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a b s t r a c t

Two competing types of theory have been proposed about the function of dorsal anterior

cingulate cortex (dACC): evaluative theories hold that dACC monitors ongoing behavior

to detect errors or conflict, whereas response selection theories hold that dACC is directly

involved in the decision making process. In particular, one response selection theory pro-

poses that dACC utilizes reward prediction error signals carried by the midbrain dopamine

system to decide which of several competing motor control systems should be given

control over the motor system (Holroyd and Coles, 2002). The theory further proposes

that the impact of these dopamine signals on dACC determines the amplitude of a compo-

nent of the event-related brain potential called the error-related negativity (ERN). In the

present study, we applied this theory to a decision making problem that requires partici-

pants to select between two response options in which an erroneous choice is not clearly

defined. Rather, the reward received for a particular response evolves in relation to the in-

dividual’s previous behavior. We adapted a computational model associated with the the-

ory to simulate human performance and the ERN in the task, and tested the predictions of

the model against empirical ERP data. Our results indicate that ERN amplitude reflects the

subjective value attributed by each participant to their response options as derived from

their recent reward history. This finding is consistent with the position that dACC inte-

grates the recent history of reinforcements to guide voluntary choice behavior, as opposed

to evaluating behaviors per se.

ª 2007 Elsevier Masson Srl. All rights reserved.
1. Introduction hemodynamic neuroimaging data, holds that dACC monitors
The ability to navigate and adapt to uncertain environments is

mediated partly by dorsal anterior cingulate cortex (dACC), a re-

gion of medial frontal cortex believed to contribute to cognitive

control (Ridderinkhof et al., 2004). At least two classes of theory

have been proposed about the function of dACC. The first, mo-

tivated largely by event-related brain potential (ERP) and
hology, University of Vict
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ongoing performance to detect errors (Coles et al., 1998;

Dehaene et al., 1994) or conflict (Botvinick et al., 2001, 2004;

Yeung et al., 2004). Such evaluative theories propose that dACC

is not directly involved in response selection but rather deter-

mines the success of ongoing behavior. In contrast, response se-

lection theories, motivated largely by neurophysiological and

neuroanatomical data, propose that dACC is directly involved
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in the decision making process (Holroyd and Coles, 2002; Hol-

royd et al., 2004b; Paus, 2001; Rushworth et al., 2004; Walton

et al., 2004). For example, we have suggested that dACC may

serve as a ‘‘motor control filter’’ that decides which of several

competing motor control systems should be given responsibil-

ity over motor behavior (Holroyd and Coles, 2002). According to

this view, dACC receives reward prediction error signals from

the midbrain dopamine system called temporal difference errors

(Schultz, 2002),which it utilizes for theflexible adaptation of be-

havior according to principles of reinforcement learning (Mon-

tague et al., 2004; Sutton and Barto, 1998). Note that in one

respect, these two types of theories are antithetical to each

other: whereas evaluative theories hold that performance

monitoring occurs within dACC, response selection theories

hold that this function must occur elsewhere in the brain,

such as in the basal ganglia (Holroyd and Yeung, 2003; Holroyd

et al., 2005).

We have further proposed that the impact of the temporal

difference error signals on dACC determines the amplitude of

an ERP component called theerror-related negativity (ERN; Hol-

royd and Coles, 2002). The ERN appears to exist in two varieties:

a response ERN and a feedback ERN (Holroyd et al., 2004b). The re-

sponse ERN is seen when human participants commit errors in

speeded response time tasks, peaking about 80 msec following

the onset of the incorrect response (Falkenstein et al., 1990;

Gehring et al., 1993). The feedback ERN is elicited when a feed-

back stimulus indicates to the participant that a task goal was

not achieved, such as a previous response being incorrect (Hol-

royd and Coles, 2002; Miltner et al., 1997; Nieuwenhuis et al.,

2004a). Both the response ERN (Dehaene et al., 1994; Debener

et al., 2005; Holroyd et al., 1998) and the feedback ERN (Gehring

and Willoughby,2002a; Holroydet al., 2004b; Miltneret al., 1997)

appear to be generated in dACC, although the source of the

feedback ERN is somewhat controversial (Nieuwenhuis et al.,

2005). According to this ‘‘reinforcement learning theory of the

ERN’’ (RL-ERN theory), the amplitude of the ERN should reflect

the temporal difference error properties associated with the

midbrain dopamine signal (Holroyd and Coles, 2002). This pre-

diction has been confirmed in several experiments (e.g., Baker

and Holroyd, 2006; Donkers and van Boxtel, 2005; Gibson

et al., 2006; Holroyd and Coles, 2002; Holroyd et al., 2003, 2005;

Potts et al., 2006; Holroyd and Krigolson, 2007; see also Holroyd

et al., 2004c; Mars et al., 2005).

Although the RL-ERN theory is a response selection theory

of dACC, it is sometimes perceived to be an evaluative theory

(e.g., Walton et al., 2004). For example, Kennerley et al. (2006)

have understood the theory to mean that dACC function

involves ‘‘monitoring whether a single action achieved its

expected outcome or in signaling the need for adaptive behav-

ior’’, which they distinguish from ‘‘integrating reinforcement

information over time to guide voluntary choice behavior’’.

