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SUMMARY 

Robust Bayesian analysis is the study of the sensitivity of Bayesian answers 
to uncertain inputs. This paper seeks to provide an overview of the subject, 
one that is accessible to statisticians outside the field. Recent developments 
in the area are also reviewed, though with very uneven emphasis. The topics 
to be covered are as follows: 

1. Introduction 
1.1 Motivation 
1.2 Preview 
1.3 Notation 

2. Development of Inherently Robust Procedures 
2.1 Introduction 
2.2 Use of Flat-tailed Distributions 
2.3 Use of Noninformative and Partially Informative Priors 
2.4 Nonparametric Bayes Procedures 

3. Diagnostics, Influence, and Sensitivity 
3.1 Diagnostics 
3.2 Influence and Sensitivity 

4. Global Robustness 
4.1 Introduction 
4.2 Parametric Classes 
4.3 Nonparametric Classes of Priors 

4.3.1 Factors Involved in Choosing a Class 
4.3.2 Common Classes 
4.3.3 Application to Hypothesis Testing and Ockham's Razor 
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4.4 Nonparametric Classes of Likelihoods 
4.5 Limitations of Global Robustness 
4.6 Optimal Robust Procedures 

5. Computing 
5.1 Computational Issues 
5.2 Interactive Elicitation 

6. Future Directions 

1. INTRODUCTION 

1.1. Motivation 

Robust Bayesian analysis is the study of the sensitivity of Bayesian an- 
swers to uncertain inputs. These uncertain inputs are typically the mode l ,  
prior distribution, or utility function, or some combination thereof. In- 
formal or adhoc sensitivity studies have long been a part of applied 
Bayesian analysis (cf. Box, 1980), but recent years have seen an explo- 
sion of interest and literature on the subject. There are several reasons 
for this interest: 

Foundational Motivation: There is a common perception that founda- 
tional arguments lead to subjective Bayesian analysis as the only coher- 
ent method of behavior. Non-Bayesians often recognize this, but feel 
that the subjective Bayesian approach is too difficult to implement, and 
hence they ignore the foundational arguments. Both sides are partly 
right. Subjective Bayesian analysis is, indeed, the only coherent mode 
of behavior, but only if it is assumed that one can make arbitrarily fine 
discriminations in judgment about unknowns and utilities. In reality, it 
is very difficult to discriminate between, say, 0.10 and 0.15 as the subjec- 
tive probability, P(F_,), to assign to an event E,  much less to discriminate 
between 0.10 and 0.100001. Yet standard Bayesian axiomatics assumes 
that the latter can (and will) be done. Non-Bayesians intuitively reject 
the possibility of this, and hence reject subjective Bayesian theory. 

It is less well known that realistic foundational systems exist, based 
on axiomatics of behavior which acknowledge that arbitrarily fine dis- 
crimination is impossible. For instance, such systems allow the pos- 
sibility that P( E)  can only be assigned the range of values from 0.08 
to 0.13; reasons for such limitations range from possible psychological 
limitations to constraints on time for elicitation. The conclusion of these 
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foundational systems is that a type of robust Bayesian analysis is the 
coherent mode of behavior Roughly, coherent behavior corresponds 
to having classes of models, priors, and utilities, which yield a range 
of possible Bayesian answers (con'esponding to the answers obtained 
through combination of all model-prior-utility triples from the classes). 
If this range of answers is too large, the question of interest may not, of 
course, be settled, but that is only realistic: if the inputs are too uncer- 
tain, one cannot expect certain outputs. Indeed, if one were to perform 
ordinary subjective Bayesian analysis without checking for robustness, 
one could be seriously misled as to the accuracy of the conclusion. 

Extensive developments of such foundational systems can be found 
in Walley (1991), Rfos Insfa (1990, 1992) and Rfos Insfia and Martfn 
(1994); see also Gir6n and Rfos (1980) and Kouznetsov (1991). I. 
J. Good (cf., Good, 1983a) was the first to extensively discuss these 
issues. Other earlier refmences can be found in Berger (1984, 1985) 
and in Walley (1991); this latter work is particularly to be recommended 
for its deep and scholarly study of the foundations of imprecision and 
robustness. Recent developments in some of the interesting theoretical 
aspects of the foundations can be found in Wasserman and Kadane (1990, 
1992b) and Wasserman and Seidenfeld (1994). 

Practical Bayesian Motivation: Above, we alluded to the difficulty of 
subjective elicitation. It is so difficult that, in practice, it is rarely done. 
Instead, noninformative priors or other approximations (e.g., BIC in 
model selection) are typically used. The chief difficulties in elicitation 
are (i) knowing the degree of accuracy in elicitation that is necessary; 
(ii) knowing what to elicit. Robust Bayesian analysis can provide the 
tools to answer both questions. 

As an example of (i), one might be able to quickly determine that 
0.05 < P(E) < 0.15, but then wonder if more accurate specification is 
needed. Robust Bayesian methods can operate with such partial speci- 
fications, allowing computation of the corresponding range of Bayesian 
answers. If this range of answers is small enough to provide an answer 
to the question of interest, then further elicitation is unnecessary. If, 
howevm; the range is too large to provide a clear answer, then one must 
attempt finer elicitation (or obtain more data or otherwise strengthen the 
information base). 
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Knowing what to elicit is even more crucial, especially in higher di- 
mensional problems where it is completely infeasible to elicit everything 
that is possibly relevant. Suppose, for instance, that one believes in a 
10-dimensional normal model, but that the mean vector and covariance 
matrix are unknown. Then there are 65 unknown parameters, and ac- 
curate elicitation of a 65-dimensional distribution is impossible (unless 
one is willing to introduce structure that effectively greatly reduces the 
number of parameters). But many of these parameters may be accurately 
determined by the data, or the question of interest may not depend on 
accurately knowing many of the parameters. In fact, there may only 
be a few crucial quantities that need to be elicited. Robust Bayesian 
techniques can help to identify these quantities. 

Acceptance of Bayesian Analysis: Rightly or wrongly, the majority Of 
the statistical world resists use of Bayesian methods. The most often 
vocalized reason is fear of using a subjective prior, because of a number 
of perceived dangers. While we do not view this fear as being particularly 
reasonable (assumptions made in other parts of the analysis are usually 
much morn inlluential and questionable), we recognize its existence. 
Robust Bayesian methods, which can operate with a wide class of prior 
distributions (reflecting either the elicitor's uncertainty in the chosen 
prior or a range of prior opinions of different individuals), seems to be 
an effective way to eliminate this fear 

Non-Bayesian Motivation: Many classical procedures work well in prac- 
tice, but some standard procedures are simply illogical. Robust Bayes- 
ian analysis can be used to determine which procedures are clearly bad. 
Consider, for instance, the following example: 

Examt)le 1.. A series of clinical trials is performed, with trial i testing 
drug Di versus a placebo. Each clinical trial is to be analyzed separately, 
but all can be modelled as standard normal tests of H0: Oi = 0 versus 
Hi: Oi 7 ~ O, where Oi is the mean effect of Di minus the mean effect 
of the placebo. Suppose we know, from past experience, that about 1/2 
of the drugs that am tested will end up being ineffective; i.e., will have 
Oi = 0. (This assumption is not essential; it merely provides a mental 
reference for the ensuing understanding.) 

We will focus on the meaning of P-values that arise in this sequence 
of tesLs. Table 1 presents the first twelve such P-values. Consider, first, 
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those tests for which the P-value is approximately 0.05; D2 and Ds are 
examples. A crucial question is: among the drugs for which the P-value 
of the test is approximately 0.05, what fraction are actually ineffective 
(i.e., correspond to true H0)? Likewise, consider those Di for which 
the P-value is approximately 0.01 (D,5 and Dm are examples) and ask: 
what fi'action are actually ineffective? 

DRUG D1 D~ Da D4 D5 D6 
P-Value 0.41 0.04 0.32 0.94 0.01 0.28 

DRUG Dr D8 D9 Dlo Dn D12 
P-Value O. 11 0.1t5 0.65 0.009 0.09 0.66 

. . .d 

Table 1. P-values tesulting from the first twelve clinical trials, testing 
Ho: Di has no effect vs. HI: Di has an effect. 

The answers to these questions are, of course, indeterminate. They 
depend on the actual sequence of {Oi } that arises. However, using robust 
Bayesian techniques one can find lower bounds on the answers that are 
valid for any sequence {Oi}. These can be computed as in Berger and 
Sellke (1987, Section 4.3), and are 0.24 for the first question and 0.07 
for the second. 

This is quite startling, since mo>sststatistical users would believe that, 
when the P-value is 0.05, H0 is very likely to be wrong and, when the 
P-value is 0.01, H0 is almost certain to be wrong. The actual truth is very 
different. And since 0.24 and 0.07 am lower bounds that am actually 
difficult to attain, the fractions of true H0 encountered in practice would 
typically be much larger (on the order of 50% and 15%, respectively). 
Thus we have a situation where the standard classical method, or at least 
its standard interpretation, is highly misleading. 

There is also a more subtle potential use of robust Bayesian analysis 
within l~equentist statistics, arising from the fact that "optimal" fre- 
quentist procedures are virtually 'always Bayes (or generalized Bayes) 
procedures. Note that this, by itself, is not a compelling reason for a 
frequentist to adopt the Bayesian viewpoint, because the prior distribu- 
tion that is used to develop the frequentist procedure can be considered 
merely to be a mathematical artithct, with no inherent meaning. (Using 



10 James O. Berger 

a prior to develop the procedure but ignoring its Bayesian implications 
may appear to be rather myopic, but it is not illogical to do so from the 
fmquentist perspective.) 

When the statistical problem becomes even moderately difficult, 
however, in the sense that the fmquentist accuracy or performance mea- 
sure is not constant over the unknown parameters, it can become very 
difficult for the frequentist to recommend a particular procedure. A very 
appealing possibility is to then use the Bayesian perspective to choose 
the prior, and to consider the resulting Bayes procedure from the fie- 
quentist perspective. If the Bayesian procedure is a robust Bayesian 
procedure, them are numerous indications that it will have excellent fre- 
quentist properties. See Berger (1984, 1985), DasGupta and Studden 
(1988a, 1989), Berger and Robert (1990), Robert (1992), Mukhopad- 
hyay and DasGupta (1993) and DasGupta and Mukhopadhyay (1994), 
for such arguments in general; here we content ourselves with an inter- 
esting example, fi'om Berger, Brown, and Wolpert (1994). 

Erample 2.. Suppose X1, X2 , . . .  am i.i.d. N'(0, 1) and that it is desired 
to test H0:0 -~ - 1  versus//1:0 = 1. If the hypotheses have equal prior 
probability, the Bayesian inference, after stopping experimentation at 
sample size N,  will be to (i) compute the posterior probability of H0, 

N 
which can be seen to be (defining ,"TYjv = ~ xi/N) 

i=1 

P(Ho[:q,...,XN) = 1/[1 + exp{2N~N}] 

= 1 -- P ( H I [ x l , . . . , X N ) ;  

(ii) choose the hypothesis with larger posterior probability (assuming the 
utility structure is symmetric); and (iii) report the posterior probability 
of the rejected hypothesis as the error probability. 

Them would seem to be no problem here for a frequentist: simply 
choose the most powerful Neyman-Pearson test with, say, equal error 
probabilities. But the situation is not so clear. First, this could have 
been a sequential experiment (e.g., the SPRT) with N being the stopping 
time, and stopping rules can have a dramatic effect on classical testing. 
Second, even if N is fixed, the most powerful test has strange properties. 
For instance, if N = 4, the frequentist en'or probabilities corresponding 
to the test "reject if 74 > 0 and accept otherwise" would be 0.025, and 
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this would be the reported error for either -24 = 0 or :24 = 1.5; this is 
very strange because -24 = 0 would seem to indicate no evidence for 
Ho versus/ /1  (since 0 is equidistant between 0 = - 1  and 0 = +1), 
while -24 = 1.5 would indicate overwhelming evidence for H1 (it being 
5 standard errors from H0). 

When standard frequentist procedures behave unnaturally, frequen- 
tists turn to conditional frequentist procedures (cf., Kiefer, 1977). But 
in this problem there are a plethora of possible conditional fmquentist 
tests, and it is unclear how one should be chosen. Also, the interpreta- 
tion of conditional tests and conditional en'or probabilities can be very 
difficult for practitioners. 

Now look back at the simple Bayes test described at the beginning 
of the example. It is easy to use; it does not depend on the stopping rule 
in a sequential setting; it avoids the intuitive objections to the Neyman- 
Pearson test (when ~ = 0, one reports P(Holz l , . . . ,  z4) = 0.5 and, 
when g = 1.5, one reports P ( H 0 l z l , . . . ,  z4) = 6 x 10-6); and it has 
a simple interpretation. This test would be delightful for a frequentist, 
if only it could be given a frequentist interpretation. But it can! Indeed, 
in Berger, Brown, and Wolpert (1994), it is shown that this is a valid 
conditional frequentist test, with conditional error probabilities being 
given by the posterior probabilities. 

Because this situation involved only the testing of simple hypotheses, 
the choice of the prior was not particularly relevant, and hence Bayesian 
robustness was not a factor. In testing of composite hypotheses, however, 
it appears to be necessary to utilize robust Bayesian procedures if one 
seeks to have sensible tests with a conditional lYequentist interpretation. 
This work is currently under development. 

1.2. Preview 

First, this is not exactly a review paper. More formal and thorough 
reviews can be found in Berger (1984, 1990, and, to a lesser extent, 
1985) and in Wasserman (1992b). We will make a somewhat uneven 
effort to indicate the literature that has arisen since these review papers, 
but there will be only moderate discussion of this literature. 

The primary goals of the paper am, instead, to provide a faMy ac- 
cessible discussion of Bayesian robustness for statisticians not in the 
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field, and to summarize our views on some of the important issues and 
considerations in Bayesian robustness. 

Section 2 considers the idea of choosing models and priors that are 
inherently robust. The idea is that it is perhaps easier to build robustness 
into the analysis at the beginning, than to attempt to verify robustness at 
the end. 

Section 3 briefly discusses diagnostics, influence, and sensitivity. 
Our review of this material is admittedly too brief; it is deserving of 
much room coverage. 

Section 4 spends a perhaps inordinate amount of space on the issue of 
global robustness: finding the range of Bayesian answers as the Bayesian 
inputs vary. This area has experienced by far the most active developraent 
in recent years. 

