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Dynamic Neural Fields as Building Blocks
of a Cortex-Inspired Architecture for
Robotic Scene Representation

Stephan K. U. Zibner, Christian Faubel, Ioannis lossifidis, and Gregor Schoner

Abstract—Based on the concepts of dynamic field theory (DFT),
we present an architecture that autonomously generates scene
representations by controlling gaze and attention, creating visual
objects in the foreground, tracking objects, reading them into
working memory, and taking into account their visibility. At the
core of this architecture are three-dimensional dynamic neural
fields (DNFs) that link feature to spatial information. These
three-dimensional fields couple into lower dimensional fields,
which provide the links to the sensory surface and to the motor
systems. We discuss how DNFs can be used as building blocks for
cognitive architectures, characterize the critical bifurcations in
DNFs, as well as the possible coupling structures among DNFs.
In a series of robotic experiments, we demonstrate how the
DNF architecture provides the core functionalities of a scene
representation.

Index Terms—Autonomous robotics, dynamic field theory
(DFT), dynamical systems, embodied cognition, neural processing.

I. INTRODUCTION

HE challenge and the pleasure of autonomous robotics re-
T search lies in its inherent interdisciplinarity. Autonomy
requires that a robot be capable of acting based on its own sen-
sory information. Any demonstration of an autonomous robot
will therefore involve perceptual, planning, and motor control
tasks, which must be interfaced and integrated. These tasks are
interdependent. Not only does planning and motor control de-
pend on perception, but also conversely robotic actions may
modify the sensory stream and action plans may be aimed at
obtaining particular perceptual information. The extraction of
meaningful information about the robot’s environment through
perceptual systems is currently one of the major bottlenecks that
holds back the development of autonomous robots.
For mobile robots, self-localization and mapping (SLAM) is
a related problem, toward which much progress has been made
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Fig. 1. Cooperative robotic assistant (CoRA) with an empty shared workspace
in front of it, ready for adding objects to the scene.

over the last decades [1]. To generate goal-directed action that
goes beyond moving to a particular location, robots need to
have extended maps, in which objects are segmented [2], [3],
and identified [4], [5]. To enable the reaching and grasping of
objects, such a representation needs to include pose information
about objects [6]. All three aspects of segmentation, identifica-
tion, and pose estimation are currently underdeveloped. Even
when laser scanners are used to capture the three-dimensional
structure of the environment, extracting three-dimensional
scene information is computationally very demanding [7]
so that real-time updating of such three-dimensional scene
information does not seem possible thus far. Another aspect
of scene representation for robots is that objects [34] or object
categories [9] must be learned on the fly from a small number
of exposures. Our goal is to make progress toward the problem
of scene representation for autonomous robotics by developing
a neuronally inspired architecture that builds representations,
enables their updating as the environment changes, and makes
is possible to operate on scene representations through cued
recall.

We focus on a particular component of the problem in an in-
teraction scenario, in which a service robot shares a workspace
with human users. Our cooperative robotic assistant CoRA [10]
has a seven degree of freedom arm and an active stereo camera
head, both mounted on a trunk that is fixed to a table (see Fig. 1).
The table is the shared workspace between the robot and human
users. A scene representation enables the robot to respond to
user commands that refer to objects, object features, or loca-
tions on the table. For instance, in response to the command
“hand me the red screwdriver,” the system should be able to lo-
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calize and segment the relevant object and estimate its pose suf-
ficiently well to enable reaching. This is most effectively done
based on a prior perceptual acquisition of the scene rather than
by triggering a search at the time the command is received. This
requires linking longer-term memories of objects and their fea-
tures, obtained over multiple exposures to the objects, to the
current layout of the scene. Using memory information that
can also be updated is important because interaction with the
robotic system happens under dynamic conditions in which ob-
jects may become occluded or get out of view because of the
robot’s cameras’ limited field of view. In addition to a mech-
anism for longer-term memory, scene representation also re-
quires a mechanism for working memory to handle such tem-
porary occlusions while operating on an objects representation.
Our neuronally inspired framework for scene representation will
also support processes of selection such as when multiple red
screwdrivers are in the scene, and tracking, such as when the
screwdriver is handled by the human user.

In the spirit of the developmental approach to autonomous
robotics, we derive ideas and constraints for the problem of
scene representation from an analysis of how humans learn to
achieve the associated tasks. When humans attend to a scene
such as the workspace our robot CoRA, they process the scene
sequentially. This sequentiality is due both to computational and
physical constraints. Only a small number of objects can be in
the perceptual foreground at any time. Moreover, objects are
typically foveated for inspection. A saccade to foveate a new
object is triggered on average every 300 ms. Visual informa-
tion is not retained at a pictorial level between saccades [11],
[12]. What visual information is retained across saccades de-
pends on attention [13]-[15] as dramatically demonstrated by
change blindness [16], in which major changes in an image go
undetected if the changed locations are not attended to and the
transient change signal, which would normally attract attention,
is masked. Change blindness can be overcome by fixating on
the changed item [17]. The visual representation of objects in
a scene remains linked to space. Object discrimination is en-
hanced, for instance, when an object is presented in the same
position in which it was first presented [18]. Conversely, pro-
viding scene context improves memory for object position [19].
The same position advantage disappears if the spatial configu-
ration of other objects in the scene is scrambled, but not if the
objects are coherently shifted [20]. This supports the notion that
object information, both spatial and visual, is anchored in space.

To exploit these insights into how humans represent scenes,
we build on a theoretical language, that has been used to model
human spatial cognition. dynamic field theory (DFT)! [21], [22]
originated as a theory of movement preparation [23], [24], but
has recently been substantially extended towards higher-level
cognition addressing visual working memory [25] and its devel-
opment [26], [27], as well as feature binding [28]. The language
builds on earlier work on how dynamical systems can be used to
describe both human [29] and robotic behavior [30] in such tasks
as target acquisition and obstacle avoidance. Dynamic neural
fields (DNFs) enable the scaling of tasks to a more cognitive
level such as working memory for the localization of targets [31]

IDFT is equally referred to as dynamic neural field theory (DNFT)

or the representation of obstacles [32]. Erlhagen et al. [33] used
DFT to implement imitation learning and in Faubel and Schoner
[34] a DFT architecture has addressed fast object learning and
recognition.

A key assumption of DFT is that all behaviors are in stable
states most of the time, making them immune to fluctuating sen-
sory information and competing behaviors or representational
states. Such stability arises not only in a control engineering
sense through feedback loops, but also through internal loops
of neuronal interaction. Behavioral flexibility then requires that
states may be destabilized to bring about change of behavior.
We will discuss the generic instabilities of DNFs and show how
cognitive functions may emerge from these instabilities. This
will enable us to use DNFs and their instabilities as buildings
blocks for generating scene representations.

II. ARCHITECTURAL PRINCIPLES

In this section, we briefly review core principles of DFT: the
continuous metric spaces, over which neural fields are defined,
their neural dynamics and stable states, as well as the relevant
instabilities from which cognitive function emerges. We extend
these principles toward multidimensional fields and DNF archi-
tectures by discussing the different possible forms of coupling
among DNFs of varied dimensionality. Only those aspects of
DFT are reviewed that matter for the architecture supporting
scene representation. Therefore, we illustrate the concepts of
DFT by referring to figures that are based on actual robotic ex-
periments, which will be described in Section IV.

A. DNFs and Their Dimensionality

The set of possible perceptual and motor states of an em-
bodied autonomous system may often be characterized by a
number of continuously valued parameters. This is obvious
for motor systems, in which movement parameters such as the
Cartesian position of a tool point, joint velocity vectors, or the
orientation of a robot head span relatively low-dimensional
spaces of possible motor states. Perceptual states may be em-
bedded in the two-dimensional visual array sampled by a vision
system. Moreover, local feature detectors for color, orientation,
or spatial wavelength may generate perceptual representations
that may likewise be characterized by a limited number of
feature dimensions. Below we will consider perceptual repre-
sentations in which a feature dimension is combined with the
two-dimensional coordinates of the visual array.

