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1. Introduction

In a conference paper (reprinted on pp. 247±252), Demp-
ster (1974) considered the problem of testing a simple point
null hypothesis against a composite alternative. Such test-
ing problems are universal in classical statistical theory but
cause severe di�culties in Bayes theory, expressed in
Lindley's paradox (Lindley, 1957; Bartlett, 1957; Berger,
1985; Aitkin, 1991). Suppose the model p�yjh� for data y
gives a likelihood function L�h�, with prior distribution
p�h� of h. Suppose the null hypothesis is H0 : h � h0, and
the alternative is �H0 : h 6� h0.
Dempster considered the posterior distribution of the

likelihood ratio L�h0�=L�h�. Suppose we would regard the
sample evidence against H0 as convincing if the likelihood
ratio (LR) L�h0�=L�h1� < k, where h1 is the alternative
value of h under a speci®c simple hypothesis H1, and k is a
constant chosen to de®ne `convincing'. For example, k
might in di�erent circumstances be chosen as 0.3, or 0.1, or
0.05, or some other small value. (If H0 and H1 have equal
prior probabilities, the posterior probability of H0 would
then be 0.231, 0.091, or 0.048. The value k � 1 would
correspond to H1 being `better supported' than H0, but it
would not be regarded as convincing evidence against H0.
For unequal prior probabilities, the value of k would in-
corporate the prior odds.)
This inequality is equivalent to l�h0� ÿ l�h1� < log k,

where l�h� is the log-likelihood function. Under the general

alternative �H0, and given the data, l�h� is a parametric
function of h and the observed data, and so has a posterior
distribution obtainable from that of h. Dempster proposed
that the degree of certainty of the strength of evidence
against H0 be measured by the pair �k; pk�, where pk is the
posterior probability that the LR is less than k:

pk � Pr�l�h0� ÿ l�h� < log kjy�
� Pr�l�h� > l�h0� ÿ log kjy�:

Clearly, decreasing k will decrease pk for the same data, so
if we require stronger evidence against H0 we will have to
accept a smaller posterior probability of this strength of
evidence.
A simple example will illustrate this approach. We are

given n � 25 observations on Y � N�l; r2� with known
r � 1, resulting in �y � 0:4. The null hypothesis is
H0 : l � l0 � 0. The prior distribution for l is di�use. The
likelihood ratio is

L�l0�
L�l� � exp ÿ n

2r2
��y ÿ l0�2

n o.
exp ÿ n

2r2
��y ÿ l�2

n o
and the posterior distribution of l is N��y; r2=n�. The in-
equality L�l0�=L�l� < k is equivalent to���

n
p j�y ÿ lj=r < n��y ÿ l0�2=r2 � 2 log k

n o1=2
which has posterior probability
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pk � 2U n��y ÿ l0�2=r2 � 2 log k
n o1=2� �

ÿ 1:

Write P for the P -value of the observed sample mean:

P � Pr�jZj > ���
n
p ��y ÿ l0�=r�

� 2�1ÿ U�z0��
where z0 � ���

n
p ��y ÿ l0�=r is the observed standardized

mean di�erence and Z has the standard normal distribu-
tion. Then

pk � 2U z20 � 2 log k
� 	1=2� �

ÿ 1

� 2U Uÿ1�1ÿ P=2�� �2 � 2 log k
n o1=2� �

ÿ 1:

In the example, z0 � 2:0, P � 0:0456, and the posterior
probability pk is given for a range of values of k in Table 1.
For values of k less than eÿ2 � 0:135, pk is zero, because

the largest possible value of L�l� is L��y� � eÿ2. The value
k � 1 has a particular importance, because p1 � 1ÿ P .
Thus 1ÿ P is equal to the posterior probability that the LR
is less than 1. This probability is large here (0.9544) and the
correspondingly small P-value is taken in the Neyman±
Pearson theory as marginally strong evidence against H0.
Viewed as a posterior probability, it gives a high degree of
certainty, but the LR of less than 1 does not provide strong
evidence against H0. For convincing evidence we would
need a high posterior probability that the LR is small, say
less than 0.1, not 1. But the data cannot provide this
strength of evidence: the posterior probability is only 0.350
that the LR is less than 0.15, and is zero that the LR is less
than 0.1!
If we accept a LR of 0.1 as the evidence necessary to

reject H0, then we do not have that evidence here. However,
if we were willing to reject H0 on the basis of a larger LR ±
say 0.3, for example ± the posterior probability is 0.8 that
the LR is less than this value.
These results are generally in accord with Bayesian an-

alyses of this model (Berger and Sellke, 1987) which con-
clude that the P-value overstates the strength of the
evidence against H0, but are more equivocal since we have
two complementary measures �k and pk� of evidential
meaning rather than one.
A striking feature of the relation between P and pk is that

it is independent of n, depending only on k. We return to
this point below.