This misunderstanding may stem from the ambiguous mean-

ing of the word ‘‘error’’, which has been interpreted differently

by different investigators. For instance, Gehring and Wil-

loughby (2002a, 2002b) have argued that the feedback ERN,

and by extension dACC, is sensitive to reward value rather

than to errors per se, but we have shown that the system that

produces the feedback ERN can flexibly adapt to the current

task context, however so defined (Holroyd et al., 2004a). Thus,

whether dACC functions to maximize reward or to avoid errors
depends on how the participant perceives the goal of the task

(Nieuwenhuis et al., 2004b; see also Holroyd et al., 2002); if the

goal is to maximize reward, then a failure to do so constitutes

an error by definition. Interestingly, the system that produces

the ERN appears to categorize outcomes in a binary manner:

as events that either do, or do not, indicate that the task goal

has been achieved (Hajcak et al., 2006; Holroyd et al., 2006;

Toyomaki and Murohashi, 2005; Yeung and Sanfey, 2004).

In the present experiment, we show that dACC can integrate

reinforcement information over time to guide voluntary choice

behavior. To do so, we apply the RL-ERN theory to a decision

making problem that requires participants to select between re-

sponse options in which an erroneous choice is not clearly de-

fined. In this task, developed by Herrnstein (1997a), the amount

of reward that an individual receives depends on the history of

his or her past responses. Thus, the reward received for a partic-

ular response is not stationary, but rather evolves in relation to

the individual’s previous behavior. Specifically, the reward is de-

livered as a function of the ratio of two button choices made by

theparticipant overasetofpreviousresponses(e.g., theprevious

40 trials). Typically, the reward schedule is designed such that

participants respond sub-optimally: unbeknownst to them,

they would receive more rewards if they responded by pressing

the two buttons at a different ratio. In general, participants tend

to respond at the ‘‘matching point’’ of the reward function,

where they obtain about an equal amount of reward from both

button presses, rather than at other points of the reward func-

tion where they would obtain more reward overall, but where

the rewards associated with the two responses are unequal.

We adapted a computational model associated with the

RL-ERN theory (Holroyd and Coles, 2002; see also Holroyd

et al., 2005; Nieuwenhuis et al., 2002) to simulate human per-

formance, the response ERN and the feedback ERN in a Herrn-

stein matching task, and tested these predictions by collecting

ERPs from participants engaged in the task (cf. Egelman et al.,

1998). The free parameters of the model were determined by

fitting the model’s output to the empirically observed behav-

ioral data, and the resulting simulated ERNs served as predic-

tions for the empirical ERNs. We predicted that the

amplitudes of the response ERN and the feedback ERN would

track the value of the response functions associated with the

participants’ response ratios. That is, we predicted that the

amplitudes of the response ERN and feedback ERN would re-

flect the subjective value attributed by each participant to

their response options, as derived from their recent reward

history. We expected that the ERN would not index the value

itself, but would instead index the temporal difference of the

value (Holroyd and Coles, 2002). In general, our experiment il-

lustrates the role of dACC in integrating reinforcement history

to guide voluntary behavior, as specified by the RL-ERN theory.
2. Methods

2.1. Reward functions

The task adopted in this study is derived from a class of two-

choice decision making games developed by Herrnstein

(1997a). On each trial, participants made one of two possible

responses and were provided with feedback (the ‘‘reward’’).
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The value of this feedback was determined by (1) the propor-

tion of the previous 40 responses made with either hand, (2)

the hand chosen on that trial, (3) a particular reward function

designated for that block of trials, and (4) a small random ele-

ment.1 Fig. 1a and b illustrates the reward functions utilized in

this experiment. In each case, the abscissa refers to the pro-

portion of the previous 40 responses made with ‘‘hand 1’’.

For example, a value of 1 indicates that all of the previous 40

responses have been made with hand 1 (and none with

hand 2), whereas a value of 0 indicates that none of the previ-

ous 40 responses have been made with hand 1 (and all with

hand 2). Note that responses made with hand 1 move the par-

ticipant rightward along the figures, whereas responses made

with hand 2 move the participant leftward along the figures.

For both figures, the functions describe the amount of reward

delivered for a response generated with either hand at a given

proportion: solid lines correspond to hand 1, dashed lines to

hand 2, and dotted lines to the average reward received at

that proportion. In Function 1, note also that (a) participants

receive the maximum average reward when zero of the 40

previous responses is made with hand 1 (i.e., all are made

with hand 2); and (b) both responses elicit the same amount

of reward when about 75% of the previous 40 responses

were made with hand 1 (Fig. 1a). Furthermore, in Function 2,

note that the maximum average reward occurs when the

previous 40 responses are all made with hand 1 (Fig. 1b).