Uses of computing in Bayesian robustness are discussed in Section 
5; perhaps of particular interest is the possibility of using Bayesian 
robustness to enhance interactive elicitation. Section 6 smnmarizes some 
thoughts about the future. 

There is one major aspect of Bayesian robustness that is essentially 
ignored in the paper, namely robustness with respect to the utility or 
loss function. This mirrors a similar avoidance of the issue in the litera- 
ture. There are, perhaps, throe masons for this avoidance. First, formal 
statistical decision analysis is not often done in practice (at least by 
statisticians), because of the extreme difficulty in eliciting utilities. (But 
perhaps Bayesian robustness is, for this mason, even more compelling 
in decision problems.) Second, modelling uncertainty in utility t\mc- 
tions is often more awkward, and more case-specific, than modelling 
uncertainty in distributions. Finally, robust Bayesian analysis involv- 
ing utility functions can be technically morn difficult than other types 
of Bayesian robustness. A few references to robustness involving the 
utility are Kadane and Chuang (1978), Moskowitz (1992), Rfos Insfia 
(1990, 1992), Rfos Insfia and French (1991), Drummey (1991), Basu 
and DasGupta (1992), and Rfos Insfia and Martfn (1994). 

We will also ignore several other important robustness issues for 
reasons of space. One such is the issue of model selection and Bayesian 
prediction in the face of model uncertainty. For discussion and references 
see Draper (1992), Kass and Raftery (1992), Berger and Peficchi (1993), 
and Pericchi and Pdrez (1994). 
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We also will not discuss the huge literature on gamma minimax es- 
timation, which is the frequentist version of robust Bayesian analysis. 
Extensive discussion of this approach, and its relationship to the posterior 
robust Bayesian approach discussed hem, can be found in Berger (1984, 
1985), which also contain numerous references. Recent references in- 
clude Ickstadt (1992), Vidakovic (1992), and Eichenauer-Hernnann and 
Ickstadt (1993). 

Finally, them have been numerous Bayesian robustness investiga- 
tions in particular problems or situations. A partial list of recent works 
is Kass and Greenhouse (1989), Lavine and Wasserlnan (1992), Berger 
and Chen (1993), Goldstein and Wooff (1994), and O'Hagan (1994). 

1.3. Notation 
The entire data set will be denoted by X, which will be assumed to 
arise fi'om a density f(:rl0f) (w.rt. a fixed dominating measure), with 
Of denoting unknown parameters of f .  A prior density for Of will be 
denoted by ~-(0f); we will assume that this is a density w.r.t. Lebesgue 
measure, for notational convenience. 

Key Bayesian quantities am 

re(miTt, f )  = ./" f (:c lO f )Tr( O f )dO f , 

which is the marginal or predictive density of X,  and 

lr(Oftz, f )  = f(:rlOf):r(Of )/r~,(zlTr, f )  
which, assuming the denominator is nonzero, is the posterior density 
of 0 I. We explicitly retain f in the notation to allow for discussion of 
robustness w.r.t.f. For analyses in which f is fixed, we will simply drop 
f ti'om the notation. Finally, we define f:(~-, f )  (suppressing x) to be 
the posterior (or other) quantity of interest. Typically, 

f:(~, f )  = f h(0:)~(0:l:~:)(t0: = 
o~ h(Of ) f(zlOf )Tr(Of )dOf 
f f(z[Of)rc(Of)dOf 

For instance, h(Of) = Of yields the posterior mean and h(Of) = 1c(Of) 
(the indicator function on the set C') yields the posterior probability of 
C. Other types of f)(lr, f )  are, however, possible: for instance, posterior 
quantiles or m(zlTr, f) itself. 
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2. DEVELOPMENT OF INHERENTLY ROBUST PROCEDURES 

2.1. Intro~htction 

Choices of the functional form of the statistical model or prior distribu- 
tion are frequently quite arbitrary. 

Example 3.. Suppose X1,. �9 �9 -,u are felt to be i.i.d, observations froln 
the measurement error model X,~ = # + ei, where the measurement er- 
rors, ei, have a symmetric, unimodal distribution with unknown variance 
~r 2. Very little is known about cy 2, but the unknown # is felt, apriori, to 
be 0 :tz 2x/~.19; we will interpret this to mean that () and v~2.19 are the 
prior mean and prior standard en'or, respectively. 

The "standard" analysis here would be to choose f(xil#, cy) to be 
N'(#,  ~2), and to choose 7r(#, or) = ~.~cl (l~), where ~cl (#) isA;(0, 2.19). 
(The unknown ~ is here given the usual noninforrnative prior. Sometimes 
7rl (#l~) = N'(0, (2.19)c72) is used in place of 71-1(#).) 

While various arguments can be given for such standard choices, the 
fact remains that they are often quite arbitrary. Furthermore, standard 
choices such as these often result in models from the exponential family 
and conjugate priors, both of which are known to be nonrobust in various 
ways: models in the exponential family are very sensitive to outliers 
in the data, and conjugate priors can have a pronounced effect on the 
answers even if the data is in conflict with the specified prior information. 
(This last is not always bad, but most users prefer to "trust the data" in 
such situations.) Further discussion and other references can be found 
in Berger (1984, 1985). 

2.2. USE OF FLAT-TAILED DISTRIBUTIONS 

Considerable evidence has accumulated that use of distributions with flat 
tails tends to be much more robust than use of standard choices, such as 
those discussed in Section 2.1. See Dawid (1973), Box and Tiao (1973), 
Berger (1984, 1985), O'Hagan (1988, 1990), Angers and Berger (1991), 
Fan and Berger (1992), Geweke (1992), and Lucas (1992). 

Example 3 (continued).. Suppose, instead, that f(xil#, cs) is chosen to 
be a t-distribution with, say, 4 degrees of freedom. One might actually 
want to introduce the degrees of fi'eedom, (~, as an unknown parameter 
(see Chib, Osiewalski, and Steel, 1991, for a recent study), but that is 
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morn a model elaboration than a model robustification. Also, 71" 1(#)  
could be chosen to be Cauchy(0, 1) (which matches the quartiles of a 
N'(0, 2.19)). 

This analysis would be robust in two respects. First, if there are 
outliers in the data, they will automatically be filtered out of the analysis. 
Second, if the prior information about > turns out to be very inaccurate 
(due, say, to the all-too-common problem that elicitors typically choose 
prior variances that are much smaller than their real uncertainties), then 
it is automatically discounted in the analysis. Neither of these robust 
behaviors occurs with the standard analysis. 

The price to be paid for utilization of inherently robust procedures 
is computational; closed form calculation is no longer possible. To- 
day, howevel, computational schemes exist for performing robust Bayes 
computations routinely. For instance, any situation involving normal 
models and normal priors that is to be analyzed with Gibbs sampling 
can, instead, be done with t-distributions (cf, Verdinelli and Wasserman, 
1991; Geweke, 1992; and Datta and Lahi~i, 1992). 

Example 3 (continued).. Saying that Xi  "~ 7-4(#, cr 2) is equivalent to 
saying that, given ri, X i  ~" H ( p ,  ~r2/ri), where ri ,-~ Gamma (2, �89 
Likewise, saying that > 0-~ C(0, 1) is equivalent to saying that, given 
r0, > '-~ N'(0, l / r0) ,  where 7o "-' Gamma (1 1 2, 7)" By introducing the 
ri as random unknowns, it is possible to write the conditional poste- 
rior distributions of each unknown, given the others, as simple normal, 
gamma, or inverse gamma distributions, allowing for straightforward 
Gibbs sampling. 

While the above example indicates that, in pl'inciple, robustification 
is always possible for normal models, the computational cost may still 
be severe. For instance, the original two unknowns, (#, co), above are 
replaced by the unknowns (#, ~r, "7-0, T 1 , . . .  , Ta). When n is large, the 
Gibbs sampling simulation can be very expensive. 

Introducing such robustifications in hierarchical Bayes scenarios is 
often much morn cost efl)ctive. For instance, replacing the standard 
hieramhical Bayes model, Xi "~ H(Oi, (7 2) and Oi ~,, Af(p,  A),  for 
i = 1 , . . . , p ,  by the model Xi  ~ T4(Oi, G 2) and Oi "~ C(# ,A) ,  and 
introducing Ti to convert the latter model to a normal and inverse gamma 
model, would only increase the number of parameters from p + 3 to 
3t) + 3. A factor of 3 in Gibbs sampling is not severe. 
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Note that analytic methods for doing computations in certain of these 
hierarchical models exist. See Spiegelhalter (1985), Fan and Berger 
(1990, 1992), Angers and Berger (1991), Angers (1992), and Angers, 
MacGibbon, and Wang (1992). 

A somewhat more modest type of robust prior has long existed 
in multivariate problems. Suppose X --- (X1,  . . . , Xp)  t "~ A/'(O, Z ) ,  
where 0 = (0~,.. .  ,01,) t is unknown and Z is given. The conju- 
gate prior for 0 is a Af(/z, A) prior, for which the posterior mean is 
6~(x) = x - Z (E + A)-a (x  - / z ) .  A variety of arguments suggest 
that it is more robust to use "shrinkage" versions of 6~r; among the many 
approaches to developing such are minimax theory, ridge regression, 
empirical Bayes analysis, and BLUP theory. But the best robust alter- 
natives to 63 are, arguably, the robust Bayes alternatives, in which the 
.N'(/z, :~) prior is replaced by a ~( /~ ,  Z) prior (for, say, ~ = 4) or 
something similar. Extensive discussion of one such alternative, that is 
particularly easy to work with, can be found in Berger (1985, Section 
4.7.10), which also has many references. See, also, Zellner (1976) and 
Berger and Robert (199(i)). 

The reasons this latter type of robustness is more limited than the 
earlier type are: (i) model robustness is not involved; (ii) one achieves 
robustness to prior misspecification only in the overall sense that if the 
prior and data clash, the entire prior is discounted. The earlier discussed 
use of independent t-distributions would allow discounting of only part 
of the prior. 

2.3. Use o f  Noninformative and Partially Informative Priors 

That noninformative priors often yield automatically robust answers was 
recognized as early as Laplace (1812). Indeed, his development of the 
Central Limit Theorem was essentially a demonstration that, for large 
sample sizes, the posterior distribution of an unknown model parameter 
0 is essentially the same asymptotic normal distribution for any nonzero 
prior density. (See Ghosh, Ghosal, and Samanta, 1994, for recent devel- 
opments and references.) For this and various intuitive reasons, Laplace 
felt that simply using 7r(0) = 1, as the prior, would give quite robust 
answers. 

Another sense in which use of 7r(O) = 1 is robust was formalized by 
L. J. Savage as the theory of  precise measurement. See Edwards, Lind- 
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man, and Savage (1963), Momno and Pericchi (1993b), Mukhopadhyay 
and DasGupta (1993), and Pericchi and Pdrez (1994). 

Modern noninformative prior theory takes this one step further. Non- 
informative priors are specifically constructed so as to have minimal in- 
fluence, in some sense, on the answer The sense in which this engenders 
robustness is rather weak: it seems to ensure that the Bayesian analysis, 
for small or moderate samples, is not affected by unintended properties 
of the prior. For instance, in Example 3 we saw that standard conjugate 
choices of the tail of the prior (or likelihood) could have a dramatic un- 
intended effect on the posterior. In multivariate situations, the potential 
for such unintended effects is particularly large, since few features of 
the prior will actually be subjectively elicited and there is a substantial 
possibility that mistakes can "accumulate" across the dimensions. 

The two most extensively developed noninformative prior theories 
of this type are the reference prior theory (cf., Bernardo, 1979; Berger 
and Bernardo, 1992; and Bernardo and Smith, 1994), and the maxi- 
mum entropy approach (cf., Jaynes, 1983, and Fougere, 1990). Other 
approaches are discussed in the excellent review paper Kass and Wasser- 
man (1993). 

Partially informative priors are also of considerable interest from 
the robustness perspective. These priors are of two types. The first type 
is for use in problems where there are, say, "parameters of interest'' and 
"nuisance parameters." The parameters of interest are basically given 
subjectively elicited prior distributions, perhaps with associated robust- 
ness investigations being performed, while the nuisance parameters am 
given noninformative priors. The idea here is that elicitation of priors 
for nuisance parameters is likely to be difficult and a less valuable use of 
available elicitation time, and that attempting formal robustness studies 
with respect to the nuisance parameters is likely to be ineffective. For 
examples and further discussion of this general notion, see Liseo (1993) 
and Berger and Mortera (1994). 

The second type of commonly used partially informative prior is a 
constrained maximum entropy prior. The idea here is that one speci- 
fies certain features of the prior (or model) and then chooses that prior 
(or model) which maximizes entropy subject to the specified constraints. 
The hope is that the resulting prior (or model) will have the specified fea- 
tures, but be robust (in the noninfonnative prior sense) with respect to un- 
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specified features. For further discussion see Jaynes (1983) and Fougere 
(1990). Somewhat different approaches are considered in Casella and 
Wells (1991) and Bernardo and Smith (1994). 

2.4. Nonparametric and Infinite Parametric Bayes Procedures 
Bayesian nonparametrics can be considered to be an approach to auto- 
matic robustness with respect to model choice. A large nonparametfic 
class of models is entertained and given a prior distribution so that, hope- 
fully, the data will cause the analysis to automatically adapt to the true 
model. 

The majority of the work on Bayesian nonparametrics has involved 
use of the Dirichlet process prior on the space of all probability distribu- 
tions. Recent references include Brunner and Lo (1989), Lo and Weng 
(1989), Gasparini (1990), Ferguson, Phadia, and Tiwari (1992), Tamura 
(1992), and Doss (1994). 

Difichlet process priors have a number of potentially unappealing 
features, such as the fact that they give probability one to the set of 
discrete probability measures. Hence there has been considerable effort 
expended to develop priors that are supported on continuous densities, 
such as Gaussian process priors. An example of such a prior, for the 
space of continuous densities, f ( t ) ,  on [0, T], is to let 

f(t) =exp{X( t )} /  exp{X(t)}dt, 

where X (t) is the sample path of a Gaussian process. This and other 
such priors are studied in Leonard (1978), Lenk (1988), Angers and 
Delampady (1992), and Zidek and Weerahandi (1992). Computations 
with such priors am more difficult than with Dirichlet process priors, 
but the recent new Bayesian computational tools should enhance the 
utilization of these alternative nonparametric priors. 