To represent objects in a scene as well as planned motor acts
we employ the neural concept of activation. For every possible
value along any of the relevant dimensions, an activation vari-
able represents the presence of information by a large level of
activation, the absence of information by a low level of activa-
tion. DNFs are the resulting distributions of neural activation de-
fined as functions over such continuous, metric spaces. Fig. 2 il-
lustrates a perceptual field, Fig. 3 a motor field. Localized peaks
of activation are the units of representation in DNFs: When the
activation level in a peak exceeds a threshold (conventionally
chosen to be zero), the corresponding activation variables be-
come effective input in whatever part of the system into which
they couple. The location of such peaks along the continuous
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Fig. 2. Detection, working memory, and forgetting. These figures show a portion of the full architecture, the scene space field, demonstrating three basic insta-
bilities. In the first step on the left, three perceived objects are visible in the current field of view. All three objects are represented in the field due to a detection
decision, whereas a small perturbation on the table is not represented. Regions that are currently not in the visual range reside in a different regime and differ in
the resting level. The figures in the middle show the field in a follow-up state, which is produced by changing the robot’s gaze. Now, there is only a single object in
the input image. Two working-memory peaks represent the other two objects. Due to different resting levels, both peaks are self-sustained. The figures on the right
show the field state after the robot’s gaze returned to its initial position. While two objects were outside the robot’s gaze, one object was removed. After returning
to the previous viewing angle, the input image only contains two objects. The working memory peaks in the previous field activity return to the region of lower
resting levels. Since working memory cannot be sustained without additional visual input, the field forgets the missing object.
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Fig. 3. Selection decision. The displayed motor selection field receives two
competing inputs that are equally strong. Only one of the inputs is selected. A
peak has built at its location, the other input is suppressed.

metric dimensions represents an estimate of the corresponding
feature values and thus, encodes metric information about per-
ceptual objects or motor plans.

How many dimensions are needed to characterize such ob-
jects or actions? Because of the computational cost of using
DNFs with many dimensions, limiting the number of dimen-
sions is an important concern. For instance, the control of a
seven degree of freedom arm may at first seem to require a

seven-dimensional space. There is no need, however, to such
a high-dimensional DNF. Reaching may be characterized by
the elevation and azimuth angles of the heading direction of the
end-effector, which span a two-dimensional space. The tangen-
tial velocity of the end-effector may be encoded in a separate
one-dimensional DNF [35]. An analytical solution to the in-
verse kinematics of the robot arm can then be used to expand an
estimate of the desired motor state from these two low-dimen-
sional spaces into the full seven-dimensional kinematic state of
the arm. In other cases, the effector system itself is captured by
a small number of dimensions. This is the case for motor con-
trol of the head used in our architecture, which comprises only
the head pan and tilt angles. Similarly, the location of visual ob-
jects in the image plane may be captured by a two-dimensional
field. A further reduction is not possible, however. If an object
must be selected among a set of visible objects through an at-
tentional process, then the two spatial dimensions must be coac-
tivated. If selection were to occur separately in two one-dimen-
sional field for each spatial dimension, then different objects
may be selected along the horizontal compared to the vertical
axis, leading to a mismatched spatial description (a so-called il-
lusory conjunction). On the other hand, once an object has been
selected, the motor commands for the pan and tilt angles of a
camera head may perfectly well be represented separately each
within a single one-dimensional field, as there is only one pos-
sible value along each dimension. As a more general rule, in-
formation can be kept separately in low-dimensional fields, as
long as there is no need for associations of concurrent activa-
tion in multiple fields. From a practical view, lower dimensional
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fields are computationally much cheaper as their high-dimen-
sional counterparts and can therefore have a better sampling of
the continuous metric they represent.

To encode the combination of a single visual feature such as
color with the two-dimensional visual array requires a three-di-
mensional DNF. As more feature dimensions are added, a com-
binatorial explosion threatens. This explosion may be avoided,
however, if locations in multiple lower dimensional space-fea-
ture fields may be bound together along a shared dimension [28],
[34], a trick we will discuss at the end of Section II-G.

B. The Dynamics of DNFs

The temporal evolution of patterns of activation in DNFs is
generated from neuronal dynamics governed both by inputs and
by neuronal interaction within a field. This interaction is struc-
tured such that the units of representation, localized peaks of
activation, may emerge as stable activation states (or attractors).
Local excitatory interaction stabilizes such peaks against decay,
while global inhibition stabilizes peaks against diffusive broad-
ening [36].

To formalize the neural dynamics, we describe the DNFs by
activation variables u(Z, t) that are defined over the continuous
metric dimensions, 7, and evolve in time ¢. The dynamic equa-
tion of such higher dimensional fields is analogous to the one-di-
mensional neural field dynamics first analyzed by Amari [36]

—u(Z,t) + h + s(Z,t)

/ / F— V0@, ). (1)

The first three terms set up the field as a temporal low-pass filter
of input, s(Z,t). Based on these terms alone, the field relaxes
toward the instantaneous stable state, b + s(Z,t) (as long as s
is varying slowly enough).

Neuronal interaction (last term) is mediated by the nonlinear
threshold function, #(u(Z,t)), that typically has sigmoidal
shape (0 below a threshold, ug, conventionally chosen to be
zero, 1 above the threshold, with a more or less steep transition
between these two limit cases). As a result, only sufficiently
activated field locations contribute to neuronal interaction.
The interaction kernel, w(# — Z'), is positive (excitatory) for
small distances between field locations, & and #’, and negative
(inhibitory) over larger distances. For more details, see (16) in
Appendix A.

C. Dynamic Instabilities

DNFs as cognitive buildings blocks offer a set of operational
regimes in which different stable states exist. They determine
which tasks can be fulfilled by a field. These regimes may be
characterized by studying the instabilities that occur when in-
puts or parameters of DNFs change. While the stability of peak
solutions has been treated analytically for one- [36] and two-di-
mensional fields [37], higher dimensional fields have not been
similarly well characterized analytically. We have been guided,
nevertheless, by Amari’s analysis in order to find the parameter
settings at which peak solutions become stable in three-dimen-
sional fields. The proof of their stability was then based on nu-
merical simulation.

1) Detection Instability: The detection instability is the
most elementary bifurcation and is at the origin of any
supra-threshold peak. When input drives activation above
threshold at any particular location, local excitatory interaction
is engaged and destabilizes the subthreshold activation pattern.
The peak “pulls itself up.” The peak solution is qualitatively
different from the subthreshold pattern of activation. This is
obvious from the fact that the peak continues to be stable
when input is again reduced: at intermediate levels of input,
supra-threshold peaks and subthreshold patterns of activation
coexist bistably. This stabilizes the peak in the face of fluctu-
ating input. The qualitative change from subthreshold to peak
solution may be thus used to represent a detection decision (see
Fig. 2).

2) Selection Decisions and Fusion: In many situations a
robot must select among multiple competing choices, for ex-
ample, to orient its body or head toward one out of a number
of salient objects. DNFs can organize such selection decisions.
This fact has previously been exploited to account for neural
and behavioral data on how humans select visual targets to-
ward which they direct saccadic eye movements [38], [39] (see
also Fig. 3). The inhibitory interaction is the key to selection. If
the locations of multiple inputs are spaced adequately and in-
hibitory interaction is sufficiently strong, then an existing peak
may inhibit peak formation at other stimulated locations. The
sigmoidal nonlinearity creates an asymmetry of interaction: The
selected site may inhibit competing sites, while the subthreshold
activation at those sites does not contribute to interaction. Which
location is selected thus depends on prior activation. Whichever
site was able to generate supra-threshold activation first has the
competitive advantage. The temporal order of stimulation is thus
one important competitive factor. If multiple inputs arrive at the
same time and have the same strength, then random fluctuations
determine the outcome of the competition. The system is then
multistable: a peak at any of the locations would be stable. This
multistability persists when inputs differ in strength. As a result,
the selection decision is stabilized: an initial selection is stable
even if input fluctuations or deterministic changes of input begin
to favor another location. This stability breaks down when the
discrepancy in input strength becomes too large: at the selection
instability, a peak at a location with weaker input becomes un-
stable and yields to a peak centered on the more strongly driven
location.

3) Boost-Induced Detection and Selection: When localized
input is too weak to induce a supra-threshold peak, a homoge-
neous boost to the field may drive it through the detection in-
stability. A peak arises then at location that receives (weak) lo-
calized input. Selection may effectively be engaged by such a
homogeneous boost as well, when multiple field locations are
preactivated.