The experiment consisted of 40 blocks of 100 trials. Each block

of trialswasassociatedwithaparticular function,andeachofthe

two functions occurred on 20 blocks of trials. Furthermore, the

functions were counterbalanced across hands, such that hand

1 in both functions was mapped to the left hand on 10 blocks

and to the right hand on 10 blocks. Lastly, at the start of each

block the response history over theprevious 40 (non-existent) tri-

als was initialized by randomly selecting, without replacement,

the number of hand 1 trials from one of 10 possible values (0, 4,

8, 13, 17, 22, 26, 31, 35, and 40). Thus, the 40 blocks are described

bytwofunctions, twohands,and10startingproportions;oneach

block a particular combination was selected at random, without

replacement. The random element added to the reward on each

trial was a randomly determined integer whose maximum abso-

lute value was the minimum reward associated with that func-

tion, i.e., 10 in Function 1 and 15 in Function 2.
3. Experiment

3.1. Participants

Ten participants, ages 18–22, were paid $5.00 per hour for their

participation, plus a bonus which depended on performance.

The experiment was performed in compliance with
1 This departs from the standard version of the task in which
the reward schedule is entirely deterministic. Participants vary
widely in their performance on the standard version (Herrnstein,
1997a), with some participants maximizing reward and others ex-
hibiting matching behavior (Montague and Berns, 2002). We
added a small random value to each reward to increase task dif-
ficulty, thereby ensuring that most participants would match.
Note also that, unlike some matching tasks, this task did not im-
plement a ‘‘changeover delay’’.
institutional review board guidelines at the University of Illi-

nois, Urbana-Champaign. Each session was completed in ap-

proximately 2 h.

3.2. Task

The participants sat comfortably about 1 m from a computer

display in an electromagnetically shielded room. Participants

were instructed that they would play a kind of ‘‘guessing

game’’ in which their objective was to maximize their long-

term reward using the scores they saw on the computer

screen. On each trial (1.5 sec), participants were exposed to

a warning cue (appearing as ‘þ’ on the computer screen) for

800 msec. During the first 600 msec of this period, participants

were required to press one of two buttons with either the left

or the right hand. At the end of the 800 msec interval, the

warning cue was replaced by a feedback stimulus, which

remained on the screen for 200 msec. The feedback stimulus

could be of three types. If participants responded before the

warning stimulus appeared, the word ‘‘EARLY’’ appeared,

and no reward was recorded. If participants responded after

the 600 msec limit had elapsed, the word ‘‘LATE’’ appeared,

and no reward was recorded. If participants responded within

that 600 msec period, then a numerical score was displayed,

as determined from the reward function associated with

that block of trials (see above). Participants were not informed

of the nature of the reward distributions and had to infer the

appropriate response strategies by trial-and-error. Stimuli

measured about 2� across the visual field. Following each

block of trials, the total amount of reward up to that point in

the experiment was displayed in cents on the computer

screen. This total reward was determined by summing the

scores associated with Function 1 and dividing the result by

30,000, by summing the scores associated with Function 2

and dividing the result by 50,000, and by adding the results

of the two calculations together. Dividing by these numbers

ensured that the participants earned approximately $6 in

bonus money at the end of each session. Participants initiated

each subsequent block of trials at their leisure by pressing

a (third) button.

3.3. Data acquisition

A 128 channel system from Electrical Geodesics, Inc. (Eugene,

Oregon; Tucker, 1993) was used with Netstation software for

data acquisition and experimental control. Scalp impedances

were less than 40 K. Electrodes were re-wetted during a 15 min

break half way through the experiment. The sampling rate

was 250 Hz, which for each 1.5 sec trial yielded 375 time points

per channel.

3.4. Data analysis

The electroencephalogram data were segmented with Netsta-

tion and analyzed using in-house software. Ocular artifact

was removed with the eye-movement correction procedure

described by Gratton et al. (1983). Data were re-referenced

off-line to link-mastoid electrodes (where channels 57 and

101 were taken as the left and right mastoids, respectively).

Single trial ERP data were baseline corrected on the basis of



Fig. 1 – Reward functions and behavioral data. (a–f) Abscissa: proportion of the previous 40 responses made with hand 1.

(a, b) Reward distributions: ‘‘Function 1’’ (a) and ‘‘Function 2’’ (b). Ordinate: amount of reward. Solid lines: average reward

delivered for responses made with hand 1 at each proportion. Dashed lines: average reward delivered for responses made

with hand 2 at each proportion. Dotted lines: expected amount of reward, averaged across hands, for responses made at

each proportion. (c, d) Histograms of empirical behavioral data, pooled across subjects, for Function 1 (c) and Function 2 (d).

(e, f) Histograms of simulated behavioral data, pooled across subjects, for Function 1 (e) and Function 2 (f). (c–f) Solid lines:

number of responses made with hand 1 at each proportion. Dashed lines: number of responses made with hand 2 at each

proportion. Dotted lines: total number of responses, pooled across hands, made at each proportion. Vertical lines in (a–f)

indicate regions of interest for data analysis (see Section 2).
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2 Note that the response unit remained activated even after the
response had been generated overtly, and thus maintained
a memory of the response event.
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200 msec interval preceding stimulus onset, and were filtered