In regards to Gaussian process priors, the Bayesian interpretation 
of smoothing splines should also be mentioned. Smoothing splines 
can be developed as Bayesian function estimates for certain Gaussian 
process priors on derivates of functions. This interpretation has been 
important in deriving accuracy estimates for smoothing splines (utilizing 
the associated posterior covariance function). See Kohn and Ansley 
(1988), Wahba (1990) and Gu and Wahba (1993). There is considerable 
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promise in further exploiting this relationship for higher dimensional 
smoothing splines, especially if structural assumptions on the function 
are made, such us 

p 

f ( x t , . . . , X p )  = Z f i ( x i ) .  
i = 1  

Finally, other very promising nonparametric Bayes approaches are being 
developed, such as Lavine (1992b) and West (1992). 

While Bayesian nonparametrics strives to produce inherently robust 
procedures, them have been a number of recent developments which 
suggest that caution must be exercised. For instance, a "minimal" ro- 
bustness condition, that one would hope would be satisfied by any Bayes 
procedure, is consistency: as the sample size grows to infinity, the Bayes 
estimates of quantities of interest should converge to the true values. It 
has been discovered, however, that this need not be the case in Bayes- 
ian nonparametrics; see Diaconis and Freedman (1986), Ghosh (1993), 
and Befliner and MacEachern (1993). The following infinite parametric 
example is a very simple illustration of the phenomenon. 

Example 4.. J. K. Ghosh (personal communication, 1992) has studied an 
interesting variant of the Neyman-Scott problem. Suppose we observe 
(all independently) Xij ~ A/'(#i, a2), i = 1 , . . .  ,p and j = li 2. It is 
desired to estimate cr 2. A simple consistent estimator, as p ---+ co, is 

P 
=  (Xil - -  Xi2)2/(2V). 

i = 1  
Now suppose a Bayesian were to proceed by choosing independent 

proper priors for all parameters {a 2, #1, P 2 , .  �9 � 9  ltp}�9 T h e n ,  t'or "almost 
all sequences {#1, #2, . . .} ,  the Bayes estimator of a seems to be m- 
consistent. ("Almost all" hem is in a topological sense, not probabilistic; 
the Bayes estimator is consistent for almost all sequences {#1, #2 , . . . }  
in probability under the prior, but the set of such sequences becomes 
vanishingly small. Conditions on the priors and sequences am needed 
for the proof of inconsistency, but the result is probably true generally.) 

Determining the extent to which such possible inconsistencies are a 
practical concern for Bayesians will be an important task for the future. 
At the very least, these concerns should significantly influence the types 
of priors chosen for these problems (cf., Ghosh, 1994, in regards to the 
above example). 
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3. DIAGNOSTICS, INFLUENCE, AND SENSITIVITY 

3.1. Diagnostics 
An important aspect of robustness is developing methods of detecting 
when a robustness problem exists and suggesting where the difficulty 
might lie. Examples include the detection of outliers and the detection 
of a lack of model fit. 

Virtually all Bayesian diagnostic techniques are based on some type 
of utilization of m(x[Tr, f). Interestingly, some suggested utilizations 
are non-Bayesian in character For instance, Box (1980) suggests deter- 
mining the adequacy of an assumed model, f0, by choosing a noninfor- 
mative prior, ~0, and then conducting a classical significance test with 
the null distribution being m(xlTr0, f0). The formal Bayesian approach 
would be to, instead, embed f0 in a larger class of models .T, choose 
a prior distribution on .T, and infer the adequacy of f0 relative to other 
distributions in .T (through, say, Bayes factors or predictive measures). 
While we prefer the formal Bayesian approach if feasible, the purpose 
of diagnostics is often to provide an initial indication that something 
is wrong, and so suggest that the morn formal Bayesian approach be 
undertaken. Evidence obtained from such initial pseudo-Bayesian diag- 
nostics should not be trusted too far, however, and should be confirmed 
by the formal Bayesian approach before being considered conclusive. 
For further discussion of this issue, with examples, see Berger (1985, 
section 4.7.2.). 

We do not have space to review the huge literature on Bayesian 
diagnostics. A few recent references am Smith (1983), Pettit (1988, 
1992), Guttman and Pefia (1988), Poirier (1988), Kass, Tierney and 
Kadane (1989), West and Harrison (1989), Carlin and Poison (1991), 
Verdinelli and Wasserrnan (1991), Geisser (1992), Kass and Slate (1992), 
Pefia and Tiao (1992), Weiss (1992, 1993), Pefia and Guttman (1993), 
and Meng (1994). Note that global robust Bayesian methods (see Section 
4) have begun to themselves be applied to diagnostics; see Bayarfi and 
Berger (1993b, 1994) for an application to outlier detection. 

3.2. h~fluence and Sensitivi~ 
Whereas diagnostics is ol%nted towards detecting that a problem exists 
with an analysis, influence and sensitivity seeks to determine which fea- 
tures of the model, prior, or utility, or which data, have a large effect on 
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the answer Them am many parametric analyses of this type, including 
Guttman and Pefia (1988, 1993), Kass, Tierney, and Kadane (1989), Mc- 
Culloch (1989), Meczarski and Zielifiski (1991), Geisser (1992), Lavine 
(1992d), and Basu and Jammalamadaka (1993). 

A recent interesting approach to investigating sensitivity to the prior, 
in a nonparametric t:ashion, is to consider functional derivatives of the 
Bayes operator ~b(re, f )  with respect to re. (One could, similarly, take 
derivatives w.rt. f ,  but this is usually more involved.) These derivatives, 
evaluated at a base prior re0 and in "direction" 9, indicate how sensitive 
~,b(re, f )  is to local changes in re0. Besides indicating local sensitivity, 
these derivatives can be used to construct quite accurate global robust- 
ness bounds. The rapidly growing literature on functional derivatives 
in Bayesian robustness includes Diaconis and Freedman (1986), Cuevas 
and Sanz (1988), Srinivasan and Truszczynska (1990, 1993), Ruggefi 
and Wasserman (1991, 1993), Boratyfiska and Zielifiska (1991), Fortini 
and Ruggeri (1992, 1994), Sivaganesan (1993c), Basu, Jammalamadaka 
and Liu (1993a, 1993b), Gustafson and Wasserman (1993), Delampady 
and Dey (1994), and Salinetti (1994). 

4. GLOBAL ROBUSTNESS 

4.1. Intmdttction 

In Bayesian robustness it is fi'equently assumed that f C f and that 
7r(0f) C F I,  where .T and Ff ale classes of densities. (Frequently, 
I 'f will be enlarged to include distributions that do not have densities 
with respect to Lebesgue measure; we will abuse notation when this 
is needed.) If ~(re, f )  is the posterior functional of interest (e.g., the 
posterior mean), global robustness is concerned with computation of 

~b = inf inf 9(re, f ) ,  ~b = sup sup ~b(re, f) .  (4.1) 
- -  fE.T" r rEr f  f~.T" rcEI'y 

One then reports (~, ~b) as the range of possible answers. If this range is 
small enough for the conclusion to be clear, the conclusion is declared 
to be robust. If not, further elicitation, data collection, or analysis is 
necessary. 
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4.2. Parametric Classes 

Historically, global robustness has been investigated using parametric 
classes of likelihoods and priors. 

Example 5.. In the situation of Example 3, instead of considering the 
.A/'(#, 0-2) density for the i.i.d. X 1 , . . . ,  X,~, one could consider the class 

.U = {T(,(#, K a a  2) densities for tile Xi,  c~ > 1}, (4.2) 

where ~ ---- (0.674)/qa, with qa being the third quartile of the 
Ta(0, 1) distribution. K~ is introduced because the Ta(#, I((~a ~) dis- 
tribution will then have the same quartiles as file A/'(#, 0-2) distribution, 
so that # and a 2 will have comparable meanings across all distributions. 
If the restriction a > 2 were employed, one could instead choose/{~, so 
that all distributions have the same mean and variance, but we generally 
prefer scaling by quartiles. 

Suppose # and 0 -2 are thought to be independent apriori, with # 
having unimodal density with quartiles - 1, 0, 1 and nothing being known 
about 0-2. Then the prior, ~r(#, 0-2), might be assigned the class 

r :  {Tr(#, 0- 2) : 71-1(#)7r2(0"2): 71" 1 is T~((), q~-2), u >_ 1, 

and 7r2(0- 2) -- (o-2) c', - 2  < a ___ 0.} 

The Tu(0, q~-2) distributions are a fairly wide class of unimodal distri- 
butions with quartiles - 1 ,  0, 1, and might appropriately represent the 
specified information about #. Since nothing is specified about c~ 2, it 
would be typical to use a range of noninfo~ative priors as the relevant 
class (but see Pericchi and Walley, 1991; and Walley, 1991, for other 
suggestions). Note that, because of the scaling of the f c .T to preserve 
the meaning of # and a 2, it is not necessary to write (#f, a~) and define 
1-'f depending on f .  

For any functional ~b(~-, f )  of interest, one can now compute (~, ~b) 
by minimizing and maximizing ~(Tr, f )  with respect to (c~, u, a). 

There are two main reasons that parametric robustness is attractive. 
The first is that computations are relatively straightforward. For instance, 
in Example 5, the maximizations are only three-dimensional. Of course, 
computation of the ~(Tr, f )  will involve two-dimensional integration 
(over # and 0-2), so the computation is not trivial (see, also, Section 5.1). 
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The second attractive feature of parametric classes is that they can 
allow for convenient communication of robust Bayesian conclusions. 
An example is given in Section 4.10.2 of Berger (1985). 

The main disadvantage of parametric classes is that they may fail 
to capture realistic possible deviations from the base model or prior. 
Thus, in Example 5, we have robustified against normality, in the sense 
of allowing flatter tails for the distributions, but no allowance for, say, 
possible skewness has been made. Ideally, one will construct .f" and/or 
the l"f to reflect all deviations that are deemed to be possible, but it is 
unfortunately all-too-common to fail to anticipate the actual deviations 
that arise. 

Recent references utilizing parametric classes of priors include Lea- 
mer (1982), Polasek (1985), Good and Crook (1987), Polasek and P6tzel- 
berger (1988, 1994), DasGupta and Studden (1988a, 1988b, 1989, 1991), 
Drummey (1991), P6tzelberger and Polasek (1991), Coolen (1993), and 
Dette and Studden (1994). 

4.3. Nonparameu'ic Classes of Priot:9 

The majority of recent papers on Bayesian robustness deal with a fixed 
likelihood and nonparametric classes of priors. This is an important 
problem, for several reasons. First, there are many situations in which 
priors are less well known than the model. Second, the major objection 
of non-Bayesians to Bayesian analysis is uncertainty in the prior, so 
eliminating this concern can make Bayesian methods considerably more 
appealing. Third, serious inadequacies in certain classical methods can 
be revealed by Bayesian prior robustness (see Sections 1.2 and 4.3.3). 
Finally, conclusions must frequently be reached by a group of people 
with differing prior opinions, and robust Bayesian analysis, with 1-' equal 
to the class of prior opinions, can then have a variety of uses. 

That said, the main reason researchers have concentrated on global 
prior robustness is probably its mathematical elegance. There is nothing 
wrong with this, of course, as long as we remember that global prior 
robustness is only one piece of the robustness puzzle. 

In the remainder of this subsection, f will be considered fixed, so we 
write just 0 for the unknown parameters, 1-' for the class of priors being 
considered, and ~b(Tr) (instead of ~#(Tr, f ) )  as the criterion functional. 
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4.3.1. Factors h~volved in Choosing a Class. 

Several discussions and reviews concerning choice of good classes 
of priors already exist, including Berger (1990), Sivaganesan (1990), 
Lavine (1991), Peficchi and Walley (1991), Walley (1991), Moreno and 
Pericchi (1992a), and Wasserman (1992b). The following issues should 
be kept in mind in choosing a class: 

(i) The class should be as easy to elicit and interpret as possible. 
Recall that a prime reason for considering Bayesian robustness 
is the difficulty of eliciting a prior; making the class, 1-', difficult 
to elicit would thus be self-defeating. 

(ii) The class should be as easy to handle computationally as is pos- 
sible. The usual computational technique is to identify "extreme 
points" of 1-' (relative to ~b(Tr)) and perform maximizations over 
these extreme points. Typically, the extreme points will be in a 
low-dimensional subset, I'*, of 1-', so the maximizations are over 
a low-dimensional set. The dimension ofF* will depend on sev- 
eral factors, but primarily on the dimension of 0 and the number 
of elicited features of the prior. Hence, rather paradoxically, the 
morn features one elicits, the harder the robust Bayesian com- 
putation is likely to become. Part of the computability issue is 
also having a class, 1-', which is compatible with model and/or 
utility robustness. 

(iii) The size of r' should be appropriate, in the sense of being a 
reasonable reflection of prior uncertainty. If i" is too small, one 
might tear being erroneously led to a conclusion of robustness. 
If F is too large, in the sense of containing many prior distri- 
butions that am clearly unreasonable, then one might conclude 
that robustness is lacking when, in fact, a reasonable F would 
imply robustness. For detecting this latter problem, it is useful 
to determine the 7r C F at which ~b or ~/~ is attained, and judge 
if such a 7r is reasonable. If not, one should try to refine l" to 
eliminate such 7r. 

(iv) F should be extendable to higher dimensions and adaptable in 
terms of allowing incorporation of constraints (e.g., shape con- 
straints, independence, etc.). The point here is that eventual 
methodological implementations will need to be based on at 
most a few "standard" classes (for elicitational, computational, 
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and interpretational reasons), and so these classes need to be 
flexible enough to handle a vmy wide range of problems. 

The lbllowing simple example illustrates several of the above ideas. 

Example 6.. Suppose prior beliefs about a real parameter 0 am symmetric 
about 0, with the third quartile, qa, being between 1 and 2. Consider 

Pl = {JV'(O, 7-2) priors, 2.19 < 7-2 < 8.76}, 

P2 = {all symmetric priors with 1 < qa < 2}. 

Both classes are easy to elicit (i.e., easy to specify from the given infor- 
mation; the range of 7 -9, in F1 yields qa between 1 and 2). Also, both 
are easy to handle computationally; indeed, maximization o v e r  1-'2 will 
often only involve maximization over the "extreme points" 

lP,~ = {distributions giving probability 1 each to • q:~: 1 < q3 < 2}. 

Although F1 can be appropriate for some situations, it will often be 
considered "too small" because of its specified prior shape and because 
it has only sharp-tailed distributions. In contrast, F2 will typically be a 
"too big" reflection of the prior information, in the sense that it contains 
prior distributions which, upon reflection, are probably unreasonable. 