4) Self-Sustained Peaks as Working Memory and the Forget-
ting Instability: Amari derived conditions under which supra-
threshold peaks of activation may persist in the absence of any
localized input [36]. These conditions depend on the integral of
the interaction kernel, [ d"zw(Z), over varied domains (here,
n, is the dimension of the field) as well as on the homogeneous
resting level of the field, h. The kernel integral over the entire
support of the kernel must be negative and the resting level must
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Fig. 4. Figure shows four snapshots of the tracking experiment (see
Section IV-C) with the mobile robots. The red and the blue plots are slices of
activation extracted from the scene space—color field for the corresponding
robot. The red plot shows the activation for the red robot and the blue plot
shows the activation for the blue robot.

be above the negative value of the (positive) maximum of the
kernel integral. We have used this same logic for the two- and
three-dimensional implementations of DNFs, and have evalu-
ated the validity of these conditions in those higher dimensional
cases.

Such a self-sustained peak can be thought of as a form of
working memory [40], in which the position of the peak within
the field encodes previously cued metric information. Working
memory for metric information is useful to store objects that
get out of the robot’s current field of view, but whose spatial or
feature parameters were previously estimated [31]. A working
memory peak is volatile: it may be destabilized by competition.
Such forgetting by interference may lead a previously stored
metric value to be “forgotten.” A controlled way of forgetting
is to push the field through the forgetting instability, in which a
lowering of the resting level destabilizes sustained peaks. This
is illustrated in Fig. 2, in which a negative homogeneous boost
effectively decreases the overall resting level .

5) Multipeak Working Memory: It is possible to configure
a DNF such that solutions with multiple localized peaks are
stable. This happens most easily, if the interaction kernel has
the shape of a Mexican hat, that is, if inhibition decreases again
at sufficiently large distances between locations. The number of
possible peaks within a field depends on the resting level h and
the exact shape of the kernel (see Erlhagen and Bicho [21] for a
discussion). In all cases, the number of peaks is limited by the
fact that each peak has an overall inhibitory effect on the field.
As such inhibition accumulates, the peaks ultimately become
unstable. This fact has been exploited to account for the limited
capacity of visual working memory in humans [41], [42].

6) Tracking: The stable supra-threshold peaks in DNFs are
sensitive to changes in localized input. A moving localized input
distribution is easily tracked by an associated peak. Even multi-
item tracking is possible as has been shown in Spencer and Per-
rone [43]. Fig. 4 shows screenshots and field activity of such a
multiitem tracking experiment.

D. Discrete Dynamic Neurons and Neural Assemblies

Under some circumstances, it is useful to think of peaks of
activation as individual dynamic entities. The activation within

a peak is then described by a single activation variable u(t) and
its dynamics

w(t) = —u(t) + h + s(t) + wexcO(u(t)). ()

The local excitatory interaction that stabilizes peaks is now
represented as self-excitation of this single activation variable,
wf(u(t)). This dynamics has the analogous instabilities of
detection and forgetting, so that a bistable regime with an “on”
state (activation variable above threshold) and an “off” state
(activation variable below threshold) is typical. We employ
discrete activation variables to represent the presence of a
stable peak irrespective of the exact location of the peak (“peak
detector”). This is achieved by projecting the supra-threshold
activation integrated across a whole field onto a single, dynamic
node, which is thus driven through a detection instability if
there is at least one peak in the field.

Multiple, competing activation variables of this nature may
be used to represent activation patterns, in which the individual
entities, represented by the different variables, are not in an ob-
vious way embedded in an underlying continuous space (e.g.,
discrete object labels). We employ such ensembles of discrete
activation variables

4, (t) = —u, (t) + h + s(¢)

FWexcd(u, (t)) = Winn Z O(u, (1) )
£l

to represent different objects as a whole (through “labels” of
the objects). The connectivity of such ensembles of activation
variables with self-excitation and global inhibition leads to a
“winner takes all” behavior in which only one activation vari-
able may have positive activation, while all others are inhibited
below threshold.

E. Memory Traces as a Form of Long-Term Memory

A possible mechanism for long-term memory consists of
modulating the level of activation in a field based on memory
traces of prior patterns of activation. Such memory traces
are represented in a separate field defined over the same di-
mension, but with its own dynamics that evolves on a much
slower timescale T,;.. A dynamics of low-pass filtering any
supra-threshold activation in the original neural field generates
such a memory trace

TpreP(Z, 1) = Qpear[—p(Z, ) + 0(u(Z,1))]
(T, 1) + Aa(l — O(u(@,1))]. @)

Here, p(Z,t), is the memory trace activation. A peak detector,
Oipeak, 18 implemented with a discrete activation variable that
receives as input the summed and thresholded activation,
O(u(Z,t)), of the field. Memory traces are only updated when
peaks build up in the DNF. The memory trace builds up with
the rate Ay, at active field sites (0(u(Z,t)) = 1) and decays
with rate \q at inactive sites (1 — §(u(Z,t)) = 1). The global
timescale 7 is the same for the field that creates the memory
trace. The timing of building and forgetting memory traces
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activity

label

feature

Fig. 5. Ridge inputs and memory traces. This figures shows the object—color
field in a state of receiving two lower dimensional inputs of label and color
information. The overlap of both ridges creates a peak at the intersection. The
preshape dynamic of this field deposits memory traces for every arising peak
in this field. Two deposited traces originate from previous peaks, a third one is
generated by the currently active peak.

is controlled through the terms Ay, and Aq. See Fig. 5 for an
example of deposited preshape in a DNF.

If such a memory trace is conversely coupled as additive input
into the DNF, of which it receives input, then the memory trace
mechanism has the properties of Hebbian learning: previously
active field locations are preactived by the memory trace they
have laid down and are thus easier to again activate in the fu-
ture. In this form, the memory trace preshapes the DNF, biasing
it toward previously experienced patterns of activation. Below,
we show how peaks may be generated from a preshaped field
in a way that effectively reinstates the previously experienced
state (“recall”). The concept of a memory trace and its role to
preshape representations has been used to account for the role of
behavioral history in movement preparation [23] and infant per-
severative reaching [24], [44], as well as a host of other forms
of long-term memory [45].

F. Coupling of Fields

DNF architectures consist of sets of coupled DNFs, some of
which are directly linked to sensory surfaces or receive some
form of preprocessed input, while others are directly linked to
motor systems and specify particular stable states of motor con-
trol. Because the dynamics of the individual DNFs have attractor
states, these persist when fields are coupled. Only when a field
goes through an instability, it is sensitive to inputs. Thus, the
component fields in DNF architectures can be analyzed individ-
ually with respect to their stable states and instabilities, treating
coupling as a form of input (this would fail only if instabilities
were to occur simultaneously in two coupled fields, which is not
a generic case).

Coupled fields may differ in the nature and number of field
dimensions as well as in the metrics of neuronal interaction. In
the following paragraphs different possible mappings are elab-
orated in some detail. We begin with coupling among fields of

the same dimensionality, then consider projections from higher
to lower dimensional fields and finally the mapping from lower
to higher dimensional fields.

1) Coupling of Fields With the Same Dimensionality: The
coupling of two DNFs with the same dimensionality is straight-
forward: the output of one DNF, #(v(Z,t)), provides localized
input to the target neural field u(Z, t)

Tu(Z,t) = —u(Z,t) + h + s(Z,t) + wub(v(F,1))
+ / . ~-/wuu(j’— ZY(u(Z,t))dE. (5)

The mapping may be spatially modulated through a Gaussian
convolution kernel, w,, (Z), that is homogeneous along the
fields’ dimensions

Tu(Z,t) = —u(Z,t) + h + s(Z,t)

;/---/ww(f—:E’)H(u(a?’,t))d:f’
+/.../ww(;;;_f')a(v(fgt))df’. ©6)

In numerical implementation, the discrete resolution of coupled
fields may need to be adjusted by down- or up-sampling (e.g., by
linear interpolation). To avoid sampling errors, down-sampled
fields must be smoothed.