with a passband of 1–20 Hz using the Interactive Data Lan-

guage digital filter algorithm. For each participant, average

ERPs were derived separately for each function by averaging

all trials associated with that function across blocks and

across hands. Separate ‘‘stimulus-locked’’ and ‘‘response-

locked’’ averages were created by averaging the trials accord-

ing to stimulus onset and response onset, respectively. Grand

averages were derived by averaging these ERPs across partici-

pants. Furthermore, for each function, histograms of trials

were created for responses made with either hand, as a func-

tion of the proportion of the previous 40 responses that were

made with hand 1. For example, if on 10 trials for Function 1

a participant responded with hand 1 and the previous 40

responses were all made with hand 2, then the associated his-

togram (for hand 1, Function 1) would have a value of 10 at the

bin corresponding to proportion zero. For both functions,

regions of interest associated with the most trials were then

determined. In Function 1, this area spanned where 60–85%

of the previous 40 responses were generated with hand 1

(Fig. 1c); in Function 2, the area spanned where 0–25% of the

previous 40 responses were made with hand 1 (Fig. 1d). For

each participant, response-locked and feedback-locked ERPs

were derived for both of these regions by averaging together

the trials within that region according to hand. Thus, with

10 participants, two functions, two hands, two averaging

methods (response, feedback), and 128 channels, this proce-

dure yielded 10,240 ERPs.

We applied a spatial principal components analysis (PCA)

to summarize activity that co-varied across electrodes (see

Donchin and Heffley, 1978 for an introduction to PCA and its

temporal application to the ERP). This procedure is commonly

used to identify spatial factors that correspond to particular

ERP components (e.g., Spencer et al., 2001) including the ERN

(Holroyd et al., 1998; Krigolson and Holroyd, 2006). We re-

stricted our analysis to time periods associated with the

ERN, namely, between 0 and 100 msec following the response

in the response-locked waveforms (Falkenstein et al., 1990;

Gehring et al., 1993), and between 150 and 300 msec following

presentation of the feedback stimulus in the feedback-locked

waveforms (Holroyd and Coles, 2002; Miltner et al., 1997).

Thus, the spatial PCA was conducted on the data associated

with these periods across the 10,240 ERPs described above.

This procedure produced 10 factors, each associated with 80

sets of factor scores corresponding to the two temporal pe-

riods of interest; the spatial factor scores can be thought of

as ‘‘virtual ERPs’’ that describe the time course of the ERP com-

ponent associated with that factor (Spencer et al., 2001). The

ERN was identified with a factor that exhibited (1) factor load-

ings with a scalp distribution consistent with the ERN (frontal–

central), and (2) factor scores (virtual ERNs) that behaved like

the ERPs recorded at frontal–central scalp areas.

As of yet there is no consensus about how best to measure

ERN amplitude. According to the RL-ERN theory, the ERN is as-

sociated with the impact of negative temporal difference er-

rors on dACC, but it is also possible that positive temporal

difference errors on dACC would elicit a positivity in the

time range of the ERN (Holroyd and Coles, 2002; Holroyd,

2004; Pakzad-Vaezi et al., 2006; see also Potts et al., 2006).

Our approach has been to compare differences in ERN
amplitude across conditions, for example, by comparing the

difference associated with unexpected rewards and punish-

ments with the difference associated with expected rewards

and punishments (e.g., Holroyd et al., 2003; Holroyd, 2004; Hol-

royd and Krigolson, 2007). This procedure allows for our ERN

measure to capture neural activity associated with both posi-

tive and negative temporal difference errors. In the present

study, we were interested in isolating the relative value attrib-

uted by participants to each response hand. To do so, we first

integrated the areas under the curves described by the virtual

ERNs (the factors’ scores associated with the ERN factor); this

step is analogous to finding the average value of the ERPs

recorded at frontal–central scalp sites within a specified

time window. Then, we computed the difference between

these measures for each hand in each condition (i.e., hand

1–hand 2), for both the response ERN and feedback ERN. The

difference measures provide an index of the relative size

and sign of the temporal difference errors associated with re-

sponses produced by either hand (see below): positive values

indicate that the system evaluates the eliciting event as better

for hand 1 than for hand 2, whereas negative values indicate

that the system evaluates the eliciting event as better for

hand 2 than for hand 1. Note that the PCA minimizes possible

contamination of the ERN measure from other overlapping

ERP components (Spencer et al., 2001).
3.5. Simulation

Our simulation combined aspects of our previous model of the

ERN (Holroyd and Coles, 2002) with Egelman et al.’s (1998) tem-

poral difference model of human behavior on the Herrnstein

task. For statistical purposes, we ran the present model 10

times, simulating data for 10 participants. Each trial was di-

vided into 60 time steps, with presentation of the warning

cue at time step 10, response generation at time step 30, and

feedback presentation at time step 60. Stimulus input and re-

sponse output were sent to a ‘‘value’’ layer that identified

states vi, where i corresponds to the state and v to that of

state’s activation: when the warning cue was on, when a left

response had been generated, and when a right response

had been generated (Fig. 2). The activation of these units

was set to 0 (minimum) when inactivated, and to 1 (maxi-

mum) when activated. Presentation of the warning cue acti-

vated the cue unit in the value layer, and this unit remained

activated until a response was generated. Response genera-

tion activated the associated unit in the value layer, and this

unit remained activated until the reward was delivered.2

At every time t, the value of the state of the system was

determined as

bVt ¼
X3

i¼1

zi
tv

i
t

where bVt corresponds to a weight associated with each unit.