Very sensible classes can be formed by taking "too large" classes, 
such as F2, and adding shape constraints. For instance, if it is also 
believed that the prior density is unimodal, then one obtains 

P3 = {unimodal, symmetric densities with 1 < qa < 2}. 

Such classes are often very sensible, in that they are large enough to 
include all reasonable priors compatible with prior information, but small 
enough that unreasonable priors are excluded. 

4.3.2. Common Classes. 
We briefly review the common classes of priors that are used. For 

extensive discussion, comparisons, and examples, see the references 
listed under each class. 

Classes of Given Shape or Smoothness: An example of a class based 
on shape is F = {all symmetric, unimodal priors). Such classes have 
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interesting uses in hypothesis testing (see Section 4.3.3). Usually, how- 
ever, shape is used as an additional constraint in one of the other classes 
(cf., Example 6), so as to eliminate unreasonable priors fi'om the class. 
Note that general shape features are often relatively easy to elicit, even 
in higher dimensions. 

Smoothness constraints typically limit the rate of change of the prior 
density. (Note that requiring only continuity adds nothing, because 
arbitrary distributions can typically be approximated, arbitrarily well, 
by continuous densities.) Although one could define a class of priors 
based only on smoothness, it is typically used, instead, as a supplemental 
constraint for other classes (cf., Bose, 1990, 1994). 

Moment Class: This is defined as the set of all priors with a specified 
collection of moments. Analysis using probabilistic moment theory is 
typically straightforward. See Sivaganesan and Berger (1989, 1993), 
Goutis (1991), Betr6, Meczarski and Ruggeri (1994), and Sivaganesan 
(1992). 

Moments are quite difficult to elicit. For this reason, moment con- 
ditions are also typically used merely as additional constraints in other 
classes, in the hope that misspecification of moments will then have a 
reduced effect. 

Contamination Class: This is defined by 

1-' = {Jr = (1 - c);r0 + cq, q E Q}, (4.3) 

where ;to is a base prior (for instance, the prior elicited in a standard 
Bayesian analysis), c is the perceived possible en'or in 7r0, and Q is the 
allowed class of contaminations. In terms of the four criteria of Section 
4.3.1, this class is easy to elicit; computation is relatively easy for many 
reasonable choices of Q; and the class can easily incorporate additional 
constraints and be used in higher dimensions. The class can be "too big" 
if Q is "too big" and e is appreciable. In one dimension this is rarely a 
problem, but it can be a severe problem in higher dimensions. References 
include Berger and Berliner (1986), Sivaganesan (1988, 1989, 1993a), 
Sivaganesan and Berger (1989), Momno and Pericchi (1990, 1991), 
Dey and Birmiwal (1991), Gelfand and Dey (1991), Boratyfiska (1991), 
Lavine (1991b), Moreno and Cano (1991), and Bose (1994). 

Density Ratio (or Density Band) Class: This is defined by 

1-' = {generalized 7r: L(O) _< Jr(0) < U(0)}. (4.4) 
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(A "generalized" prior is one which does not integrate to 1; typically the 
posterior will, nevertheless, be proper.) Often this class is the simplest 
to handle computationally, and is reasonable in higher dimensions. Its 
main disadvantage is that it is very hard to elicit; choosing L and U 
appropriately can be quite difficult. 

A useful modification of this class is the Density Bounded Class, 
which is as in (4.4), but with the additional constraint that 7r must be 
proper. The class then becomes much easier to elicit and interpret, but 
can be more challenging computationally. 

References working with these classes include DeRobertis (1978), 
DeRobertis and Hartigan (1981), Hartigan (1983), Lavine (1991a, 
1991b, 1992c), Ruggefi and Wasserman (i991), Wasserman (1991, 
1992a, 1992b, 1992c), Moreno and Pericchi (1992b), and Sivaganesan 
(1994). 

Quantile Class: This is defined by 

r = {~: a{ < P r ( 0  c e { )  _</3i, i = 1 , . . . ,  7~1,}, 

where the Oi are specified subsets of @. (Usually {@i; i = 1 , . . . ,  m} 
is a partition of @.) This class is probably the most natural of all from 
the viewpoint of elicitation, and is computationally manageable. It tends 
to be "too big" in higher dimensions, however, unless additional shape 
constraints are added. References to this class include Cano, Hernandez, 
and Moreno (1985), Berger and O'Hagan (1988), O'Hagan and Berger 
(1988), Moreno and Cano (1989), Moreno and Pericchi (1990), Ruggefi 
(1990, 1991, 1992), and Sivaganesan (1991). 

Mixture Classes: These am of the form 

r = {~-(0) = f ~(Ol,~)dC(,,), a e ~}. (4.5) 

Most other classes arc actually themselves mixture classes. 
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Erample 7.. Suppose 0 c R p, and the prior distribution is known to 
depend only on 101. The class, Fs,  of all such priors is typically too 
big, in the sense of containing many um'easonable distributions. Often, 
however, unimodality is also believed to hold, leading to r 'us,  the class 
of unimodal spherically symmetric priors. Interestingly, this class can 
be written as 

/0 rUS = {Tr(O) = l(o,o,)([ODV~ldG((~),Ganyc.d.f, on[O, oc)}, 

(4.6) 
where V~ is the volume of the ball in R p of radius (~. This is a much 
smaller class than r s ,  and would be reasonable for most purposes, but 
it may be possible to refine the class even further. In particular, if prior 
beliefs are felt to be "bell-shaped" a class such as 

FNS = {Tr(0) =/~(2:r( t ) -p/2e-1Ol2/(2~)dG(ez) ,  
J 0  

G any c.d.f, on [0, c~)} 

could be employed. This is easily seen to be a subset of Fus  that 
contains only bell-shaped distributions (though admittedly not all bell- 
shaped distributions). Recall that we earlier encountered such priors in 
Section 2.2, as being "inherently robust" for certain G. 

Example 8.. An archeological artifact is 0 years old, 0 unknown. It 
could have been produced by any one of 3 civilizations that occupied the 
given site. For civilization i, a.M(#i, Ai) distribution (to be denoted 7ri) 
is thought to describe the likelihood of artifact production at any given 
time. (All #i and Ai are assumed to be specified.) 

Several experts are asked to classify the object, based on its style. 
They do not agree completely, but conclude that all their opinions are 
contained in 

G = {9 = (gl,g'2,g3): 0.1 < 91 < 0.2, 0.6 < g2 < 0.7}, 

where g,i = Pr (the artifact is from civilization i), and gl + g2 + g3 = 1. 
Then ~r(0), the overall prior distribution for 0, is in 

r = = g , 

i=1 
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which is of the form (4.5) with c~ = i and G being discrete. 
Mixture classes will play a very prominent role in Bayesian robust- 

ness because of several key properties: 

(i) Mixture classes ale often computationally simple. In Example 
7, for instance, maximization over Pus  or FNs will typically 
reduce to maximization over 

o r  

~(Ol(~) = l (o ,~ ) ( IOl )E  -~ 

= -p/2 exp{-IOl2/(2 )}, 

respectively, both of which ale simple one-dimensional maxi- 
mizations (over ~). 

(ii) Mixture classes can flexibly represent prior information about 
structure or shape, as in Example 7, or information arising from 
several sources, as in Example 8. 

(iii) Mixture classes are often not "too big," in the sense of contain- 
ing unreasonable distributions. This is particularly crucial for 
multivariate 0, where the range of Bayesian answers as 7r varies 
over F will typically be huge, unless F is somehow constrained 
so as not to contain unreasonable distributions. Operating with 
mixture classes seems to be the only effective way of avoiding 
the problem (other than using parametric classes, of course). 

As a final comment about mixture classes, note that they can also 
arise as refinements in the elicitation process. In Example 8, for instance, 
suppose X --~ N'(0, o -2) is observed (say, X is a radiocarbon dating of the 
artifact). One might first consider just F = {7rl, zr2, 7ra}, and compute 
the B ayesian answer (e.g., posterior mean of 0) for each prior in P. If the 
range of answers is small enough, there would be no need to look further. 
If, however, there are substantial differences between the answers, then 
one might go to the next "level" of elicitation, obtaining O. In this 
example, uncertainty thus ends up residing in the higher level elicitation 
(see also Good, 1983b; and Pericchi and Nazalet, 1988). Note that there 
could easily be virtually complete robustness with respect to 9 E ~, even 
if there is no robustness with respect to the 7ri in F. For other examples 
of mixture classes, see Bose (1990, 1993), Cano (1993), Moreno and 
Pericchi (1993a), and Liseo, Petrella, and Salinetti (1993). West (1992) 
discusses their uses in modelling. 
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Marginal and hTdependence Classes: When 0 = (01, . . . ,  0p) is multi- 
dimensional, elicitation of 7r(0) is particularly difficult. One could hope 
that elicitation of, say, the marginal densities, rci (Oi), could be effective, 
in the sense that robustness over 

1" = {rr(0) having the specified marginals} (4.r) 

would often obtain. Alas, this is not the case, as was dramatically shown 
by Lavine, Wasserman, and Wolpert (1991); the class in (4.7) is so large 
that the range of resulting Bayesian answers is typically enormous. See, 
also, Moreno and Cano (1992) for related results. 

Of course, if the Oi were, apriori, judged to be independent, then one 
would simply have the single prior 

P 

i=1 

It is sometimes possible to make the judgment of independence, and it 
is then natural to consider its effect on other classes. This is studied for 
contamination classes and density ratio classes in Berger and Moreno 
(1994), where it is shown that the assumption of independence of coor- 
dinates does have a dramatic effect on robustness; the range of Bayesian 
answers can decrease dramatically. Independence is admittedly a strong 
assumption, but one typically must make strong assumptions in multi- 
dimensional problems to obtain a moderate range of Bayesian answers. 

Other Classes: An interesting alternative to the Density Ratio class for 
one-dimensional 0 is the Distribution Band class of all priors whose 
c.d.f, lies between two nondecreasing functions. This is studied in Basu 
(1992a, 1992b) and Basu and DasGupta (1992). 

Neighborhood classes can be defined by choosing a "distance mea- 
sure" d(yrl, 7r2), between priors (it need not be a true distance function), 
and defining 1-" = {Tr: d(yr, 7r0) < e}, where 7r0 is again a "base" prior. 
Related classes can be developed using "concentration functions"; see 
Regazzini (1992) and Fortini and Ruggeri (1990, 1992, 1994). 

Belief Function classes use belief functions (a type of generalization 
of probability) to generate the class of priors. See Wasserman (1990) 
for an example. 
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Classes based on Choquet Capacities are defined and studied in 
Wasserman and Kadane (1990, 1992a) and Wasserman (1992b). Two- 
alternating capacities have particularly attractive theoretical and compu- 
tational properties. 

Pericchi and Walley (1991) and Walley (1991) (see also Sans6 and 
Pericchi, 1992) propose Neat" Ignorance classes of priors to provide 
a robust Bayesian alternative to noninforrnative priors. Their approach 
provides an interesting contrast to typical constructions of 1-', which seek 
to construct I" so as to contain all the "nice" believable priors. Instead, 
Pericchi and Walley argue that one can construct a "nice" class from 
a collection of "not nice" or not compatible priors, and that there can 
be positive advantages in doing so. In part, this notion arises from the 
axiomatic development in Walley (1991), which effectively shows that 
rationality corresponds to operating with some r', but does not require 
or imply that the priors in F correspond to actual subjective beliefs. 
Although counterintuitive to standard Bayesian thinking, this approach 
should not be casually dismissed. Its counterintuitive nature, however, 
poses real difficulties for elicitation of F. 

Conclusions: No single class of priors is likely to dominate robust Bayes- 
ian analysis. Our personal favorites are contamination, quantile, and 
mixture classes, with shape and structural restrictions as appropriate. 
We prefer the contamination and quantile classes because they are easi- 
est to elicit and intelpret. They can be considerably more difficult than, 
say, the density ratio class in terms of computation, but computations 
will eventually just be hidden within software. The important issue will 
be how user-friendly is the software in terms of choice of F, so the most 
easily elicitable classes are to be preferred. 

The argument for mixture classes is somewhat different, although 
they too are often natural from an elicitation viewpoint. The argument is 
simply the necessity, in multi-dimensional problems, of doing something 
fairly drastic to reduce the size of F in order to avoid excessively large 
ranges of Bayesian answers. It is important to be clear here: in very low 
dimensional problems one can often verify Bayesian robustness, even 
when the prior inputs are very weak. In high-dimensional problems this 
is typically impossible, and one must accept the need to make rather 
strong and "dangerous" assumptions if an answer is to be obtained. The 
point, of course, is to only make those strong assumptions which seem 
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plausible. The next section contains an example illustrating some of 
these notions. 

4.3.3. Application to Hk79othesis Testing and Ockham's Razor. 
Some of the most interesting applications of robust Bayesian analysis 

have been to hypothesis testing, and related model selection ideas. We 
review these here, in part as an illustration of points made in the preceding 
section. 

Suppose X = (X1 , . . . ,  Xp) ~ 3fp(0, a2I), ~r 2 known, and that 
model M1 specifies 0 = 00, while model M2 has 0 unrestricted. Under 
Me, consider the tbllowing two classes of priors for 0: 

I" A = {all prior distributions}, 

I'/z = {all prior densities of the form 7r(0) = h(]O -/~[), 
h nonincreasing}. 

Here/z is fixed, corresponding to a prior "most likely" value of 0 under 
M2 or, perhaps, to the "center of symmetry" of 7r under M2.  Often,/z 
will equal 00, but other values are possible. 

The Bayes factor of ~ r  1 to J~//2, conesponding to a prior density 
7r(0) under M2, is 

B(Tr) = f(xlOo)/ f f(xlO)Tr(O)dO. 

Define B___ A and B/~ as the lower bounds on B(~r) as 7r ranges over FA 
and F~,  respectively. 

For the case/z = 00, which arises naturally in testing H 0 : 0  = 00 
versus Hi:  0 r 00 with prior opinions under//1 being symmeu'ic about 
00, Table 2 gives values o f B  A and B._B_0o; instead of presenting the values 
as a function of x, we state them as a function of the P-value associated 
with x. (See Delampady, 1989, for computation of B__00.) 