2) Coupling Higher Dimensional to Lower Dimensional
Fields—Integration: A higher dimensional field, v, may be
homogeneously coupled to a lower dimensional field, u, if
there is at least one shared dimension between the two fields.
Activation in the higher dimensional field is integrated along
the nonmatching dimension and used as weighted input along
the matching dimension. For instance, the equation for mapping
a three-dimensional field onto a one-dimensional field with x
as the matching and y, z as nonmatching dimensions reads

Tu(z,t) = —u(z, t) + h + s(z,t)
+ / W (. — )0 (u(z' 1)) dx’

W / / b(o(z,y, 2 ) dydz.  (T)
yJz

Kernels defining the more complex weight mapping from one
field to another may also be defined.

3) Coupling Lower Dimensional to Higher Dimensional
Fields—Ridges, Slices and Tubes: To homogeneously couple a
lower dimensional field to a higher dimensional field, the two
also need to share at least one dimension, which is expanded
along the nonmatching dimension(s). For instance, mapping a
one-dimensional field to a two-dimensional field

7'71(3572/715) = —’U,(.T},y7t) +h+ S(.Z‘,y,t)

[ wate =y =)

+
x O(u(x',y  t))dz' dy’
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creates input ridges into the two-dimensional field (see Fig. 5).
When a one-dimensional field is mapped onto a three-dimen-
sional field

u(z,y,z,t) —|—h—|—s(a: Y, 2, 1)

/// Wy 0 "y 2 ) da dy 2

+ Wy ( (il?t (9)

Tu(x,y,2z,t) =

with wy, = wyu(z — 2’y —y', 2z — 2’), the resulting inputs
have the form of slices of the three-dimensional field within
which input is constant. A two-dimensional field mapped onto
a three-dimensional field

w(z,y,z,t)+h+ s(z,y,2,t)

///wuu 7y 72/' t))de' dy dZ

+ wuob(v(, y, 1))

Tu(x,y,2z,t) =

(10)

With W, = Wy, (z — ',y —y', 2 — 2'), creates input tubes into
the three-dimensional field, along which input is constant (see
Fig. 6 for slices and tubes).

4) Coupling of DNF's With Single Discrete Neurons: A spe-
cial case is the coupling of higher dimensional fields onto single
activation variables. In this case, the field must be integrated
over all dimensions to produce a scalar value that can then be
weighted and used as input to the dynamics of the single activa-
tion variable. An example is the dynamics of the peak detector

Tt = —u(t) + b+ / (@ 0T+ 0(u(t)). (1)
In the reverse direction, a single discrete activation variable may
be coupled to a DNF by providing homogeneous input to the
field. This may be employed, for instance, to induce boost-in-
duced detection instabilities as explained in Section II-C3.

5) Coupling DNFs With No Matching Metrics: To couple
two DNFs that do not share any common metrical dimension,
supra-threshold field activation may be passed from one field to
another with an arbitrary mapping. Such a mapping may be ei-
ther hand-wired or be learned using learning rules such as Heb-
bian learning. For a more detailed explanation of arbitrary map-
pings and a DNF architecture in which such maps play a key
role see Sandamirskaya and Schoner [46].

G. Functions Achievable by Coupling

By coupling DNFs we can effectively close the loop between
the sensory surfaces and motor control and enable a robot
to generate robust behavior. But coupling can do more than
projecting a stabilized percept onto motor decisions. Coupling
makes it possible to link DNFs that represent higher level
percepts such as object labels to related lower level representa-
tions of a feature dimension. Coupling may create hierarchies
of DNFs (see Section III). The higher a field is positioned in
such a hierarchy, the further it is removed from the sensory
or motor surface. Such higher fields are invariant under more
transformations of sensory input. This makes such fields well
suited to erecting working or long-term memory. Higher fields
are thus the suitable substrate for cognition.
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Fig. 6. Slices and tubes. The top plot shows spatial tube and color slice input
to the three-dimensional scene space—color field for the green deodorant. In the
field plotted below the overlap of the tube and slice input lead to a self-sustained
working memory peak, that represents the green color of the deodorant and its
spatial location on the table.

1) Higher Dimensional Representations: Multiple lower
dimensional feature representations can be combined into
higher dimensional representations by linking separate DNFs
along one or multiple shared dimensions. Visual or motor
space is a natural choice for such shared dimensions, because it
reflects the physical reality that different feature dimensions are
bound through the spatially localized objects, from which they
emanate. This mechanism has been used in a DNF model of
binding in visual working memory [47]. A dynamic field rep-
resenting spatial working memory with high precision provides
ridge input into space-feature fields (space—color, space-orien-
tation) that are broadly tuned to space. Such coupling along
visual space selects appropriate feature conjunctions. Similarly,
the same basic mechanism was exploited in an object recogni-
tion system, in which multiple label-feature fields were coupled
along the label dimension [34].

2) Association: In the previous example, the association of
space with a feature dimension reflected immediately the stim-
ulus. In principle, however, DNFs of suitable dimensionality
may represented arbitrary associations [48]. This happens in our
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architecture in a three-dimensional field during the build-up of
working memory for scene items, because at the scene level fea-
ture information is not available for all spatial locations but only
for currently attended ones. The extracted feature is represented
in a one-dimensional field that sends slice input into a three-di-
mensional field representing the feature dimension combined
with the two-dimensional spatial layout of the workspace. The
spatial selection provides tube input at the currently selected
spatial position. At the location where the tube input overlaps
with the slice input a peak builds up in the three-dimensional
space-feature field. This peak is a working memory peak that
in this way retains the cued association across occlusions and
multiple saccades (see also Fig. 6).

Similarly, when an arbitrary label is learned, the association
mechanism is again at work. A one-dimensional feature field
sends ridge input into a two-dimensional label-feature field. The
user activates a label to be associated, which provides ridge
input along the label dimension. At the location where both
ridges overlap a peak builds which leads to the creation of a
memory trace, providing the system with a long-term memory
for the label-feature association (see Fig. 5).

3) Preshape Mechanisms: Input that does not by itself
induce a detection instability and an associated peak preshapes
the field. Such preshape raises the propensity for peaks to
arise at sites that are preactivated by preshape. Models of
movement preparation have proposed that memory traces of
supra-threshold patterns of activation may in effect bring about
preshape in a given field [23], [24], [44]. Preshape need not nec-
essarily, however, arise from a long-term memory mechanism.
Preshape may also be used to implement top-down mechanisms
of biased competition by providing a competitive advantage to
a spatial location or feature value based on a decision at a higher
level of scene representation. In our architecture, this happens
when a selection peak builds up in the scene representation field
providing a competitive advantage in the attention selection
module. As the scene representation is a three-dimensional
space-feature field and the attention selection is only defined
over the two-dimensional space there is also a generalization
in this mechanism. This generalization is a feature of coupling
from higher to lower dimensional fields.

The preshape mechanism can also be used to generate cate-
gorical responses. In combination with the boost-induced detec-
tion mechanism a field with preshape and relatively weak input
will build a peak at the position of the preshape and not at the
position of the sensory input.

4) Triggering Transitions Between Operational Regimes and
Sequencing: Peak detectors may be used to raise or lower the
homogeneous resting level of fields and thus to switch them into
different operational regimes. We make use of this mechanism
to switch off the selection peak within the attention selection
field. When a peak is detected within the label-feature field, this
signals that an association has either been learned or recognized.
The peak detector then triggers a negative boost to the selection
field so that the selection peak is destabilized. This signal from
the peak detector relates to what was termed the condition-of-
satisfaction neuron in the DNF-based implementation of serial
order [49].
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Fig. 7. Mapping the field activity to attractors of a dynamical system for a
motor variable. The upper row shows two one-dimensional fields defined over
a motor metric like movement direction. The field on the left has a single supra-
threshold peak, the field on the right has no such peak. Below each field is plotted
the resulting dynamical system for the motor variable that implements the motor
metric. In the left column, the presence of a peak induces a fixed point attractor,
marked by the zero-crossing of the rate of change with a negative slope. The
stability of the attractor, determined by the negative slope, decreases with de-
creasing amount of supra-threshold activation. In the right column, the absence
of a peak leads to a flat dynamics without attractors. All values of the motor
variable are then marginally stable fixed points.

In our architecture sequencing emerges from the signal pro-
vided by the peak detector that switches off the selection peak
and a negative preshape into the attention selection field coming
from active working memory in the scene representation.