2. Posterior Bayes factors

Aitkin (1991) proposed to correct the overstatement of
strength of evidence by replacing the unknown likelihood
under the alternative hypothesis by its posterior mean LA,
de®ned by

LA �
Z

L�h�p�hjy�dh:

He proposed that the posterior Bayes factor (PBF) ± the
likelihood ratio L�h0�=LA ± should be interpreted like a
likelihood ratio from two simple hypotheses (parallelling
the usual Bayes factor interpretation ± see Section 4 below).
The posterior mean is in many models a penalized form of
the maximized likelihood L�ĥ�.
By considering the posterior distribution of the LR

L�h0�=L�h�, we can calibrate the PBF in a similar way.
Speci®cally, if the PBF has the value k, what is the poste-
rior probability that the LR is less than k?
For the normal example above, Aitkin (1991) showed

that LA � L�l̂�= ���
2
p

, and so

L�l0�=LA �
���
2
p

L�l0�=L�l̂�:
If the PBF equals k, then L�l0�=L��y� � k=

���
2
p

, or equiva-
lently

L�l0�=L�l� � �k=
���
2
p
�L��y�=L�l�:

The posterior probability that L�l0�=L�l� < k, when the
PBF equals k, is then

pk � Pr��k=
���
2
p
�L��y�=L�l� < kjy�

� Pr�L�l�=L��y� > 1=
���
2
p
jy�

� Pr�Z2 < log 2�
� 0:595;

independent of k. This posterior probability is around 0.5,
as might be expected: although the maximized likelihood is
mean-corrected, the posterior variance of the likelihood
around its mean means that the posterior probability that
the true likelihood falls below or above its posterior mean
will be around 0.5, the di�erence from this value being due
to the severe skewness of the eÿ1=2v

2
1 distribution.

If we want a high posterior probability that the LR is less
than k, the `critical value' of the PBF will have to be re-
duced. In general, if the PBF equals k�, what is the poste-
rior probability that the LR is less than k? As above, this is

pk;k� � Pr��k�=
���
2
p
�L��y�=L�l� < kjy�

� Pr�Z2 < log 2ÿ 2 log�k�=k��
� 2U

ÿ
log 2ÿ 2 log�k�=k�f g1=2�ÿ 1:

Suppose we want p0:1;k� � 0:9, i.e. a posterior probability of
0.9 that the LR is less than 0.1. Then k� has to be 0.0369,
much smaller than the conventional values suggested by
Aitkin (1991).
We now generalize these results to the large-sample

multiparameter case.

Table 1. Posterior probability pk that the LR < k when P � 0:0456

k 0.1 0.135 0.15 0.2 0.3 0.4 0.5 1.0

pk 0 0 0.350 0.673 0.793 0.859 0.894 0.954
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3. The multiparameter case

Given a m-dimensional parameter h in the model p�yjh� for
data y, we assume the sample size is large and the usual
regularity conditions hold. We assume the prior p�h� is
locally di�use in the neighbourhood of the MLE ĥ. Then
the log-likelihood has the quadratic expansion

l�h� � l�ĥ� ÿ 1

2
�hÿ ĥ�0I�hÿ ĥ�

where I is the observed information matrix. A null hy-
pothesis H0 speci®es h � h0, the alternative �H0 is the ne-
gation of H0. Our interest is in the posterior distribution of
the likelihood ratio L�h0�=L�h�, or the log-likelihood dif-
ference l�h0� ÿ l�h�. It follows immediately that

l�h0� ÿ l�h� � 1

2
�hÿ ĥ�0I�hÿ ĥ� ÿ 1

2
X 2

where X 2 is the usual large-sample test statistic
�h0 ÿ ĥ�0I�h0 ÿ ĥ�. So

2�l�h0� ÿ l�h�� � X 2 � v2m ;

and the (posterior) probability that the LR L�h0�=L�h� is
less than k is

pk;m � Pr�v2m < X 2 � 2 log k�:
For k � 1, this probability is 1ÿ P , where P is the P -value
of the observed X 2. So again 1ÿ P is the probability that
the LR is less than 1, and a typically small P -value cannot
be interpreted as convincing evidence against H0. Table 2
gives pk;m for two values of k; 1 and 1/9, for m � 1�1�5, and a
range 3(1)12 of values of the X 2 test statistic. This table

shows an interesting feature. For a ®xed P -value P , the
posterior probability pk;m that the LR < 1=9 increases
steadily with m, as shown in Table 3 for P � 0:05, and
m � 1�1�10. Thus the P -value is a more reliable indicator of
the strength of evidence against H0 for large values of m
than for small.
We can express this di�erently: for what P -value is the

