting with the person.
(a) The original image, a photograph, (b) differential extraction, (c) the
reference vectors of SOM corresponding to gestures, (d) object recognition
results by SSGA-O, (e) human detection results by SSGA-H, the green box
indicates the candidates for human face position produced by SSGA-H, the
red box indicates the face position produced by human tracking, and the pink
box indicates the hand position and (f) EPSP of the spiking neurons. which
indicates the spatio–temporal pattern captured from the subject’s hand motion.
The red rectangle is EPSP, and it gradually diminishes, turns blue, and becomes
smaller.

TABLE I
LIST OF LEARNING RELATIONSHIPS

A. Learning Process Between Symbolic Information and
Perceptual Information

We list the attributes of the objects used in this experiment in
Table I. For each object, we teach the robot its use, color, and
shape. The robot learns the relationship between words and at-
tributes. In a concrete manner, it is then able to share a cognitive
environment with a human.

First, we taught the robot concerning a cup, a ball, and a book,
one by one, and confirmed the state of learning.

We show the results of learning in Figs. 14 and 15. Fig. 13
shows the relationship among words, colors, shapes, and ges-
tures. The nodes represent each element, and the edge between
nodes represents whether or not a relationship exists. The robot
learned relationships from the initial state. In initial state, the
robot learned nothing and then did not respond when the person
showed objects. But after learning, the robot shared cognitive
environment with the person, the robot can talk about the object
that the person showed. As advantage point, because the robot
talked to the person, the robot takes the initiative in the conver-
sation. This is the effect of usual conversation mode, after usual
conversation mode, the robot shifts scenario-based conversation
mode.

The content that the robot utters are different from the words
for learning. When the person make the robot learn the relation-
ship, the person only utters words. On the other hand the robot
utters sentence concerning the word the robot learned. For ex-
ample, when the subject had a cup, the robot uttered “where is
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Fig. 14. Relationships of several words.

Fig. 15. Relationship among words.

the cup?” We made such the content in advance. When the robot
perceives red, the words such as “cup” or “drink” are recalled,
(18) determines which word is selected. The number of gesture
is different in each word, these are distinguished by gesture.
Therefore gesture is important in communication. In the case of
showing cup, “drink” is selected, the robot utters “what do you
drink?” Fig. 14 quantitatively shows the relationships only for
words in a noun form (cup, book, and ball). As regards color,
the robot can learn other characteristics through words, but as
regards shape and gesture, the robot learned the same charac-
teristics per words. As regards object recognition, because the
shape changes how objects are shown or the lighting condition,
it was a little difficult for the robot to learn what we wanted it to.
Following this, we created the same circumstance and the robot
uttered related words.

Fig. 16. Experimental results of human tracking, object recognition, and ges-
ture recognition.

Fig. 17. Relationships of a number of words.

B. Learning Among Object Names

Next, we taught the robot the names of several objects. In this
case, it was the names of three kinds of objects: cup, mug, and
glass. The object of this is to hold a conversation with the robot
using objects whose names everybody normally uses.

In this experiment, the robot could utter three types of words
and could engage in conversation with a human using words that
are easy to use. The robot can recognize only words registered
in advance. And it is probably that the objects are called dif-
ferent names by different person, to associate multiple names
with same perceptual information becomes the appropriate way
that the person communicates with the robot.

C. Learning Process Between Action and Symbolic
Information

Next, we put two objects in front of the robot to see whether
it could explain them.

Here, we added “tea” to the learning content that the robot
would learn in Fig. 16. In Japanese, there are two ways to refer
to tea (ocha and ryokucha).
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Fig. 18. Relationships among words.

After the learning took place, we interacted with the robot. We
wished to project an image of the situation of drinking tea, and
thus showed the robot a cup and tea. The robot was able to utter
words related to the attention that it had paid to these objects.
The results are shown in Figs. 17 and 18. The robot was able to
learn that the same attribute could pertain to different things. It
is possible to talk about both cup and tea by same gesture and
to talk about various contents by making multiple contents with
different words.

IV. CONCLUSION

This paper has discussed the capability of associative learning
for partner robots that is produced through interaction with a
human, based on the relevance theory. We proposed methods of
associative learning that can lead a robot to produce natural ut-
terances and to assist with memory while evaluating a human
state. The experimental results show the effectiveness of these
methods for human–robot interaction and show that a robot can
learn the relationships among a variety of symbolic informa-
tion used for utterances and can also make determinations based
upon visual information. As a result, the associative capability
of the robot is able to be refined through its actual interaction
with a human. In this way, the proposed method is able realize
more natural communication with people that can be applied to
support the health and well-being of the elderly.

As a future work, we will also include the factor of emotional
intelligence. It has been shown that humans easily remember
events that they experienced in a certain affective state [40]. We
will then extract facial expressions to be used in combination
with associative memory. We will conduct experiments on asso-
ciative learning based on the actions of partner robots in homes
for the elderly. Furthermore, we will discuss the learnability of
the proposed method in detail.
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