5) Coupling to Motor Behavior: Within the dynamical
system approach, movement is controlled by defining dynam-
ical systems with attractor states at the desired configuration,
1), of the motor system

T¢ = —a(d — ). 12)

How may the activation of a DNF be mapped onto such an at-
tractor dynamics?

If one thinks of the field activation as a probability distribu-
tion, the desired configuration is determined by the theoretical
mean of the distribution

5 L0 Bu(g))ds
Jotu(8)dp

A direct approach would be to set ) = ¢ in (12). This leads
to a division by zero, however, if the field does not have supra-
threshold activation. In contrast to a real probability distribution,
a DNF is not necessarily normalizable. Scaling the strength, o,
of the attractor, with the total activation, & = [ 6(u(¢))dg,
gives rise to an elegant solution of this problem

Th= (— / e(u(¢,t))d¢> (¢>— %) (14)

13)

can then be simplified to
ri= (= [oanis) o+ [oxotus.00 a3

without any division (see Fig. 7 for an illustration of this
mapping).
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Fig. 8. Shows an overview of the cortex-inspired architecture. Space is illustrated as one-dimensional. All components are arranged in affiliation to the four levels.
The current gaze is represented in the retinal and scene level, as well as in the scene by a gray oval. Information transfer between components is illustrated by
two kinds of arrows: the solid ones represent information transfer without transformations, whereas their dotted counterpart implies an included reference frame
transformation. In all field sketches, the solid red line represents the field activity. Blue dotted lines are standard excitatory input and green dashed and dotted lines
are inhibitory input. The system is shown in a state, in which one of four possible objects is already scanned and stored in the associative scene space—color field E.
The three leftmost objects are contained in the current retinal space field A as well as in the scene space field D. Both are mutually coupled and receive additional
input from visual preprocessing. The scanned object is inhibited in the retinal space selection field B, which receives input from A. The still-active selection leads
to a color extraction, which is represented in the retinal color field C. B is also coupled to a motor selection field G, which in turn is linked to the motor system.
Finally, B, C, and D are all coupled to E. The recall of memorized object locations and features is done in an associative scene space—color selection field F similar
to E, but which is, unlike E, configured to allow only a single peak at a time. The label-color field H contains space-independent long-term memory associations
between object labels and color hue. Features are provided by retinal color field C, whereas labels are defined by the user. Learning an object triggers the next

execution of an object scan. The right-most object in the scene was never seen by the system. There is no evidence of this object throughout the system.

III. A CORTEX-INSPIRED ARCHITECTURE FOR
SCENE REPRESENTATION

In order to make the concepts developed in Section II do some
real work, we propose a cortex-inspired architecture for scene
representation that will be implemented for our autonomous
robot CoRA. From the robotic scenario we may derive some
constraints that simplify this task. Only the shared workspace,
the table in front of CoRA, needs to be represented because the
robot will operate only on objects positioned on that table. Rel-
evant objects are restricted in size because only objects that fit
into the robot’s gripper shall be represented. The transforma-
tion from retinal coordinates into a table-based allocentric rep-
resentation is known at all times and given by the head config-
uration of the robot. With these constraints we can evaluate our
architectural approach in a real scenario, which can neverthe-
less be simplified enough so that technical issues do not distract
from our focus on the interaction between the different DNFs.
In this same spirit, the single feature dimension, color, used for
object representation as well as the associated processes of fea-
ture extraction and selection are place holders for more complex
DNF-based object recognition systems such as the label-fea-
ture field approach [34] or the combined pose estimation and
recognition system [50]. Similarly, the transformation between
different frames of reference is done algorithmically here, al-
though such transformation can, in principle, be performed with
the same class of neural dynamic mechanism [51].

The architecture for scene representation consists of ten
DNFs that are coupled in a structured way. We order these
fields into four levels based on the functionality and the degree
of invariance of each field (see Fig. 8). These levels may be
loosely associated with areas of the human cortex. The retinal
level is the level closest to the sensory surface with the highest
degree of variance. This level could be viewed as a functional
description of visual cortex. The next level we refer to as
the scene level, where spatial information is represented in
a table-based allocentric reference frame and object feature
information is linked to spatial location. The scene level may
be associated with the lateral intraparietal area (LIP) [52].
The infero—temporal cortex is associated with visual object
representation [53], which in our architecture corresponds to
the object level. Finally, at the motor level head motion is
represented, thus closing the action perception loop. This level
may be neuronally associated with the frontal eye fields [54],
the superior colliculus [55], and the brain stem [56].

Although organized into levels, the fields are mutually
coupled and it is from this interaction that cognitive function
emerges. The architecture will not function properly if the
connections between levels are blocked. If, for example, the
scene representation level were decoupled from the retinal level
it would not receive any feed-forward input and would not do
much work at all. Similarly the retinal level would not function
properly, if both stabilizing input from the scene representation
as well as the inhibitory input that supports selection were
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missing. We preconfigure each field in order to put it into
the desired dynamic regime such as, for example, the regime
in which multiple working memory peaks are possible or in
which a single location is selected. The stability of these states
makes it possible to establish and test the dynamics of each
field individually. This makes it possible to tune and debug the
architecture in a systematic way.

A. Retinal Level

The basic processes of segmentation, attentional selection,
and low-level feature extraction take place at the retinal level. At
this level, sensory input is highly variant: Every head movement
modifies the incoming sensory stream in addition to any changes
that may occur in the scene itself. Three DNFs are at work at
the retinal level. One multipeak field, the retinal space field,
receives input from a simple saliency computation and feeds its
output into a second field that is set up for selection, the retinal
space selection field. A third feature field, the retinal color field,
receives as input a hue histogram computed from a hue color
map of the input image.

1) Visual Preprocessing: The first stage of visual input com-
putes a simple saliency image by calculating on- and off-center
responses on the intensity and on two opponent color chan-
nels. Because the size of objects in our scenario is limited to
fit into the robot’s gripper, we can tune the size of the differ-
ence of Gaussians filters to approximately fit the size of the
objects. All the responses are summed up with equal weights
into a single saliency image. This simplified version of Itti ez al.
saliency computation [57] is sufficient in our scenario, but could
of course be extended to include more features like orientation
maps and multiple scales as in their original proposal. In addi-
tion to this saliency map we compute a hue color map that serves
as input to the retinal color field.

2) Retinal Space Field: The result of the saliency compu-
tation is mapped onto a two-dimensional DNF that allows for
multiple peaks. These peaks represent the locations of objects.
The kernels of this field approximately match the Difference-of-
Gaussians filters used for computing the saliency image. The
output of this field is a normalized and stabilized version of the
saliency image. Objects smaller than what the robot is able to
grasp will not produce peaks and thus go undetected.

The output of this DNF is fed into the retinal space selection
field. Furthermore, it is spatially transformed into the allocentric
table representation and used as input to the scene space field on
the scene level.

The representation of input in retinal coordinates is affected
by head movements. The retinal position of a static object con-
stantly changes as long as the head moves. During movement
the two-dimensional field has to be capable of tracking multiple
objects. This task becomes easier if a stabilized representation of
object positions in the allocentric reference frame is used to gen-
erate predictions where objects are in retinal coordinates when
the head moves in a certain direction. This information is pro-
jected back from the scene space field on the scene level.

Objects outside the table region should not produce peaks in
the retinal space representation. We use knowledge about the
table geometry to transform what is represented in the scene
space field into retinal coordinates and thus project the scene

space field into the retinal representation as a source of preshape.
As a result, the resting level within in the retinal representation
is substantially different in those regions of the image into which
the table surface falls. Outside of this region, no peaks will build
due to the low resting level there.

3) Retinal Space Selection Field: In order to extract a feature
representation of the spatial locations, these must be brought
into foreground. A retinal space selection field receives input
from the retinal space field. The selection peak represents a
single selected spatial location, which is then used for com-
puting a local feature histogram. The output of the retinal space
selection field is also projected to the scene space—color field.
Furthermore it projects to the motor selection field so that se-
lected items are centered on the camera.