This table reveals the, by now familiar, discrepancy between P-  
values and Bayes factors. In one dimension for instance, when the 
P-value is 0.05 the lower bound on the Bayes factor over all symmetric 
(about 00) unimodal priors is 0.409, and the lower bound over all priors 
is 0.146. This proves that a P-value of 0.05, in this situation, is at best 
quite weak evidence against H0. 
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P-value 

0.05 

0.01 

0.001 

dimension p 

1 2 3 4 5 10 15 20 40 

_B a .146 .050 .020 .009 .004 10 -4 10 -6 10 - r  10 -~2 

__BOo .409 .348 .326 .314 .307 .293 .288 .284 .279 

._BB A .036 .010 .003 .001 .0005 10 -5 10 -r  10 -s 10 -14 

BOo .123 .098 .090 .085 .082 .078 .075 .074 .073 

_B A .004 .001 .0003 .0001 10 -5 10 -r  10 -s 10 -m 10 -16 

BOo .018 .014 .012 .011 .010 .009 .009 .009 .009 

Tab le  2. Lower Bounds, t3 A and BOo, corresponding to various P-values 
for testing ~L): 0 = Oo versus Hi: 0 r 0o. 

A secondary point is the demonstration that classes of priors which 
are "too big" fail to give useful bounds in high dimensions. Thus B A 
becomes uselessly small as the dimension increases. In contrast, BOo is 

very stable as the dimension increases. And note that, as in (4.6), 1"0o 

can be written as a one-dimensional mixture class; this is an example of 
why we view mixture classes as promising in high dimensions. 

For p = 1 and general #, a very accurate approximation to B/, is 

/ 3 t '  = 2 ~ ( d o ) [ d l  q - V 2  l o g ( d 1  -+- 1 . 2 ) ] ,  (4.8) 

where do = I z - 00l/ , dl = Ix - and (p is the standard nor- 
mal density. This is argued, in Berger and Jefferys (1992) and Jefferys 
and Berger (1992), to be a "Bayesian Ockham's razor" for comparing 
models M1 and lt~2. For instance, those papers discussed the situation 
of comparing, in about the year 1920, MI: Einstein's general relativity 
versus M2: Newcomb's gravity theory, based on data from unexplained 
perturbations in the orbit of Mercury. The situation fits our framework 
with 00 = 42.9 (the perturbation predicted by M1); # = 0 (Newcomb's 
theory made no prediction about the size or sign of the perturbation, 
so centering prior opinion at zero is natural); and x = 41.6 (the ob- 
served perturbation, with a standard en'or of or = 2). Computation yields 
Bi, = /30 ---- 15.04; since this is a lower bound over 1-' t, = 1"0, we can 
conclude that the evidence favors M1 by at least 15 to 1. This relates 
to Ockham's razor because M1 was the "simple" model, in the sense of 
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having no free parameter (it specified 00 = 42.9), while M2 allowed 0 
to float freely. "Ockham's razor" argues that one should prefer a simple 
model that adequately explains the data to a complex model that does 
so, which is precisely what __Bu established quantitatively. 

As a final point, it must be remembered that the _B above are lower 
bounds on the Bayes factor, and can be much lower than actual reasonable 
Bayes factors (cf, Bayarri and Berger, 1994). If the lower bound, itself, 
answers the question of interest, then all is well. If not, substantial 
refinement of P is needed. Note that, in contrast to estimation problems, 
there are not (in general) "robust" nonintbrmative priors for testing or 
model selection problems. See Kass and Raftery (1992) and Berger and 
Pericchi (1993) for discussion and default methods of proceeding. 

Robust Bayesian analysis of testing problems can be found in Ed- 
wards, Lindman, and Savage (1963), Berger and Sellke (1987), Berger 
and Delampady (1987), Casella and Berger (1987), Delampady (1989a, 
1989b), Moreno and Cano (1989), DasGupta and Delamapady (1990), 
Delampady and Berger (1990), Berger and Mortera (1991, 1994), Berger 
(1992), and Berger and Jefferys (1992). 

4.4. Nonparametric Classes of Likelihoods 

Dealing with likelihoods via the global robustness approach varies from 
trivial to nearly impossible. One approach is to take the obsel~,ed 
likelihood function, go(O) = fo(:r[O), for a hypothesized model f0 
and given data, and embed it in a larger class of likelihoods, such as 
.Te = {e(0) = (1 - e)g0(0) + cq(O), q E Q}. Since g(0) and ~-(0) op- 
erate interchangeably in Bayesian computations, this approach to like- 
lihood robustness is equivalent to the global prior robustness approach 
(with the contamination class). 

The difficulty with this approach is that such classes of likelihoods do 
not reflect typical types of uncertainty in f .  For instance, if X1,. �9 �9 Xn 
are i.i.d, g(xiIO), uncertainty would typically reside in 9, reflected by, 
say, 

.T~ = {g = (1 - r + ~q(zilO), q ~ Q) or 

.T,~ ={densities 9: ffl(:Cil0) ~ g(zilO) <__ gi(xil0)}. 
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(Even these may not be completely natural, but they suffice for making 
the point.) The resulting classes of likelihoods are 

and these are very complex and difficult to work with. For instance, the 
relevant subclasses of extreme points are typically at least n-dimensional, 
which can become prohibitively expensive computationally for large n. 

A second difficulty with classes of likelihoods, as in (4.9), is that 
they can be too large, unless the ,Y'] are very small. One approach that 
does seem to give useful answers is that of Lavine (1991a, 1991b, and 
1994). 

For special or restricted problems, robustness analysis can be much 
easier. Robustness among certain generalized elliptical distributions is 
studied in Osiewalski and Steel (1993a, b, c), and Fern~ndez, Osiewal- 
ski, and Steel (1993). The following example is from another special 
situation, studied in Bayarri and Berger (1993a). 

Example 9.. (Weighted Distributions): Assume that the random variable 
X E ~1 is distributed over some population of interest according to 
f(x]O), 0 E (r, s), a (possibly infinite) interval in ~1, but that, when 
X = x, the probability of recording x (or the probability that x is 
selected to enter the sample) is w(x). Then the true density of an actual 
observation is 

f, (xlo) - ,w(z)/(xl0), (4.10) 

where uw(O) = Eo[w(X)]. Selection models occur often in practice 
(Rao, 1985; Bayarri and DeGroot, 1992). 

Often the specification of w (.) is highly subjective. It is thus of con- 
siderable interest to study the robustness of the analysis to choice of w. 
The problem becomes particularly important in the multi-observational 
setting, because the effect of the weight function can then be extremely 
dramatic. Suppose X1, X z , . . . ,  Xn are i.i.d, from the density (4.10), so 
that the likelihood function for 0 is 

Lw(O) ~ g(O)[uw(O)] -~, (4.11) 
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where g(O) o( 1-I f(xi[O) would be the likelihood function for the un- 
i=1 

weighted base density. If ~-(0) is the prior density for 0, the posterior 
density is then 

= 
j e ( o )  ' 

(4.12) 

assuming ~r is such that the denominator is finite. Expression (4.12) 
suggests that, at least for large n, the weight function w can have a much 
more significant effect on zc(O]x, w) than might the prior 7r. Hence we 
will treat ~'(0) as given here; for instance, it might be chosen to be a 
noninformative prior for the base model f (x i  [0). 

In Bayarri and Berger (1993), this problem is studied for the class 
of weight functions 

I,V = {nondecreasing w: ?/Al(Z ) _< "/B(Z) _< '//)2(Z)}, (4.13) 

where wl and w2 are specified nondecreasing functions representing the 
extremes of beliefs concerning w. Posterior functionals 

= / w)dO (4.14) 

are studied for a variety of shapes of the target 4(0). When 4(0) is 
monotonic (e.g., 4(0) = 0 or 4(0) = 1(c,~o)(0)), the extreme points in 

)/V at which r = sup r  and r = inf r  are attained were shown 
W ~ W 

to have one of the following two forms: 

�9 l//(x) = { 'l//l(X) i f r  < X _< a (4.15) 
W2(:•) i f a  < x < s '  

{ w2(x) if 7 " _ < x < h 2 ( c )  
w(x) = c if h2(c) < x < h 1 (c), (4.16) 

Wl(X) i f h l ( c ) < x < s  

where hi(c) = inf{z: wl(x) -< c} and h2(c) -=- sup{x: w2(x) >_ 
c}. The condition needed for this result is primarily that f(xlO) have 
monotone likelihood ratio. 



An Overview of Robust Bayesian Analysis 37 

As a specific example, suppose f(xilO) = Oexp{-Oxi} for i = 
1 , . . . ,  n, where xi > 0 and 0 > 0. Any xi that is less than a value T1 is, 
however, not observed. Any xi that is greater than T2 is observed. For 
T1 <_ xi <_ T2, the probability of its being observed is not known, but 
the probability is known to be nondecreasing. This specifies the class 
of weight functions in (4.13), with W l ( X )  = l(r2,oo)(X) and w2(x) = 

Suppose ~(0) = 0 is of interest, so that (~_, %b) is the range of the 
posterior mean as w ranges over 14;. Then one can explicitly minimize 
and maximize (4.14) over w of the form (4.15) and (4.16), obtaining 
r = 1 / (5  - 7"1) and ~ = 1 / (7  - T2). Whether or not robustness is 
achieved is thus easy to determine. Note that it depends on the size of 
as well as the closeness of T1 and 7"2. 

4.5. Limitations of Global Robusmess 

Global robustness ignores a very important quantity, namely m(x 17r, f ) ,  
which can be considered to be the "likelihood" of 7r and/or f .  A full 
Bayesian analysis automatically takes this into account. 

Example 10.. Suppose Xi ~ N'(Oi, 1), i = 1 , . . .  ,p. The class of prior 
distributions under consideration for 0 = (01 , . . . ,  0p) is 

1" = {Tr(O): the Oi are i.i.d. N'(#,  1), - S  < # < 12}. 

Suppose we are interested in the posterior mean for 01 . This is given by 
bl = (xl  + #) /2 .  Thus the range of posterior means, as 7r varies over 
F, is ( i x  1 - -  4, �89 + 6). 

Calculation shows that, here, 

m(xl ) = 1 exp +  (xi- 5) 2] 
(47r)P-7"2 i = 1  

Thus values of # close to 5 are far more "likely" than values far from 7. 
For instance, if p ---- 8 and �9 --- 3, this likelihood is a normal likelihood 
with mean 3 and variance 1/4, so that only the # between 2 and 4 have 
appreciable likelihood. Note that, if a full Bayesian analysis were done 
with, say, # being given the noninformative prior re(#) = 1, then the 
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posterior mean for 01 would be 

= / l(xl + #)-,, (# d# 

f I exl){_~4 (2_ #)2}d# = + 

= I (X 1 q- ~), 

which has effectively "weighted" the (:Cl -t- #)/2 by the likelihood of #. 
The message here is that a global robustness analysis might en'o- 

neously indicate a lack of robustness, erroneous in the sense that, were 
m(z[rr, f )  taken into account, robustness might obtain. There are two 
possibilities for formally investigating if this is so. The first is to go to a 
"higher level" Bayesian robustness investigation, as in Cano (1993) and 
Moreno and Pericchi (1993a). 

Example 10 (continued).. It is detmTnined that ( ix1 - 4, 1Xl Jr- 6) is too 
large an interval to reach a conclusion. Prior information about #, the 
presumed common mean of the Oi, is thus considered. A "best guess" 
for # is 2, but there is considerable uncertainty in this guess. It is decided 
that the standard error of this guess is at least 2, but that finer elicitation 
would be difficult. This information can reasonably be modeled by the 
class of priors (for #) 

F* = {N'(2, r 2) densities, r 2 >__ 4}. 

For given r 2, an easy computation yields that the posterior mean for 
O1 is 

b~* = I(X 1 -~- 7) q- ~ ( 2  -- ~). 

The range of possible posterior means as rr(l*) varies over P* (i.e., for 
r 2 >__ 4) is thus (if, say, 2 - .u _< 0) 

(�89 -1- 7) Jr- ~ ( 2  -- ~), I (X I  q- .u 

For the case p = 8 and Tg = 3, this range is 

( I ( x l  _.1_ 3) 1 34' 1(Xl q- 3)), (4.17) 

which would typically be considered to be a highly robust conclusion. 
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The second possibility for utilizing m(xlTr) (similar ideas apply if 
dealing with m(xlTr, f)) is to replace I-' by 

F* = {Tr �9 F: m(xlTr) _> K}; (4.18) 

here K could be chosen by likelihood or noninformative prior Bayesian 
methods. (See Sivaganesan and Berger, 1993, for development of this 
approach.) 

Example 10 (continued).. For the case p = 8 and g = 3, we observed 
that m(zlTr) is essentially a N'(3, �88 likelihood for #. Likelihood or 
Bayesian noninformative prior methods would suggest that (2, 4) is a 
"95% confidence or credible set" for #, so we might replace 1-' by 

r*={~-eF: 2_<#_<4} 

(which can easily be seen to be of the form (4.18)). The range of the 
posterior mean for 01, as 7r ranges over 1-'*, is (�89 + 1, gXll + 2), which 
might well be small enough to claim that the conclusion is reasonably 
robust. 

This second method of incorporating m,(zlTr) (or re(miTt, f)) is ap- 
pealing because it seems to avoid the need to put "priors on priors", etc. 
It also is related to empirical Bayes techniques; indeed, empirical Bayes 
analysis can be thought of as simply replacing 1-" by the prior ~r* E F 
for which m(zlTr) is maximized (clearly the degenerate limit of (4.18)). 
Unfortunately, this second method can give the wrong answer (as can 
empirical Bayes analysis). A rather staltling example of this is given in 
Bayarri and Berger (1994). Hence we cannot definitively recommend 
this second method. 

4.6. Optimal Robust Plvcedures 

Global Bayesian robustness lends itself naturally to defining notions of 
optimality. Here is an example, from Sivaganesan, Berliner, and Berger 
(1993). 



40 James O. Berger 

E~cample 11.. We observe X ,-~ Cauchy (0, 1). Elicitation yields -0.3, 
0.0, 0.3 as the prior quartiles for 0. The usual "inherently robust" prior 
density for 0 would be the Cauchy(0, 0.3) density; call this 7r0. Even 
though one expects considerable inherent robustness in this situation, 
it is decided to formally consider global robustness with respect to the 
contamination class of priors F, in (4.3), with e = 0.01. 

Suppose now that a credible set, C, for 0, is desired and that it is 
(conservatively) decided to require that the posterior probability of C 
satisfy 

Pr(0 E CIx, rr) >_ 0.90 for all rr E F. (4.19) 

Under this condition, one can be assured that C is a 90% credible set. 
A natural notion of optimality, here, is to define C* as optimal if 

G'* has minimal size (e.g., Lebesgue measure) among all G' satisfying 
(4.19). In Sivaganesan, Berliner, and Berger (1993), it is shown how to 
find such optimal C* for quite general problems of this type. For the 
specific case considered here, and when x = 6 is observed, the optimal 
G'* is C* = (-1.22,  2.70) U (3.56, 8.43); note that this is the union of 
two intervals, one where the likelihood is large and one where the prior 
is large. 