posterior probability equal to p that the LR < k? This is
easily calculated:

pk;m � Pr�v2m < X 2 � 2 log k�
� Fm�X 2 � 2 log k�
� Fm�F ÿ1m �1ÿ P � � 2 log k�

where Fm�x� is the c.d.f. of v2m at x, and P is the P -value of
X 2. Then

P � 1ÿ Fm�F ÿ1m �pkm� ÿ 2 log k�:
Table 4 gives the P -value required to give a posterior
probability of 0.9 that the LR < k, for a range of k and m.
A similar relation can be established between the PBF

and the posterior probability. For the large-sample case
above, Aitkin (1991) gave the PBF

A � L�h0�=LA � L�h0�=�2ÿm=2L�ĥ�� � 2m=2L�h0�=L�ĥ�
and so

X 2 � ÿ2 log�L�h0�=L�ĥ�� � m log 2ÿ 2 logA:

If the PBF A � k, then

pkm � Pr�v2m < X 2 � 2 log k�
� Pr�v2m < m log 2�:

Table 2. Posterior probability pkm that the LR < k given X 2 and m

m k\X2 3 4 5 6 7 8 9 10 11 12

1 1 0.917 0.954 0.975 0.986 0.992 0.995 0.997 0.998 0.999 0.999
1/9 0 0 0.564 0.795 0.894 0.942 0.968 0.982 0.990 0.994

2 1 0.777 0.865 0.918 0.950 0.970 0.982 0.989 0.993 0.996 0.997

1/9 0 0 0.261 0.552 0.728 0.835 0.900 0.939 0.963 0.978

3 1 0.608 0.738 0.828 0.888 0.928 0.954 0.971 0.981 0.988 0.993
1/9 0 0 0.105 0.342 0.543 0.693 0.797 0.867 0.914 0.945

4 1 0.442 0.594 0.713 0.801 0.864 0.908 0.939 0.960 0.973 0.983
1/9 0 0 0.038 0.192 0.374 0.538 0.670 0.769 0.842 0.993

5 1 0.300 0.451 0.584 0.694 0.779 0.844 0.891 0.925 0.949 0.965
1/9 0 0 0.012 0.099 0.239 0.393 0.534 0.654 0.748 0.821

Table 3. Posterior probability that the LR < 1/9, given P = 0.05 and m

m 1 2 3 4 5 6 7 8 9 10

X 2�P � 0:05� 3.84 5.99 7.81 9.49 11.07 12.59 14.07 15.51 16.92 18.31

p1=9;m 0 0.550 0.668 0.722 0.754 0.776 0.792 0.805 0.815 0.823
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This probability decreases steadily with m, as shown in
Table 5. Thus the PBF is a less reliable indicator of the
strength of evidence against H0 for large values of m than
for small. This calibration may be corrected, as for the
P -value, by requiring that the PBF should be k� to give a
high posterior probability that the LR < k. Then

pkm � Pr�v2m < X 2 � 2 log k�
� Pr�v2m < ÿ2 log k� � m log 2� 2 log k�
� Pr�v2m < 2 log�k=k�� � m log 2�:

Table 6 gives the value of log�k=k�� required to achieve a
posterior probability of 0.9.
Thus for m � 1; k� needs to be eÿ1 times k to give a

posterior probability of 0.9, and for m � 10 this factor is
eÿ4:5 ' 10ÿ2. Posterior Bayes factors of k need very sub-
stantial recalibration in large dimension models to give a
high posterior probability that the LR < k.
A similar recalibration may be used for other penalized

LRT statistics, discussed in Aitkin (1991). For example,
Akaike's information criterion (Akaike, 1973) is AIC �
X 2 ÿ 2m. If the alternative hypothesis model is chosen when
AIC � 0, then given AIC � 0, the posterior probability
that the LR < k is

pkm � Pr�v2m < X 2 � 2 log k�
� Pr�v2m < 2m� 2 log k�:

The RHS approaches 1 as m!1 for any ®xed k. Table 7
gives the posterior probability for small m and several val-
ues of k.
For k � 1 and any m, an AIC of zero or more gives a very

high posterior probability that the alternative hypothesis is
better supported than the null. For small values of k, AIC
is less successful for small m.
Recalibration of the AIC may be simply obtained by

choosing the alternative hypothesis model when AIC
� ÿ2 log k� where k� is chosen so that the posterior
probability that the LR < k is at least (say) 0.9. Table 8
gives the value of log�k=k�� required to achieve a posterior
probability of 0.9.
For small m (say m � 5� the AIC may be used with only

small correction, but as m increases it becomes increasingly
conservative, requiring unduly large values of X 2 as evi-
dence against H0. Equivalently, it requires posterior prob-
abilities of almost 1 as the measure of certainty.