Thus, the value at any time t was simply the weight associated

with state i. At each time step t, furthermore, a temporal dif-

ference error dt was computed as



Fig. 2 – Computational model. ‘‘Cue’’, ‘‘Left’’, and ‘‘Right’’:

value layer units associated with activation states v1, v2 and

v3, respectively, and weights z1, z2, and z3, respectively.

‘‘Feedback’’: trial score associated with the reward r. ‘‘TD’’:

temporal difference unit that outputs the temporal

difference error d. ‘‘P’’: Softmax function unit that outputs

the selected response. Note that the temporal difference

error was used to update the value layer weights z1–z3.

3 This optimization procedure involved only behavioral data.
Thus, the simulated ERNs in this study were not produced by dis-
covering parameters that fit the simulated ERNs to the observed
ERNs, but rather were an emergent property of the model itself.
Note that any optimization procedure could have been used to
find values for h and s; we chose a reinforcement learning
approach for convenience.
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dt ¼ bVt þ rt � bVt�1

where rt is the magnitude of any feedback delivered to the sys-

tem at that time step, as determined by the reward functions

in Fig. 1a and b (see above; for convenience, the magnitudes of

these rewards were scaled down by a factor of 10 for the

simulation). The weights were initialized with small random

values between .00 and .01, and learning occurred on each

time step according to

zi
tþ1 ¼ zi

t þ hdtþ1vi
t

where h is the learning rate.

Response selection at time step 30 was determined accord-

ing to a ‘‘softmax’’ probability function (Sutton and Barto,

1998):

Pðresponse k selectedÞ ¼ ezk
t =sP2

k¼1 ezk
t =s

Here zk
t corresponds to the weight associated with hand 1 or

hand 2 at time t, and s is a ‘‘temperature’’ parameter that con-

trols the degree of exploration.

Values for h and s were determined separately for both

reward functions, using an optimization procedure that iden-

tified optimal values for both parameters. We used a reinforce-

ment learning algorithm that identified values for h and s
through successive approximation. Each step of the optimiza-

tion procedure consisted of choosing values for h and s, run-

ning the simulation through a block of trials, and

determining the discrepancy between the empirical and the

simulated behavioral distributions (see Fig. 1). Possible values

for h and s initially ranged between 0 and 1, but the range was

restricted to the most relevant areas as optimization pro-

gressed. For each function, the procedure was run for 48,000

blocks, yielding h¼ .875 and s ¼ :225 for Function 1 and

h¼ .025 and s ¼ :1375 for Function 2.3

As with the empirical data, the simulated ERNs were

measured in terms of differences, i.e.,

ERN ¼ dtðhand 1Þ � dtðhand 2Þ

Note that the temporal difference error dt reflects the differ-

ence in value across successive states: positive temporal dif-

ference errors indicate that ongoing events are ‘‘better than

expected’’, whereas negative temporal difference errors indi-

cate that ongoing events are ‘‘worse than expected’’ (Sutton,

1988). Thus, for the response ERN, positive ERN values indicate

that the system evaluates hand 1 responses as better than

hand 2 responses, and conversely, negative values indicate

that the system evaluates hand 2 responses as better than

hand 1 responses. Likewise, for the feedback ERN, positive

ERN values indicate that the feedback was relatively better

than expected following hand 1 responses compared to

hand 2 responses, and negative values indicate that the feed-

back was relatively better than expected following hand 2 re-

sponses compared to hand 1 responses. Note that the

exploration parameter s ensured that the simulation would

occasionally produce responses associated with the lesser

value.
4. Results

Fig. 1c and d illustrates histograms of the empirical behavioral

data for Function 1 and Function 2, respectively, pooled across

participants. For each function, participants’ responses gravi-

tated to parts of the reward distribution where the amount of

reward obtained was less than the optimum. In Function 1,

the vast majority of responses occurred near proportion¼ .75

(Fig. 1c; average proportion associated with the final 40 tri-

als¼ 64.4%� 6.5%), where both response options elicit the

same amount of reward (Fig. 1a). Note that, had participants

responded exclusively with hand 2 in Function 1, they would

have received the maximum reward possible. Indeed, the par-

ticipants would have received more reward than they actually

did had they responded at chance, producing half their

responses with either hand. A small fraction of all the re-

sponses was in fact generated at the reward maximum; we

observed this outcome to occur on blocks in which the partic-

ipants’ proportions were initialized with values close to zero.



Fig. 3 – ERPs recorded frontal-centrally (channel 7 of the

electrogeodesic dense electrode array; Tucker, 1993),

averaged over all trials. (a) Response-locked ERPs; response

onset occurs at .0 sec. (b) Stimulus-locked ERPs; stimulus

onset occurs at .0 sec and feedback onset at .8 sec. Thin

solid lines and thin dashed lines correspond to Function 1

and Function 2, respectively. Thick solid lines correspond

to virtual ERNs (i.e., the spatial factor scores associated with

the frontal–central spatial factor). Vertical lines centered

around the virtual ERNs indicate time windows of interest

(see Section 2). Negative is plotted up by convention.
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In Function 2, nearly all responses were made with hand 2

(Fig. 1d; average proportion associated with the final 40 tri-

als¼ 13.5%� 13.9%), but participants would have maximized

their reward had they responded exclusively with hand 1

(Fig. 1b). These observations are consistent with the results

of previous studies (Egelman et al., 1998; Herrnstein, 1997a).