Many other notions of optimality w.r.t. F in global robustness are 
discussed in Berger (1985), Wasserman (1989), Li and Saxena (1990), 
DasGupta (1991), Meczarski (1991), Basu (1992c), De la Hon'a and 
Fernandez (1993, 1994), and Sivaganesan (1993b). 

Optimal global robustness is potentially useful. For instance, if 
G* in Example 11 is deemed to be a small enough set for practical 
purposes then, in light of (4.19), one can be quite satisfied. It can even 
be possible to design the experiment so as to achieve this with high 
predictive probability (cf, Mukhopadhyay and DasGupta, 1993; and 
DasGupta and Mukhopadhyay, 1994). 

There is a serious danger with some optimality notions, however: 
the optimal procedure can be terrible from a "real" Bayesian perspective. 
This is because, as discussed in Section 4.5, it can be important to take 
m(xlTr , f )  into account. (See, also, Berger, 1985; DasGupta and Stud- 
den, 1988; Sivaganesan and Berger, 1993; Zen and DasGupta, 1993; and 
Bayarri and Berger, 1994.) 
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Example 10 (continued).. The initial global robustness analysis yielded 
( l x  1 -- zl, lX 1 + 6) as the range of posterior means for 01. Many notions 

of optimality would suggest that the midpoint of this interval, lX 1 --}- 1, is 
optimal. However, this corresponds to the value # ---- 2, which has very 
low likelihood, m(xt#);  indeed, we saw that # = 2 is at the edge of the 
"95% noninformative prior credible set" for #. Furthermore, �89 + 1 is 
well outside the interval of possibilities in (4.17) that was obtained by a 
"higher level" robustness analysis. 

5. COMPUTING 

5.1. Computational Issues 

In discussing creation of classes of likelihoods or priors, it was observed 
that computational considerations are crucial. Here we briefly review 
several generally useful computational teclmiques. 

Linearization: It is easy to see that, under mild conditions, ~b (see (4.1)) 
is the solution to 

s 

0 = SUl) sup  [[h,(Of) - -~]f(xlOf)Tr(Of)dO f. 
IE:  rr~F f , I  

(5.1)  

The point here is that maximization over %b(vr, f )  is a non-linear opera- 
tion, but it can be converted, via (5.1), to a linear maximization together 
with a root-finding operation. This can be a useful simplification. (How- 
ever, if one can theoretically determine the relevant functional extreme 
points of the class, (5.1) is unnecessary.) Development and discussion of 
this algorithm can be found in DeRobertis and Hartigan (1981), Lavine 
(1991b), Lavine, Wasserman, and Wolpert (1993), Wasserman (1992b), 
and Wasserman and Kadane (1992a). The latter two papers discuss com- 
putation of %6, via (5.1), in the important case when it is necessary to 
utilize Monte-Carlo techniques for computation of the integral. 

Reweighting: When computing Bayesian integrals via Monte-Carlo 
techniques, there are opportunities for relatively easy robustness inves- 
tigations. To take the simplest case, suppose we approximate #:(Tr) by 
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N 

E h(0(i)) f(xl 0(~) 
,*~ 1 = 1  

N 
f(:~lO(i))c~(O (i)) 

i = 1  

where 
= 

and 0(1), . . . ,  0 (N) is an i.i.d, sample 1u the "importance function" g- 
(See Berger, 1985, for background.) Then switching from one prior to 
another simply requires recomputing the "weights" w~ (0 (i)), a relatively 
simple operation. Indeed, a scheme such as this is virtually necessary 
for efficient maximization of r since (5.2) provides a well-defined 
function to maximize over 7r. (The alternative, of, say, trying to maxi- 
mize over 7r with r being computed anew by numerical integration 
at each step, is very unstable.) For formal discussion as to when this 
scheme for maximization is convergent, see Salinetti (1994). 

Reweighting schemes are, unfortunately, not useful if too wide a 
range of zr is being considered. This is because the approximation in 
(5.2) need not be accurate if the weights can be extremely large. If, 
however, 9 can be chosen so that w~ (0) < I f  (moderate) for all 7r under 
consideration, then (5.2) can be extremely effective. 

Reweighting schemes are also possible for more complicated Mar- 
kov Chain simulation procedures. See Stephens and Smith (1992) for 
discussion. 

5.2. bTtemctive Robusmess 

In the Introduction, the possibility of using Bayesian robustness to guide 
the elicitation process was mentioned. Developing computer-interactive 
methods of doing this is particularly appealing. Ultimately, one could 
hope to have a robust Bayesian computer package that processed any 
given partial information, provided the implied range of Bayesian an- 
swers (see Moskowitz, 1992, for a description of such a system for 
discrete problems) and suggested what additional elicitations would be 
most desirable, if needed to increase robustness. Here is a simple exam- 
ple we are in the process of developing. 
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Example 12.. Suppose that elicited information, at stage m of the inter- 
active elicitation process for a real-valued parameter 0, will be a set of 
quantiles ql < q2 < . . .  < qm, with elicited pi = Pr(0 E (qi,qi+l]), i = 
1 , . . . ,  m. (Allowing for uncertainty in the Pi would be an easy mod- 
ification.) Also, suppose that the prior distribution for 0 is felt to be 
unimodal. Then, at stage m, one has effectively specified the class of 
priors 

Fro(q, p) = {all unimodal distr, with the given quantiles}. (5.3) 

Suppose r is the posterior functional of interest (the likelihood is 
being considered fixed), and that the degree of robustness is reasonably 
measured by 

C m -  r = sup r - inf ~/J(~-). 
~r~Fm ~EFm 

The problem of computing Cm and r is discussed in Berger and 
O'Hagan (1988), and O'Hagan and Berger (1988). 

Suppose Cm - ~,~ is deemed to be too large, and that additional 
refinement of the prior is needed. Since we are eliciting in terms of 
quantiles, this means that a new quantile, q*, must be chosen, with the 
associated p* (for the new interval created) being elicited. Which q* 
should be chosen'? It is quite natural to make the choice so that the 
ensuing r - r is likely to be smallest; this would make q* 
maximally efficient in terms of Bayesian robustness. 

A reasonable scheme for implementing this idea is to consider each 
possible candidate location, b, for q*. If q.i < b < qi+l, one could 
assume that the "least informative" elicitation will be done, resulting in 

p(v)  = p r ( 0  e (qi ,6])  = 
(qi+l -- qi) " Pi. 

(This just assumes that the prior probability pi, assigned to (qi, qi+a], 
is distributed uniformly over the interval.) Special adjustments have to 
be made for b < ql or b > qm. Assuming b and p(b) specify the new 
quantile, one would have the new class Fm+l({q Ub}, {p Up(b)}) as in 
(5.3), and could compute the corresponding range (r (b) - r (b)). 
Minimizing over b would yield the quantile that, if elicited, would be 
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most likely to result in a substantial gain in robustness. (Of course, once 
q* = b is chosen, the actual p* would be elicited; p(b) would not be 
used.) 

Schemes for interactive elicitation could also be developed based 
on notions of "most sensitive direction in prior space" as discussed in 
Section 3.2. The difficulty with such an approach is that the optimal 
direction in which to focus elicitation efforts may not correspond to 
quantities that ate easy to elicit. Hence we prefer to consider the types 
of allowed elicitations (e.g., quantiles) as bein._g specified in advance, at 
which point it is probably easier to consider ~ - ~ directly, rather than 
look at local sensitivity. 

6. FUTURE DIRECTIONS 

Many of the theoretical and methodological directions in which Bayes- 
ian robustness is developing were discussed in the paper. Rather than 
attempting to summarize that discussion, it is useful to tbcus here on the 
types of statistical problems in which Bayesian robustness can be most 
usefully applied. 

Statistical problems fall into several different categories. The most 
difficult are problems in which it is a challenge to perform any Bayesian 
analysis whatsoever. For such problems it will inherently be the case that 
formal Bayesian robustness cannot be investigated; at best, the informal 
"try a few models and priors" will be done. 

The next category consists of those problems in which subjective 
Bayesian analysis is feasible, but objective (noninformative) Bayesian 
methods are also available (and perhaps classical methods that are very 
similar to the objective Bayesian methods). For such problems, subjec- 
tive Bayesian analysis is typically pertbrmed only when the subjective 
information is quite influential, relative to the information in the data. 
Until subjective Bayesian methods become more widely used in these 
problems, the scope for utilization of formal Bayesian robustness meth- 
ods will be limited. Of course, as mentioned in the Introduction, the 
capability to routinely augment a subjective analysis with robustness 
determinations might increase the willingness to use subjective meth- 
ods. Probably the most immediate contribution of Bayesian robustness 
for this class of problems is the possibility of using relatively sophisti- 
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cated automatically robust methods, such as those discussed in Section 2, 
as an alternative to the standard methodology. 

The third category of statistical problems consists of problems for 
which objective Bayesian methods do not exist (i.e., the answers typically 
depend significantly on prior opinions) or are to be avoided (see below). 
One example that we have discussed is precise hypothesis testing, where 
the prior on the parameter space of the alternative hypothesis always has 
a significant effect. Other examples are mentioned below. 

For problems in this category, it can be argued that robust Bayesian 
analysis is required; since the answer depends strongly on prior opin- 
ions, it is important to show that any conclusions are valid over the range 
of sensible prior opinions. Problems in this category also typically lack 
sensible classical answers, so that many non-Bayesians are more will- 
ing to consider Bayesian approaches to these problems. It is thus this 
third category of problems that promises to provide the most immediate 
applications of robust Bayesian theory. A brief, partial listing of these 
problems follows. 

Similarly to precise hypothesis testing, in Model Selection fi'om 
among models of differing complexity, the prior distributions always 
have a significant effect. The challenge here, for the robust Bayesian 
approach, is to choose classes of priors that are appropriately "tied to- 
gether" for the differing models (see Berger and Pericchi, 1993, for 
discussion of what this means). Simply having unrelated classes of pri- 
ors is likely to result in uselessly wide ranges of answers (see Berger and 
Mortera, 1994, tbr an illustration in a simple setting). 

Extrapolation beyond the range of the data inherently involves sub- 
jective opinion, and is very non-robust. Hence it is a natural problem in 
which to consider Bayesian robustness. See Berger and Chen (1993) for 
an example. 

A common aspect of Mere-Analysis is the need to relate the various 
studies or experiments that are to be combined; the protocol, populations 
studied, and experimental conditions will often vary from study to study, 
requiring adjustments if the studies are to be combined. In Bayesian 
analysis, these adjustment factors, which are typically highly subjective, 
are built in through the prior distributions (cf, DuMouchel and Harris, 
1983; Morris and Normand, 1992; and Wolpert and Wan'en Hicks, 1992). 
Since the adjustments are typically highly uncertain, robust Bayesian 
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analysis is natural. (See Berger and Mortera, 1991, for study of one 
such situation.) 

We have already illustrated robust Bayesian analysis for Selection 
Models or Weighted Distributions. Because the selection or weighting 
mechanism can have an enormous effect and is often uncertain, there is 
clear motivation for studying Bayesian robustness in these problems. 

Clinical Trials provide a natural domain for various types of Bayes- 
ian robustness investigations. The reason is that attention is increasingly 
being paid to conducting clinical trials in a fashion that is as ethical as 
possible towards the patients in the trial. There are two aspects of this 
that are particularly relevant to Bayesian robustness. First, the trials 
may assign patients to treatments in a partially non-random way that 
involves medical opinion. Second, prior opinion may be used to allow 
the trial to stop earlier, not only because of the effect of the additional 
information, but also because Bayesian sequential trials will naturally 
stop earlier (since repeated looks at the data are not penalized). In both 
cases, there am typically a variety of prior opinions that must be taken 
into account, and so some type of Bayesian robustness investigation is 
needed. For discussion and examples, see Ben'y, Wolf, and Sack (1992), 
Carlin and Louis (1993), Caflin, Chaloner, Louis, and Rhame (1993), 
Sedransk (1993), and Kadane (1994). 

Group Decision Making is a related domain in which them naturally 
exist a variety of prior opinions. Group decision making often begins 
by seeing if there is a possible action that is simultaneously optimal for 
all members of the group. This would involve a type of robust Bayesian 
computation. Only if them is not an optimal answer, in this sense, would 
more involved group decision making techniques be utilized. (Note, 
however, that it is not necessarily correct to behave in this way; indeed, 
it is easy to construct examples where every member of the group initially 
thinks that a certain action is optimal but that, after sharing information, 
a different action is seen to be optimal. Ideally, therefore, complete 
information sharing should be done before applying the robust Bayesian 
methods.) See Genest and Zidek (1986) and Van Eeden and Zidek (1994) 
for discussion and references. 
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DISCUSSION 

ELfAS M O R E N O  (Univers idad de Granada) 

This is an excellent  and stimulating paper on Robust Bayesian Anal- 
ysis and James Berger is to be congratulated for it. I will tbcus my 
comments  on two points, (i) elicitation of  contamination classes, and 
(ii) limitations of  global robustness. 

1. Elicitation o f  contamination classes. The c-contaminat ion class of  
priors 

F = {Tr(0) : (0) = (1 - c)~-0(0) + q(0), q E Q}, 

has been considered in Bayesian statistics to model  uncertainty on the 

prior distribution in the lbllowing s cena io .  A prior co0 (0) for 0 is elicited. 
Some prior beliefs are accurately stated, for instance the probabilities of  
some sets {C/, i > 1} which form a partition of  the parameter  space 0 ,  

P r { O E C i } = o ~ i ,  i >  1, (1) 
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where ai  = J'ci 7to(dO), i >_ 1. A constant e, 0 < e < 1, reflecting our 

overall degree of uncertainty on the form of 7r0(0) on the sets Ci, 1 >_ 1, 
is specified. Finally, a class Q of possible priors compatible with (1), is 
then chosen. In case of condition (1), a sensible class Q would be 

Q = {  q(O):fcq(O)dO=~ i _ > 1 } .  

For a given quantity of interest c2(0 ), and a sample observation x 
robustness of E~(~(O)Ix) as ~- ranges over F is then studied. 