4. Bayes factors

It might be expected that Bayes factors could be calibrated
similarly. The Bayes factor B for the point null hypothesis
H0 : h � h0 is B � L�h0�=

R
L�h�p�h�dh. Here the prior dis-

tribution must be proper: the denominator is unde®ned if

Table 5. Posterior probability that the LR < k; given PBF � k

m 1 2 3 4 5 6 7 8 9 10
pk;m 0.595 0.500 0.444 0.403 0.371 0.345 0.322 0.302 0.284 0.268

Table 6. Value of log�k=k�� required to give pkm � 0:9 when PBF � k�

m 1 2 3 4 5 6 7 8 9 10
log�k=k�� 1.01 1.61 2.09 2.50 2.89 3.24 3.58 3.91 4.22 4.53

Table 7. Posterior probability pkm when AIC � 0

k\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.843 0.865 0.888 0.908 0.925 0.938 0.949 0.958 0.965 0.971 0.976 0.980 0.983 0.986 0.988
1/3 0 0.594 0.716 0.786 0.833 0.867 0.893 0.913 0.929 0.942 0.952 0.960 0.967 0.973 0.977
1/9 0 0 0.342 0.538 0.654 0.732 0.788 0.830 0.863 0.889 0.909 0.925 0.938 0.949 0.958
1/27 0 0 0 0.157 0.363 0.507 0.612 0.691 0.751 0.798 0.835 0.865 0.889 0.908 0.924

Table 4. P-value required to give pk;m � 0.9, for k and m

k\m 1 2 3 4 5 6 7 8 9 10

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

1/3 0.027 0.033 0.038 0.041 0.043 0.046 0.048 0.049 0.051 0.052
1/9 0.0077 0.011 0.014 0.016 0.018 0.020 0.022 0.023 0.025 0.026
1/27 0.0023 0.0037 0.0050 0.0062 0.0074 0.0085 0.0095 0.0105 0.0115 0.0124
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the prior is improper. For the large-sample normal likeli-
hood and the locally di�use prior, we haveZ

L�h�p�h�dh � p�ĥ�L�ĥ�
Z

exp ÿ 1
2
�hÿ ĥ�0I�hÿ ĥ�

� �
dh

� �2p�m=2jI jÿ1=2p�ĥ�L�ĥ�:
The Bayes factor is then

B � �2p�
ÿm=2jI j1=2
p�ĥ�

L�h0�
L�ĥ� :

The ®rst factor depends on the sample size through the
information matrix I . Assuming that y consists of n inde-
pendent observations, write I � nI0, where I0 depends only
on the design con®guration and not on n. Then

B � �2p�
ÿm=2jI0j1=2
p�ĥ� nm=2 L�h0�

L�ĥ�

� �2p�
ÿm=2jI0j1=2
p�ĥ� nm=2 exp ÿ 1

2
X 2

� �
:

As n!1, if H0 is true, then X 2 behaves stochastically like
v2m , and so B!1, while if H1 is true then X 2 behaves like
non-central v02m with non-centrality parameter proportional
to n, and so B! 0 in probability. Thus the Bayes factor
has the appealing feature in large samples of correctly
identifying the true model (Schwarz, 1978), unlike the PBF,
the P -value or the AIC.
This feature is greatly complicated however by the de-

pendence of B on the prior ordinate p�ĥ� and the design
con®guration through jI0j. For example, for a p-variable
normal regression model with known variance r2 and a
locally di�use prior on b; I is the raw (uncorrected) SSP
matrix of the predictors divided by r2, and jI0j is the de-
terminant of the mean-corrected predictor SSP matrix,
divided by r2�p�1�. So the value of the Bayes factor depends
on the measurement units of the response and predictor
variables: a rescaling of any predictor variable will scale the
Bayes factor proportionately unless the prior distribution is
correspondingly rescaled.
These di�culties are often avoided in practice by ig-

noring the contribution of the ®rst term to B, since it is
independent of n. This is equivalent to assuming that
p�ĥ� � jI0j1=2=�2p�m=2 which requires a peculiar data-based
prior, whose precision depends on the experiment to be
performed. (Other attempts to avoid Lindley's paradox
with the di�use prior are brie¯y reviewed in Aitkin, 1991.)