Fig. 1e and f depicts the simulated behavioral data. As can

be seen, the behavior of the simulated participants was qual-

itatively similar to that of the real participants. In particular,

nearly 75% of the responses were made with hand 1 in Func-

tion 1 (Fig. 1e), and nearly all responses were made with hand

2 in Function 2 (Fig. 1f). These results are not surprising given

that the model parameters were optimized so as to fit the

simulated behavioral data to the empirical behavioral data.

We restricted our ERP analysis to data associated with

those parts of the reward functions where most responses

were generated (see Section 2). Fig. 3 illustrates the ERPs asso-

ciated with both functions, averaged over all trials and both

hands, recorded at a frontal–central electrode location where

the ERN reaches maximum amplitude (Falkenstein et al., 1990;

Gehring et al., 1993; Miltner et al., 1997). The thin lines corre-

spond to trials associated with Function 1 (solid) and Function

2 (dashed). Fig. 3a illustrates ERPs averaged according to the

onset of the response at 0 msec (‘‘response-locked’’ ERPs).

Fig. 3b illustrates the development of the ERPs across the

1.5 sec trial interval, averaged according to the onset of the

imperative stimulus (‘‘stimulus-locked’’ ERPs). In this figure,

the imperative and feedback stimuli are presented at 0 and

800 msec, respectively. In both figures, the ‘‘virtual ERNs’’

(i.e., the factor scores) are plotted over the ERPs during the

ERN time windows (thick solid lines). The close correspon-

dence of the virtual ERNs with the actual ERPs indicates that

the PCA successfully identified ERN-related activity; for this

reason we hereafter call the factor scores associated with

this factor the ERN.

Note that when averaged across trials and across hands,

the ERPs associated with Functions 1 and 2 behave in a compa-

rable fashion (Fig. 3). However, the ERNs depart from one

another when averaged according to hand, as illustrated in

Fig. 4 (average number of trials per ERP: Function 1 – hand 1:

894, hand 2: 334; Function 2 – hand 1: 73, hand 2: 1079). The fig-

ure shows the response-locked (top row) and feedback-locked

(bottom row) ERNs, for both hands and both functions, during

the ERN time windows (negative is plotted up by convention).

For the response-locked ERN, hand 1 (solid line) appears to be

about the same magnitude as hand 2 (dashed line) in Function

1 (Fig. 4a), but hand 1 appears to be more negative than hand 2

in Function 2 (Fig. 4b). For the feedback-locked ERN, hand 1 ap-

pears to be more negative than hand 2 in Function 1 (Fig. 4c),

and hand 1 appears to be more positive than hand 2 in Func-

tion 2 (Fig. 4d). The ERN measures, taken as the difference of

these values (see Section 2), are plotted in Fig. 5 for both the

empirical (Fig. 5a) and simulated (Fig. 5b) data. Recall that

for the response ERN (solid lines in Fig. 5), positive ERN values

indicate that the system evaluates hand 1 responses as better

than hand 2 responses, and conversely, negative values indi-

cate that the system evaluates hand 2 responses as better

than hand 1 responses. Further, for the feedback ERN (dashed

lines in Fig. 5), positive ERN values indicate that the feedback

was relatively better than expected following hand 1
responses compared to hand 2 responses, and negative values

indicate that the feedback was relatively better than expected

following hand 2 responses compared to hand 1 responses.

Insight into these results can be found by relating the re-

sponse-locked ERNs to the behavioral data. For Function 1,

the simulated response ERN difference measure was nearly

zero (although hand 1 was slightly favored over hand 2;

Fig. 5b: solid line, Function 1). This result predicts that partic-

ipants should value both response options about equally in



Fig. 4 – ERN factor scores during the time windows of interest (see Section 2) for Function 1 (left column) and Function 2 (right

column), associated with the response (top row) and feedback (bottom row). Solid and dashed lines correspond to choices

made with hand 1 and hand 2, respectively. Values along the abscissa are relative to the time of the response (top row) and

feedback onset (bottom row). Negative is plotted up by convention.
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this region of the reward function. Indeed, Fig. 5a confirms

that the response ERNs associated with each response option

were nearly identical for Function 1 (Fig. 5a: solid line, Func-

tion 1; 95% confidence interval¼�1.0, 2.8). Furthermore,

a comparison of Fig. 1c with a indicates that most participants

responded in Function 1 at a proportion where both choices

obtained about equal amounts of reward. In contrast, for

Function 2 the simulation predicts that the response ERN

should be larger for hand 1 than for hand 2 (Fig. 5b: solid

line, Function 2). These relationships were confirmed by the

empirical data (Fig. 5a: solid line, Function 2; 95% confidence

interval¼�15.1, �3.2). These results suggest that for Function

2, hand 2 responses were perceived to be better by the partic-

ipant than hand 1 responses. In fact, for all proportions in this

function, hand 2 responses elicited more reward than hand 1

responses (Fig. 1b: dashed line> solid line for all proportions).