4) Retinal Color Field: Extracting features of a possible ob-
ject at the correct retinal position is achieved with the help of
the retinal space selection field. Once a selection is active, the
selection field’s output can be used to mask all irrelevant retinal
regions. Regions that pass the mask are used to extract a color
hue histogram for a specific object. This histogram is used as
input into a feature field [see Fig. 8(c)], that uses the detection
instability to represent dominant object colors within the se-
lected spatial region. The field output is fed as ridge input into
the label-feature field at the object level and fed as slice input
into the space-feature field at the scene level.

B. Scene Level

At the scene level, spatial position is represented with respect
to an allocentric reference frame attached to the table. As the
robot is attached to the table, this allocentric frame is at the
same time an egocentric reference frame for the robot. Three
different fields are at work, the scene space field that represents
only the spatial configuration of the scene, and two fields repre-
senting the object feature color over a two-dimensional spatial
map. One of these three-dimensional space-feature fields, the
scene space—color field, acts as working memory field for at-
tended spatial locations and their associated feature, the other,
the scene space—color selection field, is used for selecting one
of those working memory peaks based on other additional input
that preshapes this selection field. This preshape comes from
other cognitive modules. All three fields are defined in a refer-
ence frame related to the table. This representation is thus in-
variant to head movements, but because it receives input from
the retinal level is still able to track moving objects. These fields
may be loosely associated with the “where” path of processing
in area MT and with links to more object related properties in
hippocampal areas.

1) Scene Space Field: The scene space field is a multipeak
spatial representation of object locations with invariance rela-
tive to the robot’s own motion. The field receives spatially trans-
formed input from the preprocessed visual information and from
the retinal space field. This field has two important functional
roles. On the one hand, by being invariant to the robot’s own
head movement, it provides the system with a mechanism for
spatial working memory in which self-sustained peaks repre-
sent the locations of objects that are out of sight. On the other
hand, self-stabilized peaks in this field keep track of objects that
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are in the current field of view. The field operates at two dif-
ferent resting levels: The area outside the current view is at a
resting level that allows for multiple self-sustained peaks while
the area within the field of view is at a lower resting level that
enables only self-stabilized, but not self-sustained peaks, which
therefore vanish when they lose support from input (see Fig. 2).
Objects that disappear because of the robot’s head movement
are thus represented by working memory peaks, whereas ob-
jects that disappear from the sensory surface, because, for in-
stance, someone takes them out of the field of view, are no longer
represented.

The output of this spatially invariant representation is used
to track the peaks in the retinal space field by predicting their
future position given a planned head movement. That output is
also used as tube input into the scene space—color field. The
latter allows the scene space—color field to continuously track
spatial changes while maintaining working memory for the
space—color associations.

This is implemented through continuous coupling to the
scene space field that provides the tube input that represents
the spatial locations of the objects. Note that objects outside
of the viewing angle cannot be updated, if an object is moved
while it is outside this angle, it appears like a new object, once
the viewing angle returns to this object. The old association is
removed because the tube input, that sustains this association,
moved.

2) Scene Space—Color Field: To create an associative
working memory peak of object position and color in this field,
three fields contribute their outputs. On top of the spatial tube
input from the scene space field, the retinal space selection
field provides a single item tube input giving only one spatial
location within the scene space—color field an extra boost.
Only at that location with the extra boost the slice input along
the color dimension from the retinal color field leads to the
build-up of a working memory peak. Once the selection in the
retinal space selection field is released, the slice input of the
retinal color field disappears as well and the working memory
peak is solely supported from the tube input form the scene
space field.

The output of the scene representation field is generalized
to a purely spatial representation and transformed back to the
retinal reference frame and used as inhibitory input to the retinal
space selection field. The output is also fed directly into the
scene space—color selection field.

3) Scene Space—Color Selection Field: Similar to the retinal
space selection field we need a mechanism to bring items
to the foreground that are internally represented. The scene
space—color field provides no functionality to isolate a single
stored association. A selection decision must therefore be made
in a second three-dimensional field, the scene space—color
field, which receives as input the space—color association, but
operates in a selection regime. This field receives a copy of the
sigmoidal working memory peaks in the scene representation
as input. Additional inputs may be either lower dimensional
spatial or feature cues, which may be gathered through user
interaction. These inputs have the familiar form of tubes and
slices and preshape the selection field. The overlap of scene

memory and broad cue input increases the probability of selec-
tion for all those stored objects that correspond to the spatial
or feature cue. The selection decision of the scene recall field
selects the most appropriate object. If two or more objects are
identical or share the correspondence to a cue, one of these is
randomly selected.

Bringing an item into foreground ultimately means to make
a spatial decision, because space is the only representation on
which motor commands and thus meaningful action can be ex-
erted. The three-dimensional data is generalized to a spatial
output. This output is then used as input to a two-dimensional
motor selection field.

C. Object Level

At the object level, the feature representation varies neither
with spatial transformation in the scene nor with head move-
ment. The representation at this level is the one with highest
invariance. Feature input from the scene is only provided when
an object has been actively selected in the retinal space selec-
tion field. As a result, this representation is only updated when
an object has been actively selected.

1) Object Label-Color Field: The object label-color field is
a two-dimensional association (see Fig. 5) field representing the
hue color along one dimension and discrete labels along the
other dimension. The feature input comes from the retinal color
field, which only produces peaks when an item has been se-
lected by the retinal space selection field. When users provide a
label information, the ridge input along the labels overlaps with
the ridge input from the feature dimension and a peak builds
up in the label-color field. This peak leads to the build up of a
long-term memory trace of this association. Once this memory
trace is created it preshapes the association field so that provided
matching feature input builds a peak in the label-color field
without having to specify the label. This recognition mechanism
is basically a single feature version of the label-feature field ap-
proach [34] and can be easily extended to multiple features.

D. Motor Level

At the motor level, head movements are planned in angular
coordinates and motor signals are generated. Both the retinal
space selection field as well as the scene space—color selection
field can specify head movement. In principle they both may
provide active peaks at the same time. This happens, for ex-
ample, if a user provides input for a cued recall during the scan-
ning of the scene. A selection decision mechanism is thus also
needed at the motor level. Because of the high accuracy of the
low-level servo controllers of the real hardware there is no ex-
plicit proprioceptive representation of the joint angles. Such a
representation could be easily added, it would require the defi-
nition of another field representing the read out from the encoder
values of the joints.

1) Motor Fields: The motor selection field (see also Fig. 3)
receives input that is mapped from the retinal space selection
field and from the scene space—color selection field. These
mappings are only approximations and are explained in the
Appendix D. The output from the two-dimensional motor selec-
tion field is projected onto two separate one-dimensional fields
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with sharper kernels that represent the pan and tilt values of the
camera. These are the motor pan field and the motor tilt field.
Peaks in those two fields set attractors in the corresponding
attractor dynamics of the pan and tilt angles as explained in
Section II-G5. The rates of change are send to the hardware
interface of the head joints.

E. Sequence Generation

Once an item has been brought into foreground and its fea-
tures have been extracted and stored both as working memory in
the scene space—color field at the scene level and as long-term
memory in the label-color field, the selection may be released
and a new item should be selected. During learning this transi-
tion to a new item is triggered by the user providing label infor-
mation for the current object. When an object is recognized, the
transition happens autonomously.

The sequentiality in processing comes from two sources.
First a peak detector mechanism at the level of the label-color
field sends a negative boost to the selection field, so that it goes
from the selection instability mode into the no-peak solution.
A peak in the label-color field represents that an association
has been learned and is taken as the condition-of-satisfaction
for bringing an object into feature space and into the long-term
representation. Second, negative preshape is sent back from
the space—color representation at the scene level, effectively
reducing the propensity for a peak to build at a spatial location
which had already been examined earlier on and for which an
active working memory is maintained at the scene level.

IV. RESULTS

To evaluate our architecture, we conduct several experiments
that probe different cognitive functionalities: the build-up of the
scene representation; tracking spatial changes in the scene; up-
dating the representation when objects are removed; keeping
working memory representations of objects when they get out
of view; and updating their representations when they become
visible again; object recognition; recall of spatial information in
response to a cue about the label of a long-term memory item
and head movement toward the cued item.