We may ask: if the Bayes factor B equals k, what is the
posterior probability that the LR < k? We have

pkm � Pr�v2m < X 2 � 2 log k�
� Pr�v2m < log jI0j ÿ 2 log p�ĥ� � m log�n=2p��;

but to give a numerical value for the posterior probability
requires the speci®cation of the information matrix and the
(proper) prior density ordinate at ĥ for the model. However
it is clear that for any ®xed k, the posterior probability
increases with n, illustrating again the di�erent behaviour
of the Bayes factor from that of the PBF, P -value or AIC.
Some of the di�culties with the Bayes factor may be

avoided by the use of the fractional Bayes factor (FBF;
O'Hagan, 1995). The FBF for the simple null hypothesis is
de®ned by FBF � L�h0�=qb where

qb �
Z

L1ÿb�h�pb�h j y�dh

�
Z

L1ÿb�h�Lb�h�p�h�dh
�Z

Lb�h�p�h�dh

�
Z

L�h�p�h�dh
�Z

Lb�h�p�h�dh

where b is the fraction of data used to convert the prior to a
proper posterior, and 1ÿ b is the remaining fraction used
to de®ne the likelihood; the data for `prior' and `likelihood'
are assumed to be the same. The FBF does not depend on
the information matrix or prior ordinate: as in O'Hagan,
for the normal likelihood and di�use prior,

FBF � L�h0�
bm=2L1ÿb�ĥ�

� Lb�ĥ�
bm=2

exp ÿ 1
2

X 2

� �
:

If the FBF � k, the posterior probability that the LR < k is

pkm � Pr�v2m < X 2 � 2 log k�
� Pr�v2m < ÿm log b� 2bl�ĥ��:

O'Hagan recommends that b be chosen as O�nÿ1�; if
b � nÿ1 then

pkm � Pr�v2m < m log n� 2l�ĥ�=n�:
This tends to 1 as n!1 like the Bayes factor, but its
actual value depends on the maximized log-likelihood for
the model, so is again model-speci®c. This value will be
a�ected by multiplicative constants (like

������
2p
p

) which might

Table 8. Value of log�k=k�� required to give pkm � 0.9, when AIC � ÿ2 log k�

m 1 2 3 4 5 6 7 8 9 10

log�k=k�� 0.353 0.303 0.126 )0.110 )0.382 )0.678 )0.992 )1.32 )1.66 )2.01

m 11 12 13 14 15 16 17 18 19 20
log�k=k�� )2.36 )2.73 )3.09 )3.47 )3.85 )4.23 )4.62 )5.01 )5.40 )5.79
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be omitted from the likelihood, and in the normal regres-
sion model by arbitrary re-scaling of the response.
We now extend Dempster's results to composite null

hypotheses.

5. Composite hypotheses

In the model p�yjh�; h is now partitioned into the parameter
of interest w, of dimension m1, and the nuisance parameter k
of dimension m2. The composite null hypothesis is
H0 : w � w0, the alternative being �H0 : w 6� w0. We assume
as before a prior for �w; k� which is di�use in the region of
the joint MLE �ŵ; k̂�. Our interest is in the likelihood ratio
LR, now de®ned to be L�w0; k�=L�w; k�.
Let k̂0 be the MLE of k given w � w0. Expand the log-

likelihoods about k � k̂0 and �w; k� � �ŵ; k̂� respectively:

l�w0; k� � l�w0; k̂0� ÿ
1

2
�kÿ k̂0�0I0�kÿ k̂0�

l�h� � l�w; k� � l�ŵ; k̂� ÿ 1

2
�hÿ ĥ�0I�hÿ ĥ�

where I0 is the information

I0 � ÿ @
2l�w0; k�
@k@k0

����
k�k̂0

:

Then

l�w0; k� ÿ l�w; k� � l�w0; k̂0� ÿ
1

2
�kÿ k̂0�0I0�kÿ k̂0�

ÿ l�ŵ; k̂� � 1

2
�hÿ ĥ�0I�hÿ ĥ�

� 1

2

��hÿ ĥ�0I�hÿ ĥ� ÿ �kÿ k̂0�0I0�kÿ k̂0�
�ÿ 1

2
X 2;

where X 2 is the usual LRTS test statistic for H0. From the
usual regression sum of squares partitioning we have im-
mediately that the posterior distribution of 2�l�w0; k�
ÿl�w; k�� � X 2 is v2m1 as for the simple null hypothesis, and
so all the asymptotic results of Section 3 apply to the
composite null hypothesis as well.
Small-sample results are more di�cult to establish. We

illustrate with the t-test.