When F is not a posteriori robust, the efforts in eliciting more prior 
information on 0 have the result of reducing the class Q under con- 
sideration, and robustness of the corresponding class F is again inves- 
tigated. For instance, in Berger and O'Hagan (1988), O'Hagan and 
Berger (1988), Moreno and Pericchi (1991) shape constraints are added 
to conditions (1) to define a smaller class Q. 

In this interactive process of refinement of the class F until posterior 
robustness is achieved, e has not played a relevant role even when the 
size of the class F depends on it, and also when to add shape conditions 
to the quantile constraints results in a quite tractable analysis in one 
dimensional problems but possibly intractable in a multidimensional 
setting. To do something to reduce the class in the latter context is 
absolutely necessary. 

However, e might be of interest in this process by simply observing 
that we are less confident of the form of the tails of ~r0(0) than we are of 
the body. In other words, we are able to make more accurate statements 
about the tbrm of 7r0 (0) in its central part than we are in its tails. This 
might result in robust answers without more refinement of the class Q. 
Note that e should then be a function of 0 capable of discriminating 
between uncertainty in the tails and body of 7r0 (0). 

The question arising is what kind ofe(0)'s are appropriated to model 
a different degree of confidence in different parts of 7r0 (0), but retaining 
the prior beliefs given in (1). The next theorem addresses this issue. 

Theorem. (Moreno, Mart{nez, and Cano, 1993) 
Let (0, .A) be the measurable parameter space of the statistical 

problem, and let 13 be a sub sigma fiehl of .A. Consider the class 

= : = ( 1  - + c(O)q(O), q c 
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where e(O), 0 <_ e(O) <_ 1, is an .A-measurable fimction, and 

Qu = {q(O) : fBq(O)dO= fBTrO(O), B E ~ 3 } .  

Then, ( i ) if e (0) is a 13 measurable fimction it follows that any 7r E 
ru  satisfies .]'B 7c(O)dO = JB 7to(O) for any B E/3. (ii) Convet:gely, 
i fB is such that for any set A E A - / 3  there exists ql, q'2 E Q~ such 
that 

fA ql(O)dO = (Tr~ fA q,2(O)dO = (Tro~)*(A), 

where (rc~),, (Trio) * are the inner and outer measures of  7to with 
respect to 13 respectively, and any 7r e FL~ satisfies fB 7r(O)dO = 
JB 7ro(O)dO, B E/3, then e(O) is a 13 measurable fimction. 

Corollary.  Let/3 = cr(Ci, i > 1) be the sub sigma field of .A 
generated by a partition {Ci, i >_ 1}. Then, any 7r E Fts sat- 
isfies JB 7r(O)dO = .]'t37ro(O)dO, B E /3, if and only if e(O) is a 
B-measurable fimction. ,~ 

This theorem means that the elicitor can chose e (0) in the class of/3- 
measurable functions to express his degrees of uncertainty on different 
parts of 7to(O), while keeping fixed the probabilities of the sets of/3. 

Example 1. Let X be a random variable N(O, 1) distributed. Suppose 
we are interested in testing H0 : 0 _< 0. It i s  elicited that the dis- 
tribution of 0 is approximately symmetric in a neighborhood around 
zero and that the probabilities of the sets C1 = ( - e~ ,  -0.9539],  (72 = 
(-I).9539, 0.9539], and C3 = [(i).9539, oc) are 

f-. 539 f -  9539 
 (O)dO = 0.25, q(O)dO = 0 . 5 ,  

J - c ~  d - .9539 

= 0.25. 71"(0) d 0  
.9539 

The base prior ~'0(0) = N(0,  2) is typically being used and the 
class F0 

Fo = {Tr(O): 7r(O) = (1 - c)Tro(O) + eq(O),q E Q}, 
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where ~ = 0.2 and 

{ i-.9539 f-.9539 
Q = 7r(O)dO = 0.25, q(O)dO = 0.5, 

a -oo d -.95:39 
7r dO = 0.25 

.9539 

is the usual e-contamination class. 

The posterior imprecision of H0 with respect to that class for var- 
ious values of x, is displayed in the second column of Table 1. This 
imprecision is defined as 

AroP~(Ho[x)  = sup P~(Ho[x)-  inf P~(Ho[x). 
7rEF o ~EF0 

If, in the class Fo, r is replaced by r = 01c2(0 ) + 0.51c~(0 ), 

where C~ denotes the complement of C2, only an uncertainty of 0.5 
in the tail of 7r0(0) is allowed. Let us denote by Ar.5P~(Holx) the 
posterior imprecision of H0 with respect to the class associated with this 
r Values of this imprecision for various observations x are given in 
the third column of Table 1. 

x /xroP~(Hol:~) Ar~P~(HoI,~:) 

0 0.21 0.13 
0.5 0.18 0.12 
1.0 0.14 0.09 
1.5 0.09 0.04 

Table 1. Posterior imprecisions of rio for Fo and F.5 

Table 1 shows that a significant reduction of posterior imprecision 
is obtained if only uncertainty in the tails of 7r0 (0) is considered, even 
when this uncertainty is as big as 0.5. Probably the situation considered 
in the last column is a better reflection of our uncertainty and therefore 
it is a more realistic measurement of robustness. 
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2. Choos ing  a base prior.  It is usually the case that the prior beliefs we 
have used to elicit the base prior rr0(0) are satisfied for more than one 
distribution having different tail behaviour. The imprecision in the tails 
from the associated contamination classes can help to choose one. 

Example  2. Consider the situation stated in Example 1. The three base 
priors, Normal, fro1(0) = N(0 ,  2); Intrinsic (see Berger and Pericchi 
(1993) for a genesis of it), rr02(0) = (1 - exp(-02/.91742))/(2v/702/ 
.91742)); and Cauchy rr03(0) = C'(0, 0.9539) have on the set (-.9539, 
.9539) a rather similar shape, and they also satisfy the accurate prior 
beliefs stated in (1). Hence, the three classes 

F0i = {Tr(0) : re(0) = (1 - c)rroi(O) + cq (O) ,q  E Q} , i  = 1,2,3 

might be considered. 

The posterior imprecision of H0 with respect to these classes for 
various values of x and c, are displayed in Table 2. 

x s s AroaP~(Holx) 

e = .2 e = .5 e = .2 r  z = .2 e = .5 

0 0.21 0.51 0.23 0.55 0.22 0.53 
0.5 0.18 0.47 0.22 0.53 0.20 0.49 
1.0 0.14 0.38 0.20 0.48 0.16 0.41 
1.5 0.09 0.26 0.15 0.39 0.12 0.31 

Table 2. Posterior imprecisions of Ho for Fro, Fo2 and Foa 

Table 2 shows that the posterior imprecisions of H0 in the usual 
contamination class with the Normal base prior am similar these with 
the Cauchy prior. Posterior impmcisions with the Intrinsic base prior 
are slightly bigger. For the three classes, however, the impmcisions am 
very big. Hence, more effort in prior elicitation is required. 

If we recognize again that our uncertainty in the base prior is essen- 
tially uncertainty in their tails, then a small c for the body and another 
bigger c for the tails should be chosen. In pm~ticular, let us take c = 0 



64 James O. Berger 

for the central part of rroi (0), that is 

Pti = {71"(0) : rr(O) = [1 -- a 1C~(O)] rroi(O) + r 

lc (o),q �9 Q}, i =  1,2,3 

where now e represents the uncertainty on 7roi(O) lc~(0). The corre- 

sponding posterior imprecisions of H0 with respect these classes are 
given in Table 3. 

:r AraP'~(Hol:c ) Art2P~(Hol m) ArtaP"(Holx) 

r  ~ = . 5  ~ = 1  =.2 s=.5 a = l  =.2 a= .5  ~=1 

0 0.05 0.13 0.27 0.06 0.14 0.26 0.03 0.08 0.15 
0.5 0.05 0.12 0.25 0.05 0.13 0.25 0.03 0.08 0.16 
1.0 0.03 0.09 0.21 0.04 0.10 0.22 0.03 0.07 0.15 
1.5 0.02 0.04 0.13 0.03 0.07 0.18 0.02 0.06 0.14 

. 

. 

Table 3. Posterior imprecisions of tto for Ftl, Ft2 and Fta 

This table shows that: 
Posterior impmcisions have been substantially reduced by consid- 
ering only uncertainty in the tails. Therefore, to concentrate efforts 
on accurately eliciting many features in the body of the base prior 
is important because it might result in a robust answer. The hope is 
that this kind of information can be obtained from the experts. 
The posterior ranges of H0 with the Cauchy base prior am, for 
any of the considered values for 6, smaller than those given by the 
Normal and Intrinsic base priors. The fourth, seventh and tenth 
columns give the biggest possible posterior imprecision when the 
tails of Normal, Intrinsic and Cauchy distributions are allowed to 
vary respectively, in Q. The reduction in the range of the posterior 
probability when using Cauchy is a factor of 0.55. The analysis 
suggests recommending use of the Cauchy prior distribution as the 
base prior for this problem. 
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3. Limitations of Global Robusmess. Given the likelihood f (xlO ), the 
prior 7r(01#), the hyperprior h,(#) and the quantity of interest (p(0), the 
posterior expectation is given by 

E~'"~(O) = "f f ~(0) f (xlO)~(Ol#)h(#)d#dO 
f f f(xlO)~(Ol#)h(U)dudO 

(It has been assumed that xll t lO ). The problem can be considered as 
one with the elements: 

{f(xlO),rch(O) (=  f ~(Olu)h.(#)d.) ,~(0)} , 
with global robustness quantified by the range 

. 7r,h 7r,h ) mf E x ~(0), sup E~ ~(0) , 
~kTr, h rr,h 

where the inf and sup is over some class of distributions r ) and 
h(#); see for instance Moreno and Pericchi (1993). The idea stated by 
James Berger in Section 4.5 is to look at the problem as one with the 
elements: 

#, } 
where 4)(/,) = Erc(Olx't')~o(O). Global robustness is now quantified by 
the range 

(h,~/' Eh (a(l~)' sup E/~ O(#) ) 

where, as above, inf and sup is over some class of priors rr(0]#) and 
h(u). 

= E 7r'h "0" Under mild conditions it is clear that EhO(#) x c;L ), so that 
both viewpoints of the problem are processing the same inputs. In ex- 
ample 10 we have 

k~l) = J" ~,,,(xl~)t4~)du ' 
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where 7r(O[#) = N(OIm 1) and h(#) is in the class 

{ f" } rl = h(#)-  h(p)d#= I . 
8 

Consequently, the range of the posterior mean for O1, say R1, is 

R1 ( inf 1 1 ) = ~(Xl -}- #),  sup ~(XI -}- #) 
<#E(-8,12) t,E(-8,12) 

(1 1 ) 
= ~ : c l - 4 , 8 x 1 + 6  . 

Here, m(xl#)  has effectively been ignored. But we observe that it is 
caused by the class Pl (the extreme priors concentrate mass on one point) 
and not by the underlying philosophy of global robustness. In fact, if F1 
is replaced by the class 

{ J? ; } r2  = h ( , ) :  h ( , ) @  = 1, h ( , ) @  : 0 5  , 
8 8 

which is suggested by the likelihood m(xIp) for .~ = 3, then the corre- 
sponding range of the posterior expectation of 01, say R2, is 

= (  inf 9(a l ,  a2), sup 9 (a l ,  a2) ) ,  
~ 2  --8  < a 1 < 3 --8 < a 1 ~ 3 

3G{rz G 12 3<a~ < 12 

where 9 (al, a2) is given by 

9(al,  a2) = 
(=1 + ,,,) ~xp {-~(~- ,.,1)~ } + (x, + .2) exp {-~(~- ~)~} 

exp {_a(~_  ,L1)2} + ext, {-a4(~- ~2)2} 
Note that now m(xt/t) has been taken into account. 

Something similar happens if h(p) is unimodal with mode at #0. In 
this case the range of the posterior expectation for 01 is given by the total 
variation of the function 

f#0 +a k( . )  = ~,,0 ,}(Xl + #)-~(=l . )h(#) , t#  
,kto+a 1.o ~,.(=l#)h(,)d# 
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and re(x I#) is taken into account with the only exception when a = 0. 
Also in this case all the mass has been concentrated in one point. This 
point is here the mode. Except for this situation I guess that the only 
class of priors for # that ignores m(x]#) in the analysis is the class of 
all prior distributions on a given range (tq, I~2)- 

I have learnt from the arguments stated by the author in section 4.5 
the following: 

1. When using hyperparameters, it is of interest to consider the 
likelihood at the second stage. It can help us in eliciting hyper- 
priors. 

2. Even at a higher level of the hierarchy (example 10 considers a 
second level) caution in using a very big class for the hyperprior 
parameter is important (see also Moreno and Pericchi, 1993). 

Finally, I should say that I am resistant to admit, for the being time, 
limitations of global robustness, although I admit difficulties that are 
being solved step by step. This paper by James Berger is a proof of this. 

LUIS RAUL PERICCHI (Univel:s'i&td Simort Bolivar) 

In the first phrase of his paper Prof. Berger defines, "Robust Bayes- 
ian analysis is the study of the sensitivity of Bayesian answers to un- 
certain inputs". This paper is an incisive and insightful review of the 
subject defined above, which makes a delightful reading. It is also a 
"hijacker's guide to the galaxy" of Prof. Berger's thinking, who has 
recently produced key contributions in areas like global robustness, in- 
herent robust methods, reference priors and automatic model selection, 
among others. This paper shows the deep link of his thinking, very 
much concerned with the correct foundations but also aware of the com- 
promises that statistical practice dictates. This review demonstrates the 
good health of the subject, and develops the implications of a broad and 
realistic foundational system. In (1986) in a meeting with J. W. Tukey I 
mentioned a Robust Bayesian method in medical diagnosis and then he 
asked me, "Is there a Robust Bayesian approach'?" This review clearly 
states an affirmative answer in 1993. 

Somewhat outside the automation of the sensitivity analysis inter- 
proration, which is one of the main themes of this review of Robust 
Bayes, one still wonders if a fully automatic Robust Bayesian analysis 
is possible, free from the first stage of informative elicitation. For ex- 



68 James O. Berger 

ample, some "reference" Bayesian analyses are clearly more robust in 
some sense (particularly when the likelihood is very informative), than 
other reference analyses. But, do we have a reliable measure of the 
difference in robustness? Or in other words, is a Robust Bayes analysis 
possible which is based essentially on likelihood assumptions? Admit- 
tedly, "Near Ignorance Classes" is a limited suggestion in that direction 
and it is not elicitation tYee. However I think that this general question 
is quite relevant. 