A. Build-Up of the Scene Representation

The first experiment is a demonstration of the autonomous
build-up for multiitem scenes. Three objects are placed on the
workspace in front of the robot: a red toy car, a blue pack of
tissues, and a green can of deodorant spray. See Fig. 9 for a
basic setup. The task is to build up the scene representation
by selecting each of the objects, one at a time. Once an item
has been selected, its color represented in the retinal color field
must be associated with the spatial location represented in the
scene space field. This association will be stored in the scene
space—color field and a long-term memory will be created as
soon as the user provides a label signal. Once this label signal
has been given, the next item is selected. When the robot brings
an object into foreground, it orients its head toward this object
so that the object is centered in the field of view of the camera.
Peaks in the retinal space field and in the retinal space selection
field must track the changes induced by the head movement. In
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Fig. 9. Object setup. This is a saved camera image from the robot’s left camera
showing a basic setup of three objects: a blue pack of tissues on the left, a green
can of deodorant spray placed on the right, and a red toy car in the middle. The
whole setup is roughly placed around the center of the workspace.

field activity

Fig. 10. Slice plot of the scene representation field from experiment 1. This
figure shows a set of crossed slices from the three-dimensional volume of field
activity in the scene space—color field. Dimensions x and y represent spatial in-
formation whereas dimension z spans the feature space for color hue. The dis-
played activity is the result of a scanning sequence. The scene space—color field
contains three regions of supra-threshold activity referring to the three scanned
objects. The regions correspond to the position in space and the extracted color
hue of each object. The red toy car resides in the upper range of the color hue
due to its cyclic nature, whereas the blue pack of tissues and green deodorant
spray occupy regions further down the color hue. The tube inputs that sustain
all three associations can be seen throughout the volume.

total this experiment tests the following basic instabilities and
field couplings: multiitem working memory both in the two-di-
mensional scene space field and in the three-dimensional scene
space—color field, detection and selection decisions at the retinal
level, the association mechanism at the scene and object level,
setting attractors from peaks at the motor level and tracking of
spatial changes in the retinal level when the head moves.

1) Results: The system was able to generate the scene rep-
resentation as well as the long-term memory for object labels.
See Fig. 10 for the resulting state of the scene representation,
containing three working memory peaks, one for each object
space—color association. The experiment was successfully re-
peated for different numbers of objects, different objects, and
configurations. Small object distances were no issue due to sep-
aration along the feature dimension in the three-dimensional
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field. Head movements were compensated by the described pre-
dictions sent from the stabilized allocentric representation of ob-
ject positions.

B. Head Movement and Working Memory and Updating

The second experiment is a test of working memory for
space—color associations and also tests the updating when
objects are removed from the scene. Objects are removed in
two different configurations of the robot, once when the robot
is attending the scene object and once when the item is out
of view and maintained as working memory. Additionally
we tested short occlusions by covering an object for a short
moment. This experiment tests the multi-item working memory
mechanism on the scene level, the forgetting instability and the
continuous update of the scene. The setup for this experiment
consists of three objects: a red toy car, a green can of deodorant,
and a blue tube of sunscreen. See Fig. 2 for the setup. The task
is once again to store scene information in the scene represen-
tation. The robot’s head is then moved upwards until two out
of three objects disappear from the current camera image. The
deodorant spray is then removed from the workspace and the
head returns to its original orientation. Then the blue tube of
suncream is removed while it is visible.

1) Results: The two objects that get out of sight because of
the head movement were both represented as working memory
peaks (see the plot in the middle of Fig. 2). When the head re-
turned to the initial view, now without the deodorant, the peak
representation for this object vanished (see the plot on the right
in Fig. 2). Removing the second object from the scene also led
to a removal of the peak in the scene space—color field. In con-
trast covering the third remaining object shortly with a sheet of
paper did not affect the representations in the scene space—color
field.

C. Multiobject Tracking

In order to test the tracking capability of scene representa-
tion in a systematic and reproducible way, we use two small
robotic platforms (E-Puck?). Each of them is marked with a dif-
ferent color. They are put into the scene and the scene build-up
is started. Once the scene representation for this static scene has
been created, they are switched on in the default Braitenberg ob-
stacle avoidance behavior of Vehicle 2a [58] that comes already
implemented on the E-Puck platforms. The robots start to move
around randomly and because of the relative short line of sight
of their infrared sensors (around 40 mm) they come relatively
close (10 mm) during the course of the experiment. Note that
while tracking the scene there is no active selection of a single
object and therefore no head movement occurs while tracking
the scene.

1) Results: The system was capable of tracking spatial posi-
tions of the robots and it maintained the correct color associa-
tions for the robots. See Fig. 4 for recordings from the tracking
experiment.

2http://www.e-puck.org/
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Fig. 11. Recognition of an object by overlapping preshape and a ridge color
input.

D. Object Recognition

The fourth experiment demonstrates the recognition mode
of the label-color field, the categorical response of a field pre-
shaped by memory traces and how this recognition smoothly
integrates into the build-up of scene representation. Again three
objects are placed on the table and a first object is learned. Once
its long-term memory label-color association is learned it is re-
moved from the scene so that its working memory representa-
tions in the scene space—color field vanishes. Then the object is
placed into the scene again.

1) Results: As there was no more spatial inhibition coming
from the scene space—color field for this formerly learned ob-
ject it was again selected at some random moment during the
ongoing build-up of the scene representation. When the object,
for which long-term memory had been deposited, was selected,
a peak in the label-color field arose due to the overlap of the
feature input with the preshape from the long-term memory
trace (see Fig. 11). Once this peak was established the standard
switching mechanism came into play and the next object was
attended. The user did not have to specify the label again.

E. Cued Recall

In the cued recall experiment, the cue is given by providing
label information, thus providing input along the label in the
label-color field. This creates a peak in the label-color field at
the learned color and the color-dimension then preshapes the
scene space—color selection field. This field selects the working
memory item from the scene space—color field that has most
overlap with this color representation. Once a peak has formed
in the scene space—color selection field as it projects to the motor
selection field a head movement to center the cued location is
activated.

1) Results: We tested cued recall with different objects and
varied locations on the table. The robot successfully attended all
objects when they were cued. They were not always perfectly
recentered due to the approximation of the mapping from table
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to head joint coordinates (for more detail on this approxima-
tion please refer to the Appendix D). Essentially the robot al-
ways brought the items back into the camera view, the centering
could then be driven by visual servoing as it happens during the
build-up of the scene.

V. DISCUSSION

A. Summary

We have presented an approach to scene representation that
is inspired by what is known about how humans visually scan
scenes, retaining spatial and feature information across fixa-
tions. The neuronally based theoretical language of DFT is at
the core of this approach. We have shown how DNFs of varying
dimensionality and functionality can be coupled to achieve
the target cognitive functions of detection, selection, working
memory, and tracking. With an architecture of ten coupled
DNFs we have demonstrated how a robot may autonomously
build a scene representation grounded in real-world vision
data obtained from its cameras. The center piece of the archi-
tecture is a three-dimensional DNF that provides the system
with working memory for associations between feature values
and two-dimensional visual space. These associations can be
established sequentially, one by one. Spatial change of the
visual configuration is tracked and updated in real-time. In a
set of experiments we have demonstrated the core functions
of scene representation including the autonomous creation and
continuous updating of elements of the scene representations
as well as cued recall from an object long-term memory in
response to a user command.

The concepts and models have been used in a separate line
of research to account for human behavioral and neural data
on looking, visual and spatial working memory, discrimina-
tion, and change detection [25], [28], [39], [45]. The robotic
scene representation architecture that we built here within this
framework may help address a number of technical issues
by inheriting the autonomy, stability, and integrated nature of
human visual cognition. The system is pervasively autonomous
in the sense that a continuous process evaluates the neural
dynamics, which react to sensory input as needed, including
sensory input generated by the robot itself. Discrete events
at which objects are detected, decisions are made, and mem-
ories are created emerge autonomously from that dynamics.
Without a need for specific interrupt mechanisms, our system
is naturally linkable to online changes of sensory information.
Such autonomy requires that all functional states in the system
are stable states. That fact, in turn, enables the system to
work with relatively raw and low-level sensory information,
which is noisy, fluctuates and drifts in time. Our system thus
lowers the demands made by the scene representation on the
perceptual channels. Finally, the uniform theoretical language
of attractor neural dynamics provides the theoretical founda-
tion and practical method for system integration. There is no
additional level of algorithmic system integration. Once the
DNF architecture has been designed, all integration has been
achieved. In contrast, typical solutions using more conventional
approaches draw on different methodologies such as visual
preprocessing, probabilistic methods, or finite state machines.