6. The t-test

Given a sample of n observations from N�l; r2�, consider
the test of the null hypothesis H0 : l � l0 against the al-
ternative �H0 : l 6� l0. The LR is de®ned by

L�l0; r�=L�l; r� � exp ÿ n
2r2

��y ÿ l0�2 ÿ ��y ÿ l�2
h in o

:

The joint prior distribution for �l; log r� is taken to be
di�use; the joint posterior can then be expressed as

ljr � N��y; r2=n�; T=r2 � v2nÿ1;

where T �P�yi ÿ �y�2. The inequality LR < k is equivalent
to

n
���y ÿ l0�2 ÿ ��y ÿ l�2��r2 > ÿ2 log k:

Write s2 � T=�nÿ 1�, t � ���
n
p ��y ÿ l0�=s. Then the inequal-

ity is �
s2t2 ÿ n��y ÿ l�2��r2 > ÿ2 log k

or equivalently

n��y ÿ l�2=r2 < s2t2=r2 � 2 log k:

Now
���
n
p ��y ÿ l�=rjr � N�0; 1�, independently of r, and so

X1 � n��y ÿ l�2=r2 and X2 � T=r2 are a posteriori inde-
pendently v21 and v2nÿ1. So

pk � Pr�LR < kjy�
� Pr�X1 < t2X2=�nÿ 1� � 2 log k�:

When k � 1, this probability is

p1 � Pr�F1;nÿ1 < t2�
� 1ÿ P

where P is the P -value of the observed t, the same result as
for the normal case. However for k 6� 1, the posterior
probability has to be evaluated by numerical integration
over the joint density of X1 and X2.
We consider ®nally a very small-sample case in which the

e�ect of the prior cannot be ignored.

7. Risk assessment

Aitkin (1992) and Lindley (1993) discussed a court case
brought against the Ministry of Health for performing a
vaccination with allegedly defective vaccine, leading to ir-
reversible brain damage in the baby vaccinated (Geisser,
1992 also commented on this case). A statistician expert
witness was required to state the evidence for an increase in
the risk of brain damage, based on the occurrence of four
cases of brain damage.
The analysis was based on a Poisson model: four events

had been observed from a Poisson distribution with mean
k � k0 � 0:9687 under the null hypothesis H0 of the stan-
dard risk; the alternative was an unspeci®ed higher risk.
The P -value of four or more events under H0 is 0.0171.
The likelihood function is, apart from a multiplicative

constant,

L�k� � eÿkk4

and the LR is L�k0�=L�k�. The maximized LR is
L�k0�=L�4� � 0:0713, which clearly overstates the evidence
against H0 : whatever the true value of k, the LR must be
greater than this.
For the one-sided null hypothesis H �0 : k � k0 against the

one-sided alternative H �1 : k > k0 and the di�use prior dk=k
the Bayes factor is 0.0174, equal to P=�1ÿ P � (Aitkin,
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1992), but for the uniform prior dk this Bayes factor is
0.0032, giving a vastly di�erent impression of the strength
of evidence against H0. For the point null hypothesis these
improper priors cannot be used as the denominator is un-
de®ned. For the conjugate gamma �/; m� prior

p�k� � /meÿ/kkmÿ1=C�m�
the prior mean m=/ and variance m=/2 are given in Table 9
for a small range of values of / and m varying from weak to
sharp prior information. The Bayes factor for the point
null hypothesis H0 against the general alternative
�H0 : k 6� k0 is given in Table 10 for the same range of values
of / and m. The Bayes factor is very sensitive to the choice
of the hyperparameters, not surprising in view of the small
number of events: over the range of hyperparameter values
tabled the Bayes factor varies from 0.127 to 5.053. (Lind-
ley, 1993 objected to the use of formal gamma priors in
Aitkin, 1992, though he did not say why gamma priors
should not be able to represent prior information.) At ei-
ther of the improper limits /! 0 or m! 0 the Bayes factor
!1. (For the one-sided alternative H�1 the results are very
similar and equally sensitive.)
Lindley (1993) noted that this sensitivity is to be ex-

pected in Bayes factors: indeed, we should be concerned if
it was absent. Lindley proposed to resolve this dependence
by elicitation of the court's prior: the statistician should

`judge the opinion of the court as to how far the Ministry
could have erred' in departing from the null k0. `Alterna-
tively, [the statistician] could ask the court's opinion' on
this matter. Judges no doubt have an opinion on such
matters prior to the data being considered in the case. But
should this opinion be so in¯uential in the statistician's
formulation of the evidence which the judges are then to
assess? Might not the judges want to know what the data
say to the statistician, separately from their own opinion?
Table 11 gives the posterior mean and variance, and

Table 12 gives the PDF for the same range of hyper-

Table 9. Gamma prior mean and (variance)

m
0 0.5 1 1.5 2

0 * * * * *

0.1 * 5 (50) 10 (100) 15 (150) 20 (200)
0.2 * 2.5 (12.5) 5 (25) 7.5 (37.5) 10 (50)
0.3 * 1.67 (5.56) 3.33 (11.1) 5 (16.7) 6.67 (22.2)