Evidently for this reason participants responded almost exclu-

sively with hand 2, which propelled them into the region of

the reward function where minimal reward was actually

obtained (Fig. 1d). Note that the response ERN difference
measure was more negative for Function 2 than for Function

1 (Fig. 5a, solid line; t¼�3.3, p< .01), confirming that the rela-

tive value of hand 1 responses to hand 2 responses was greater

(and more negative) for Function 2 than for Function 1. In

other words, responses made with hand 2 were perceived to

be better than response made with hand 1 for Function 2 but

not for Function 1.

The feedback ERN difference measures were also consis-

tent with the reinforcement learning framework. As with

the response ERN measures, the feedback ERN measures for

Function 1 were close to zero for both the simulated and em-

pirical data (Fig. 5a and b: dashed lines, Function 1; 95% confi-

dence interval¼�11.8, 0.6). Evidently, this result obtained

because the system expected and received equivalent

amounts of reward from responses made with either hand,

which at this response proportion (close to 75%, Fig. 1c) was

in fact what occurred (Fig. 1a). In contrast, for Function 2 the

simulation predicted that the feedback ERN should be more

positive for hand 1 responses relative to hand 2 responses

(Fig. 5b: dashed line, Function 2); this prediction was



Fig. 5 – Relative ERN values measured as ERN (hand 1) L ERN (hand 2). (a) Empirical data. (b) Simulated data. Solid lines:

response-locked differences. Dashed lines: feedback-locked differences. Units for empirical data reflect integrated factor

scores (see Section 2); units for simulated data reflect temporal difference error. Note that positive values indicate that the

system evaluates the eliciting event as better for hand 1 than hand 2 (i.e., the ERN is smaller for hand 1 than hand 2),

whereas negative values indicate that the system evaluates the eliciting event as better for hand 2 than hand 1 (i.e., the ERN

is larger for hand 1 than hand 2).
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confirmed by the empirical data (Fig. 5a; dashed line, Function

2; confidence interval¼ 3.1, 21.3). According to the theory, the

outcomes of hand 1 responses were relatively better than

expected compared to the outcomes of hand 2 responses.

Perhaps surprisingly, this result holds even though the reward

on hand 2 trials was larger than the reward on hand 1 trials

for all proportions (Fig. 1b: dashed line > solid line for all

proportions).

One explanation for this observation is as follows. Partici-

pants generally responded with hand 2 in Function 2

(Fig. 1d) and, as described above, the response ERNs indicate

that hand 2 was favored over hand 1 (Fig. 5a, solid line, Func-

tion 2). Thus, participants tended to predict better outcomes

following hand 2 responses than following hand 1 responses.

If as proposed the feedback ERN reflects a reward prediction

error signal, then its amplitude would have been modulated

only by feedback that violated these predictions, namely feed-

back that was worse than expected following hand 2 re-

sponses and better than expected following hand 1

responses. This outcome obtained as participants continually

favored hand 2 over hand 1, decreasing the proportion of hand

1 responses and yielding less reward overall. Therefore, fol-

lowing responses made with hand 2, the actual reward

obtained was continually less than expected, eliciting nega-

tive prediction errors. In contrast, responses made with

hand 1 increased the proportion of responses made with

hand 1, leading to a commensurate increase in reward and

positive prediction errors. Note that the feedback ERN differ-

ence measure was more positive for Function 2 than for Func-

tion 1 (Fig. 5a, dashed line; t¼ 2.6, p< .05), confirming that the

relative value of the outcomes following hand 1 responses to

the outcomes following hand 2 responses was greater for

Function 2 than for Function 1. In other words, outcomes

were perceived as being relatively better than expected
following hand 1 responses compared to hand 2 responses

for Function 2 but not for Function 1.

Lastly, note that there appears to be a reciprocal relation-

ship between the ERNs associated with the response and feed-

back: if in a given condition the response ERN was larger for

responses made with one hand than for responses made

with the other, then the opposite relationship tended to hold

true for the feedback ERN (Fig. 5: solid and dashed lines are

inversely related). For Function 2, hand 1 was more negative

than hand 2 when associated with the response (solid line)

but not when associated with the feedback (dashed line), for

both the simulated and empirical data (t¼ 4.3, p< .005). For

Function 1, hand 1 was more positive than hand 2 when asso-

ciated with the response (solid line) but not when associated

with the feedback (dashed line), for both the simulated and

empirical data, although this difference did not reach signifi-

cance (t¼�1.7, p> .05).
5. Discussion

We applied the RL-ERN theory to predict the amplitude of the

response and feedback ERNs in a decision making task in

which an erroneous response was not clearly defined. Because

the appropriateness of each choice was ambiguous, partici-

pants had to infer the optimal response strategy by integrating

their response-reward histories over time. Nevertheless, as

predicted by the RL-ERN theory, the relative amplitudes of

the response ERN and the feedback ERN indicated sensitivity

to the subjective values of participants’ response options. In

particular, when participants exhibited matching behavior

in Function 1, receiving about the same amount of reward

for either choice, the amplitudes of the response ERN and

feedback ERN were about the same size following both button
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presses. In this case participants’ behaviors settled on an