Their integration requires a specific effort at the level of the
overall programming of the agent. Given the exemplary nature
of our robotic demonstrations, only limited empirical evidence
for the integrative power of DFT was provided in this project,
however.

Our implementation of the architecture on a robotic platform
achieved approximate real-time behavior. This is a direct
demonstration that the use of even three-dimensional fields in
a midsize model is not yet in any practical sense constrained
by computational power. In the long run, optimization of the
computational substrate for convolutions, the main time-lim-
iting operations within the architecture, may further expand the
range that can be reached within this approach (see, e.g., Dudek
and Hicks [59]).

B. Relation to Saliency-Based Models of Attention and the
Psychophysics of Scene Representation

Salience-based models of visual attention share a number of
features with our approach. The sequential sampling of the vi-
sual array in our system, for instance, is somewhat similar to
the inhibition of return mechanism in saliency-based models of
attention [57]. In these models, activation is generated over a
spatial map that reflects stimulus salience. The level of activa-
tion controls where the focus of attention is positioned. Loca-
tions that have been selected for attention are inhibited lowering
the likelihood that they will be selected again. Most implemen-
tations of saliency maps for guiding attention do not address
how eye movements affect such a map by shifting the camera
plane relative to the environment (for an exception see Fix et
al. [60]). The selection for attention happens, instead, in a fixed
reference frame. Even in robotic implementations that have the
potential for eye or head movements, saliency maps are typically
based on keeping gaze fixed [61]. In a robotic attention model
that addresses the effect of head and eye movement [62], previ-
ously attended regions are represented in an egocentric frame.
In this map, attended regions are transiently activated and that
activation decays over time. The system presented here goes be-
yond these approaches in several ways. First, we build a stable
neuronal representation of space, which keeps track of shifts of
the reference frame when head movements occur. This makes
it possible to achieve the stability required to sustain periods of
working memory and to stabilize selection decisions over vari-
able delays, while at the same time enabling updating through
a coupling to the sensory stream. The representation also en-
codes feature information, so that it is richer than a pure salience
representation. It is therefore capable of providing an interface
through the feature dimension with long-term memories of ob-
ject features. This capability is highlighted by the cognitive task
of cued recall.

A limitation of our current implementation is that we do
not include visual transients as significant signals that control
looking. This may be mended in the future by adding transient
detectors into the input stream. Curiously, this makes that our
approach reflects the phenomenon known as “change blind-
ness” in the literature on human scene understanding [63].
When visual transients are masked, human observers routinely
fail to detect major changes in a visual scene (such as an
entire sizable object appearing or disappearing from the scene).
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Change blindness illustrates how human scene understanding
is based on cognitive rather than purely perceptual processes:
the scene is largely constructed in the mind, not derived online
from current sensory input. As in human observers, our system
will update the representation of a changed item only when that
item is currently activated and in the foreground, not when the
item is merely in working memory.

C. Outlook

We have presented only the core principles and a very simple
implementation of the proposed principles and architecture that
employed limited and simplistic feature dimensions. The frame-
work of DFT provides, however, a natural interface between
scene representation and other systems implemented with the
same framework. This will be exploited in the future to augment
the functionality of our architecture. We have, for instance, been
able to achieve competitive performance in single-shot object
learning with a system based on DNFs for only three feature di-
mensions [34]. Using intrinsically more complex features, we
achieved object recognition that was invariant under translation
and rotation of objects [50]. This led to competitive performance
both within the COIL benchmark as well as in scenes that re-
quired nontrivial segmentation due to partial occlusion. Linking
to a model of change detection in visual working memory [25]
may enable the system to autonomously decide when to up-
date elements of its representation. Similarly, linking to a DNF
model of how spatial language is grounded in vision [64], [65]
may provide the system a user interface capable of interpreting
and generating spatial cues such as in the phrase “hand the ob-
ject to the left of the red screwdriver.”

The present architecture already contains elements of behav-
ioral organization [66], that is, of the rule-based sequential ac-
tivation of appropriate states. Such behavioral organization is
required as objects are scanned one after another, the boost in
the label-feature field leads to free recall, and the emerging fea-
ture representation is associated with a label. Dynamical sys-
tems principles are available to make that form of behavioral
organization completely autonomous [66].

APPENDIX A
KERNELS

Because the field is homogeneous, the interaction kernel is
the same at all sites of the field and the kernel is symmetric.
Mathematically the effect of the interaction kernel can be com-
puted by convolving the nonlinear output function with the in-
teraction kernel. Typically the kernel w(Z) is of the form of
a Gaussian excitatory profile with constant global inhibition
(Wexe # 0;wy # O;winn = 0), or with broader local inhibi-
tion, also modeled with a Gaussian profile (wex. # 0; Wy =
0; winy # 0), or with a combination of both global and local
inhibition (Wexe # 0; wg # 0; Winn # 0)
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APPENDIX B
VISUAL PROCESSING PARAMETERS

Before applying center-surround filters, the input image was
downsampled from size 320 x 240 to 80 x 60

On-center kernel : o = (2,2)
Off-center kernel : o = (6,6).

APPENDIX C
FIELD PARAMETER VALUES

Retinal Space Field (size 80 x 60)

h=-1.0, 7 =3, Wexc =3
Oexc = (2, 2)
Winh = —6, Texe = (4,4), wg = —0.009.

Retinal space selection field (size 80 x 60)

h=-=2.0,7=3, Wexc =5
Oexc = (2 2)
wg = —0.3.
Retinal color field (size 36)

h=-70,7T=05, Wexc =3
Oexc = 1

wg = —0.5.
Scene space field (size 100 x 100)

h=2.0,T=4, We =84
Oexc = (272)

Winy = —8.9, Texe = (5,5), wgy = —0.01.
Scene space—color field (size 50 x 50 x 36)

h=-22,7=23, Wexc = 5.1
Texe = (1,1,0.5)
Winh = _47 Oexc — (3,3,3), Wg = —0.002.

Scene space—color selection field (size 50 x 50 x 36)

h=-22 7=10, Wexec =1
Oexc = (1 1, 1)
wg = —0.01.

Object label-color field (size 10 x 36)

h=—5 7=10, Wexe = 2
Texe = (discrete, 1)
wg = —0.2.
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Motor selection field (size 80 x 180)

h=-3,7=10, Wexc =5
Oexc = (2 2)
wg = —0.04.

Motor tilt field (size 80)

h=-70, =10, wexe = 1.3
UBXC = 1

wg = —0.4.
Motor pan field (size 180)

h=-70,7=10, Wexe = 1.3 Oexec = 1
wg = —0.4.

APPENDIX D
SCENE-MOTOR TRANSFORMATION

Consider 7 = (z,y) as two-dimensional position of an object
and € = (cz, ¢y, ¢-) the shift of a camera system with two joints
pan and tilt. Let x; = « + ¢, and y; = y + ¢, be be the object
position in a camera-centric coordinate system. Transforming
x5 and y, to polar coordinates yields

r=+/z2+y2 )
a ¥2° _arcsin22, (18)
T

Here 7 is the planar distance to the camera and « resembles the
pan angle of the camera. Note that « = 0 is aligned with the
y-axis. To calculate the tilt angle, consider
&
3 = arctan— (19)
T
for the right-angled triangle formed by c., r, and the distance
between object and camera. To assemble a remap instruction for

object coordinates to joint configuration, we resolve for zs and
s and obtain

xs = rsin(—a) (20)
ys = /2 — x2. 21
With (19), we get
CZ .
s = ———— - 22
x tan(d) sin(—a) (22)
2 2
2 r _ C a2
S () )
2
= (1—sin?(—a))—2—. 23
( S ( Oé)) tanz(ﬂ) ( )
Using sin® 4+ cos? = 1, y, is then
c cos(—a). (24)

Y~ tan(B)

For two joints with inverted angles pan = —q and tilt = —g,
the final form is

CZ .
L= 25
v tan(tilt) sin(pan) 25
Cz
=% . 26
Y tan(tilt) cos(pan) (26)
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