/ 0.4 * 1.25 (3.13) 2.5 (6.25) 4.75 (11.9) 5 (12.5)

0.5 * 1 (2) 2 (4) 3 (6) 4 (8)
1 * 0.5 (0.5) 1 (1) 1.5 (1.5) 2 (2)
1.5 * 0.33 (0.22) 0.67 (0.44) 1 (0.67) 1.33 (0.89)

2 * 0.25 (0.13) 0.5 (0.25) 0.75 (0.38) 1 (0.5)

*, improper prior.

Table 10. Bayes factor for H0 against �H0

m
0 0.5 1 1.5 2

0 * * * * *

0.1 * 0.247 0.224 0.302 0.493

0.2 * 0.259 0.173 0.173 0.208
0.3 * 0.303 0.172 0.146 0.149

/ 0.4 * 0.366 0.187 0.142 0.131
0.5 * 0.447 0.212 0.149 0.127

1 * 1.152 0.446 0.256 0.178
1.5 * 2.568 0.907 0.476 0.302
2 * 5.053 1.692 0.842 0.508

Table 11. Gamma posterior mean and (variance)

m
0 0.5 1 1.5 2

0 4 (4) 4.5 (4.5) 5 (5) 5.5 (5.5) 6 (6)

0.1 3.64 (3.31) 4.09 (3.71) 4.55 (4.14) 5 (4.55) 5.45 (4.95)
0.2 3.33 (2.78) 3.75 (3.13) 4.17 (3.47) 4.58 (3.82) 5 (4.17)
0.3 3.08 (2.37) 3.46 (2.66) 3.85 (2.96) 4.23 (3.25) 4.62 (3.55)

/ 0.4 2.86 (2.04) 3.21 (2.29) 3.57 (2.55) 3.93 (2.81) 4.29 (3.06)
0.5 2.67 (1.78) 3 (2) 3.33 (2.22) 3.67 (2.44) 4 (2.67)
1 2 (1) 2.25 (1.13) 2.5 (1.25) 2.75 (1.38) 3 (1.5)

1.5 1.6 (0.64) 1.8 (0.72) 2 (0.8) 2.2 (0.88) 2.4 (0.96)
2 1.33 (0.44) 1.5 (0.5) 1.67 (0.56) 1.83 (0.61) 2 (0.67)
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parameter values. It is well-de®ned for the improper prior
limits; for the two improper priors dk=k and dk the PBF is
0.102. The PBF for this example is much more stable than
the Bayes factor, with a range of 0.093 to 0.322 over the
same hyperparameter values. The PBF is always substan-
tially smaller than the Bayes factor, especially for the in-
formative priors with large / and small m, where the Bayes
factor is greater than 1, while the PBF is less than 0.25.
To compute the posterior probability that the LR < k,

there is a technical di�culty because the LR is not an an-
alytically invertible function of k. This di�culty can be
avoided by using the likelihood-normalizing cube-root
transformation of k (Anscombe, 1964). Write / � k1=3;
then the likelihood can be approximated to a very high
accuracy by

L�k��: L�k̂� exp ÿ�/ÿ /̂�2
2r2

( )
where

/̂ � k̂1=3 � 41=3 � 1:587;

r2 � �6k̂1=3�1� 2=k̂��ÿ1 � �0:265�2:
The exact and approximating likelihoods are shown on the
/ scale in Figure 1.
The posterior distribution of k is gamma �1� /; 4� m�

and the likelihood ratio L�k0�=L�k� is approximated by

L�k0�
L�k̂� exp

�k1=3 ÿ 1:587�2
2� 0:2652

( )
:

The posterior probability that the LR < k is then ap-
proximately

pk � Pr
�k1=3 ÿ 1:587�2

0:2652
< 2 log

kL�k̂�
L�k0�

 !

� Pr
jk1=3 ÿ 1:587j

0:265
< �2 log k � 5:282�1=2

 !