equilibrium state in which both choices elicited equivalent

amounts of reward, and there were no surprises. In contrast,

in Function 2 participants responded nearly exclusively with

the hand that minimized overall reward, even though they

would have maximized their reward had they responded ex-

clusively with the other hand. As suggested by their response

ERNs, participants evidently evaluated the bad response

option as being the better of the two and thus chose it over

the alternative. Further, by choosing the worse option partic-

ipants continually earned less reward than expected, except

when they occasionally selected the better option, in which

case they earned more reward than expected. Thus, the feed-

back ERN was relatively more positive following good choices

than following bad choices. This result obtained even though

the immediate reward following good choices was always

smaller than the immediate reward following bad choices.

It is important to note that while the simulation captured

the qualitative relationships between the relative amplitudes

of the response ERN and feedback ERN, the fit was not perfect.

In particular, the feedback ERN difference in Function 2 was

smaller for the simulated data compared to the empirical

data, even though the direction of the relationship (more pos-

itive for hand 1) was the same (Fig. 5: dashed lines, Function 2).

Evidently the model identified the relative values of the two

response options faster than the human participants did,

and the size of the prediction errors fell more quickly. A com-

parable result was observed in a previous study, where it was

suggested that an additional cognitive process in the human

system might have continued to search for an appropriate

response strategy in a circumstance where none was actually

available (Holroyd and Coles, 2002). More research will be

needed to investigate these discrepancies.

Given that the Herrnstein task does not involve objectively

incorrect responses, these ERN results must be understood in

a novel context. Classically, the response ERN occurs in

speeded response time tasks immediately following errors

(Falkenstein et al., 1990; Gehring et al., 1993), and recently it

has also been observed in continuous motor control tasks

(Krigolson and Holroyd, in 2007a, 2007b). Our results are con-

sistent with previous suggestions that the response ERN

may also reflect the value of a potential response during the

decision making process (Hewig et al., 2007; Tucker et al.,

1999). In this context it is relevant that the amplitude of the re-

sponse ERN was modulated over a relatively wide time inter-

val, from before the response to over 100 ms following it

(Fig. 4b). This difference may have resulted from the fact

that ‘‘errors’’ in this task were unlike the ‘‘fast guess’’ errors

that elicit the typical ERN seen in speeded response time

tasks, but rather occurred as participants sampled a response

option that they perceived to be sub-optimal; in this case, the

timing of the evaluative process might have occurred rela-

tively independently of response generation. As well, note

that the feedback ERNs reported here are different from the

negative deflection that is typically seen in trial-and-error

learning tasks (Miltner et al., 1997), as they appear to reflect

variance in the amplitude of the positivity on correct trials

(Fig. 4c and d), the P2a (Potts et al., 2006). Both positive and

negative temporal difference errors can potentially impact

the size of the ERN, the former decreasing and the latter
increasing its amplitude (Holroyd, 2004; Pakzad-Vaezi et al.,

2006). For the present purpose, it is important to note that

our difference measures preserved the relative values of the

responses and outcomes without determining their absolute

values.

Animals, including humans, live in an uncertain environ-

ment characterized by non-stationary reward contingencies.

It is perhaps self-evident then that we evaluate individual

rewards and punishments in the context of our reward histo-

ries, as the appropriateness of any individual action is difficult

to determine on the basis of a single outcome. The mechanics

of reinforcement learning have yet to be fully described, but

prior responses and rewards clearly contribute to ongoing de-

cision making (e.g., Catania, 1971; Lau and Glimcher, 2005;

Sutton and Barto, 1998). Herrnstein proposed that animals

keep track of the average yield associated with each available

response option and shift to the option that currently provides

the highest rate of return, a process that he called melioration

(Herrnstein, 1997a, 1997b). Neurally, this decision making

process is mediated by a distributed network of brain systems

including orbitofrontal cortex, the basal ganglia and parietal

cortex (Sanfey et al., 2006). As part of this network, the mid-

brain dopamine system may provide a ‘‘bottom up’’ learning

signal that drives melioration (Egelman et al., 1998). Further,

dACC may contribute to learning the values associated with

actions, as the activity of this brain area depends on the his-

tory of previous response–outcome associations (Amiez

et al., 2005; Gibson et al., 2006; Holroyd and Coles, 2002;

Holroyd et al., 2004c; Kennerley et al., 2006; Mars et al., 2005;

Matsumoto et al., 2007; Nieuwenhuis et al., 2002; Ullsperger

and von Cramon, 2003; Volz et al., 2005). Our results demon-

strate that the dACC is sensitive to the appropriateness of

behavior even in tasks where response correctness is highly

ambiguous and must be inferred by ongoing trial-and-error.

These findings are consistent with the results of other recent

ERN studies that have examined the neural mechanisms of

decision making in complex learning tasks (Cohen and Ranga-

nath, 2007; Frank et al., 2005; Hewig et al., 2007), and support

our proposal that dACC uses such performance information

to optimize the response selection process (Holroyd and Coles,

2002).
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