� Pr 1:587ÿ 0:265�2 log k � 5:282�1=2
� �3�

< k < 1:587� 0:265�2 log k � 5:282�1=2
� �3�

which can be calculated directly from the gamma cdf.
Tables 13 and 14 show the posterior probability pk for

Table 12. Posterior Bayes factor for H0 against �H0

m
0 0.5 1 1.5 2

0 0.102 0.100 0.102 0.106 0.113

0.1 0.103 0.099 0.098 0.100 0.104
0.2 0.105 0.099 0.097 0.096 0.098
0.3 0.109 0.101 0.097 0.095 0.095

/ 0.4 0.114 0.104 0.098 0.094 0.093

0.5 0.120 0.108 0.100 0.095 0.093
1 0.163 0.139 0.122 0.111 0.102
1.5 0.229 0.189 0.161 0.140 0.125

2 0.322 0.259 0.215 0.183 0.159

Fig. 1. Likelihood (solid line) and normal approximation (dotted
line) for four events

Table 13. Posterior probability that the LR < 1

m
0 0.5 1 1.5 2

0 0.978 0.981 0.977 0.967 0.952

0.1 0.976 0.985 0.986 0.982 0.974

0.2 0.971 0.984 0.989 0.989 0.986
0.3 0.964 0.981 0.990 0.992 0.992

/ 0.4 0.955 0.977 0.988 0.993 0.995
0.5 0.945 0.971 0.985 0.992 0.995

1 0.878 0.927 0.958 0.977 0.987
1.5 0.790 0.860 0.911 0.945 0.967
2 0.688 0.776 0.845 0.897 0.933

Table 14. Posterior probability that the LR < 0.1

m
0 0.5 1 1.5 2

0 0.581 0.595 0.580 0.543 0.488

0.1 0.572 0.609 0.616 0.598 0.559
0.2 0.550 0.605 0.633 0.635 0.614
0.3 0.518 0.587 0.633 0.655 0.652

/ 0.4 0.480 0.559 0.620 0.658 0.674

0.5 0.438 0.524 0.596 0.649 0.681
1 0.243 0.323 0.407 0.491 0.568
1.5 0.117 0.169 0.231 0.301 0.377

2 0.052 0.080 0.117 0.164 0.219
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k � 1 and k � 0:1 for the same range of values of / and m.
The values / � m � 0 correspond to the di�use prior dk=k
and the values / � 0, m � 1 to the prior dk.
There is strong evidence (a high posterior probability)

that the LR is < 1 except for the strongly informative
priors with / large and m small. But the evidence that the
LR < 0:1 is weak, with a posterior probability of at most
0.68 over the table values. Interestingly, the two di�use
priors give the same posterior probability: 0.98 for k � 1
and 0.58 for k � 0:1.
Over a large range of hyperparameter values, the pos-

terior probability that the LR < k is around 0.595, which is
the posterior probability that for a normal likelihood the
LR < k when the PBF � k. Here the PBF �: 0:1 for a large
range of hyperparameter values. If we take k � 0:1 as a
convincing LR, then the strength of the evidence in support
of this or a smaller value is rather weak. This is not sur-
prising as the maximized likelihood ratio is 0.0713.

8. Discussion

Dempster's approach to posterior inference about a point
null hypothesis can be straightforwardly extended to
composite (point) null hypotheses. Regarding the likeli-
hood ratio as the inferential construct of interest leads to
a simple interpretation in large samples of 1 minus the
P -value as the posterior probability that the likelihood
ratio is less than 1. Since a likelihood ratio of less than 1
does not constitute convincing evidence against a simple
null hypothesis in favour of a simple alternative, it is clear
that P -values need recalibration as measures of strength of
evidence. In large samples the calibration is quite
straightforward, leading to the inferential pairs (or func-
tion) �k;pk� as the summary of the evidence, as proposed
by Dempster for simple null hypotheses. This recalibration
is relatively less severe in high-dimensional than in low-
dimensional models.
Posterior Bayes factors can be recalibrated similarly, as

can any other penalized LR statistic, such as the AIC. Re-
calibration of the posterior Bayes factor is relatively more
severe in high-dimensional than in low-dimensional models.
Recalibration of the AIC makes it more generous in high-
dimensional models. On recalibration, all the penalized LR
criteria lead to the same conclusions about the LR as the P -
value, that is, they are (asymptotically) equivalent in the
information they provide about the LR.
Bayes factors (or the Bayesian information criterion,

BIC) and fractional Bayes factors cannot be calibrated in
this way as they depend on speci®c features of the prior
and the model information matrix, or the scaling of the
variables.

The sensitivity of Bayes factors to hyperparameter
variations means that a routine sensitivity analysis is al-
ways required as part of their use, and a corresponding
serious e�ort to `get the prior right', apparently by eliciting
judges' opinions in the court case example. The use of
posterior tail probabilities of the likelihood ratio is, by
contrast, quite robust to hyperparameter variations, even
in this very small sample, over the range 0 � / � 0:5,
0 � m � 2. Only for strongly informative priors do they
vary substantially. Thus `non-informative' reference prior
analyses using the posterior distribution of the likelihood
ratio do not su�er from the well-known di�culties of Bayes
factors, while still providing a fully Bayesian analysis.
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