Turning to specific areas, I will concentrate on model choice. I just 
want to expand on some of Prof. Berger's comments. Bayesian thinking 
on model selection is necessary. For this class of problems frequentist 
and Bayesian measures of evidence are typically ever more in conflict as 
data accumulates. One of the major achievements of Robust Bayes has 
been to show transparently that P-values are misleading, and this is even 
of more concern in large samples, where significance testing typically re- 
jects the simpler model. Quite differently, Bayesian methods embody an 
automatic "Ockham's razor", the well accepted scientific principle that if 
two models fit the data approximately equally well, the simpler one is to 
be prefen'ed. To be more specific consider asymptotic approximations. 
Regarding estimation problems and assuming mild regularity conditions 
on likelihood and prior, the posterior density ~(OIx ) is approximately 
multivariate-Normal Np(O, [I(x)]-l) ,  where b is the Maximum Likeli- 
hood Estimator, and I(X) is the observed Fisher's Information Matrix 
evaluated at 0. Thus for regular likelihood the posterior is asymptoti- 
cally independent of the prior Here it is the smoothness of the prior 
that matters for the prior to fade away. This is the basis of the claim 
of some frequentist statisticians that they can just work with Maximum 
Likelihood, since it is approximately a Bayesian answer, without taking 
the trouble of specifying a prior, or a class of priors. 

However the situation in Model Selection is completely different. 
The asymptotic Bayes Factor in some generality is, for 

f (xlod vs Mj: fj( lOj), 

(1) 
lj(xlbdlz,(:, )l-1/2(2 )pJ/2  (bi) " 

Approximation (1) shows that the influence of the priors remain, in the 
form of the ratio of priors evaluated at Maximum Likelihood estimates. 
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Hem it is the size of the priors what matters. This expose two l:acts. The 
first in that usual automatic reference prior analyses do not work since 
the arbitrmy constants in the priors do not cancel out. The second is 
that the influence of the priors, in the form of their relative sizes remain 
asymptotically, and thus Robust Bayes in model selection problems is 
unavoidable. In summary, there is a vast room for developing new 
automatic and robust Bayesian procedures for comparing models. In 
my view this is the most exciting and promising arena for Bayesian 
approaches. Note that seemingly different problems, like detection of 
outliers or density estimation can be encompassed in the umbrella of 
model selection problems. 

But, how to tackle model selection, in a Bayesian way? Prof. Berger 
rightly emphasized that the classes of priors should be somehow "tied 
together" for different models. Berger and Pericchi (1993) have pro- 
posed the "Intrinsic Bayes Factor" that seems to automatically match 
predictives. The Intrinsic Bayes Factor is based on taking minimal train- 
ing samples and taking averages of the resulting Bayes Factors. If for 
instance we are comparing any two location-scale likelihoods, then min- 
imal training samples match the 1/3 and 2/3 quantiles of the predictive 
distribution of a future observation. See Berger and Pericchi (1993) for 
other examples. Turning to classes of priors, Pericchi and Pdrez (1994) 
consider a finite set of separate likelihoods: M1, M2, . . . ,  Mj. There it is 
supposed that we are willing to assume values for P(Mj), j = 1, . . , ,  J. 
In this way the marginal of observations m(xlTr , 21/Ij) naturally arises. 
(This is another interesting theme of Prof. Berger's paper). In Peticchi 
and Prrez (1994) it is suggested to take the "common class of predic- 
tives" approach. That is to consider classes of priors that are such that 
the predictives for a future observation across different models, simul- 
taneously obey some conditions. For example that a set of predictive 
quantiles are the same across models. How difficult it is to work with 
such classes is still an open question. We also provide an example to 
warn about the illusion of robustness (or lack of it) when considering a 
class of priors, but only one model. 

Summing up, Prof. Berger has put together a masterful review of 
the most successful (in my opinion) framework of statistics, on which 
his own influence has been crucial. 
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M. JESUS BAYARRI (Univers'imt de ValOncia) 

It is indeed a honor and a pleasure for me to have the opportunity to 
comment on the great paper by Professor Berger. The world of Bayesian 
robustness has grown so fast and in so many directions that this expert, 
insightful overview will undoubtedly be a very illuminating and valuable 
contribution to the area. Unfortunately, the better the paper the harder 
the task of the discussant, and this one is so thoughtful that also includes 
a critical discussion of the roles and limitations of robustness analysis. 
My discussion will be reduced to a comment of support and a comment 
of warning, the first of which intends to emphasize the need of robust 
Bayes analyses with respect to changes in the likelihood function as 
exemplified in a situation involving weighted distributions, whereas the 
second one intends to be a warning against indiscriminate, naive use 
of robust Bayes method as exemplified in a situation involving high 
dimensions. 

1. Weighted Distributions. Section 4.4 in the paper addresses the impor- 
tant issue of studying robustness with respect to changes in the likelihood 
function by using nonparametric classes of likelihoods. The question 
then might arise as to whether non-parametric classes are really needed. 
The following example shows that in some situations studying robustness 
within a parametric class of likelihoods might not suffice. The example 
is in the framework of weighted distributions, as presented in Example 
9, and it is inspired in a real problem analyzed in Nair and Wang (1989), 
and West (1993), although what appears here is a very simplified version 
that only bears a remote resemblance with the original analysis. 

The example is as follows. Assume that in a problem of searching 
for oil pools in a certain (very large) oil field, n pools have already been 
discovered and are under exploitation. (We do not take here into account 
the finite nature of the total population of pools.) Assume that some 
measure of surface, X / o f  the pools is supposed to have an exponential 
distribution with mean p. Assume that, for the n = 23 pools already 
discovered, .~ = 150 (in the appropriate units) and that interest is in 
estimating # with the usual posterior mean. 

A naYve analysis ignoring the size-bias effect, would take the dis- 
tribution for the Xi's at face value and would therefore assume that the 
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model generating the data has density 

t / ,  
/ ( x l # )  = - e - " / ' .  (/3.1) 

# 

It then follows that, with the non-informative prior 7r(#) o( 1/#,  the 
posterior distribution of # is an inverse gamma, rc(plx ) = Ga-l(#l'n, 
n~), with mean nY:/(n - 1), so that for the given data 

) = 156.82. (B.2) 

Assume now that the discovery process of the pools is such that 
the larger the surface of the pool, the more likely it is to be discovered. 
In this case the analysis above is flawed since (B.1) is not the density 
generating the actual data that we get to observe. Instead, a weighted 
version of it 

L,,(xl#) c< w(x)f(xl#), (B.3) 

should be used, with a weight hmction w(x) which is an non decreasing 
function of x. Using w(x) = x a with a > 0, results in a fuJ which is 
the density of a gamma distribution Ga(a  + 1, 1/#) ,  so that the non- 
informative prior results in the posterior Ga-1  (# in + na, n~), with mean 
nY:/(n - 1 + na).  Of course, the real analyses of the data mentioned 
above did take the size-bias effect into account and used a weight function 
which could be roughly compatible with taking, in our simplified version, 

, 4 x )  = ,0.8. 

Hence, the estimate of tz now becomes 

Eo.s(p,]x) = 85.34. 

(B.4) 

(B.5) 

The large difference between the two estimates, (B.2) and (B.5) 
dramatically emphasizes the need for taking into account the size-bias 
effect. Besides, such a large difference also demonstrates that this effect 
is very important in this case, so that it would be wise to investigate how 
E( lx) changes as w ( x )  varies fi'om its assumed from (B.4). 

A natural thing Ibr a Bayesian to do would be to assume we(x)  = x a 
with a _> 0 and to put a prior ~r(a) on a. The posterior mean of # then 
becomes 

E ( p l x  ) = nS: ~r(a)da. (B.6) 
n -  1 + na 
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A prior of  the f o l l n  7r(a) = Ga(alm 5 a / 4 )  has E(a) = ().8 and 
variance Var(a)  -= 0.16 if (~ = 4, and Var(a)  = 0.064 if a = 10. With 
this two values of or the estimates of p as given by (B.6) are 

E =4(#lx) = 89.51, E  =10(/zlx ) = 87.12. (B.7) 

Therefore, if one is fairly sure about the form of w(x) = x a with a not 
differing much from 0.8, and if a gamma prior for a is used, it would be 
concluded that the estimate (B.5) is fairly robust. 

Assume, on the other hand, that the investigators, while believing 
that the weight  function behaves roughly as z a, with a close to 0.8, do not 
feel very confident about precisely assessing a gamma prior on a, so that 
an exploratory robustness analysis is in order. The easiest one would 
study the range of  posterior means as w(x) ranges over a parametric 
family of  the form 

}/V P = {w(x) = ya " ao <_ a <_ al }. (B.8) 

For a0 = 0.7, a l  = 0.9, and the given data, the range of E ( # l x )  as w(-) 
ranges over 14; P is easily seen to be 

80.0 Ea(#lx) 9(3.55, (B.9) 

and robustness might  still be claimed. Nevertheless, in this example, 
as it is often the case in size-biased problems, the very same form of 
the weight  function, x a, is highly subjective. Hence, it would be more 
appropriate to only assume that w(x) is a non-decreasing function of 
x, and study robustness of the estimate as w(x) ranges over the non- 
parametric class 

I,V = {non-decreasing w :  m i n { x  0"7, :c 0''q} <_ w(x) 

< max{z ~ x } }. 
(B.10) 

By using the results in Bayarri and Berger (1993), it can be shown that 
the infimum of  E ( # [ x )  as w ranges over YV is attained at a weight 
function w(x) of the tbrm (4.15) with r -- 0, a = 153.6, s = oc, and 
the supremum at a w(x) of the form (4.16) with r ---- 0, h2(c) = 81.9, 
c = (81.9) "9, h i (c )  = (81.9) 9/7, and s = c~. (Notice that wl (x )  = x ~ 
for 0 < x < 1, and wi (x)  = x ~ for x > 1, and that w2(x) = x ~ 
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for 0 < x _< 1, and w2(x) = x ~ for x > 
posterior means is 

1). The resulting range of 

65.99 _< E(ulx) _< 111.4, (B.11) 

which is four and a half times as large as the range (B.9) obtained with 
the parametric class (B.8). Robustness may very well not be claimed 
here, thus revealing how sensitive E(l~l:r.) is with respect to the assumed 
form x a for the weight function. 

2. High Dhnensions. While the previous comment intended to empha- 
size the need of robustness analyses, the purpose of this one is to warn 
against their indiscriminate, naive use, specially when dealing with very 
high dimensions. The scenario is that of Example 10 and assumes 

Xi "~ N(Oi, 1),  

Oi ,'~ N(lt ,  1),  

# ~ N ( 2 ,  r 2) . 

i = l , 2 , . . . , p  

i = 1 , 2 , . . . ,  v (/3.12) 

The difficulties in dealing with a very largep are already hinted in the 
estimation problem treated in the paper. Thus, for instance, assume that 
the goal is to estimate 01 and that, instead of fully assessing # ~ N(2,  72) 
as in (B. 12), the class in (4.18) is used with k selected so that # varies in 
a " 9 5 %  confidence or credible set" for # computed by using likelihood 
or Bayesian non-informative prior methods, as suggested in the paper. 
It can be checked that the class (4.18) is then 

r *  = e r : # _ <  + (B.13) 

which is the class used in Example 10 (continued) for the case p = 8 
and ~ = 3. The range of the posterior mean of 01 as r~ ranges over F* is 

�9 1 + (B.14) 
2 V p  

so that the answer gets more and more robust as p grows. It should be 
kept in mind, however, that the class 1-'* gets very small for large values 
ofp.  
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The difficulties of robust Bayes analyses in high dimensions are 
more evident in testing problems, specially when using priors that are 
not as naturally robust as the two-level hierarchical prior above. To be 
more explicit, consider the following variation of Example 10: 

Xi ,~ N(O,i, 1),  i = 1, 2 , . - . , p  
(B.15) 

Oi~N(2 , ' r  2) i = l , 2 , . - - , p .  

Let 0 = (81, 0z,- �9 �9 Op) t and assume that the goal is to test H0 : 0 = 21p 
versus HA : 0 • 21p. A full bayesian analysis procceeds then by 
assessing a prior g(T 2) for r 2 and computing, say, the Bayes factor B(g) 
for H0. On the other hand, assume that, to avoid the specifications of g 
the infimum of the Bayes factor,/3 over r 2 _> 0 is computed instead, and 
conclusions are based o n / 3 .  The warning is tha t /3  can be a horrible 
substitute for B(g ) when p is very large, as the following simple example 
demonstrates: 

Assume that g(72) is such that t = 1/(1 + r 2) is distributed accord- 
ing to 

g't) o( ta-le -bt, 0 < t < 1, (B.16) 

and take, fox" instance, a = 2 and b = 12 so that E(t) = 0.167 (recall 
that in Example 10, moderate values of r 2 were contemplated.) The 
following table shows the ratio B (g)/ /3 for several values of p: 

p 4 8 20 50 1000 

B(g)/B__ 3820 28813 479259 5.25 • 10 6 2.6 x 108 

Thus, the larger p the worse/3,  even though the larger p the better we 
can estimate 0. This phenomena is, at the very least, disturbing, and it is 
not a peculiarity of the particular g selected. Similar effects occur with 
virtually any proper g (Bayarri and Berger, 1994). 

Of course, this not need to be the case in evety testing situation 
involving high dimensions. Let us revisit Example 10 once more, using 
now a full two-level hierarchical prior: 

Xi ,~ N(Oi, 1),  i = 1 , 2 , . . - , p  

0i ~ N ( # ,  1 ) ,  i = 1, 2 , . . . , p  (B.17)  

t* ~ o 0 4 -  
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Assume now that the goal is to test H0 : 01 = 2 versus HA " O1 ~ 2. 
Again, we can compute the Bayes factor B(g) tbr some g, or avoid the 
specification of 9 and compute the infimum of Bayes factor, B over all 
values of #. For the non-infon'aative prior 9(P,) ex con.stant, the ratio 
B(9)/B__ can be computed to be 

B(9___~)=t? ~p-1 e x p {  l p - 4  p l(:r* -- Zl)2} (B.18) 

where ,~* is the mean of x2, z3, .  �9 �9 Xp. Some particular values of this 
ratio are: 

p B(9)/_B 

8 1.143 exp{0.219(:?* - xl )  2} 
50 1.020 exp{0.245(:T:* - :~1)  2} 

1000 1.001 exp{0.25(.~* - x l )  2} 

which does behave as it could be expected. 
As an overall conclusion of this comment, we could say that, when 

dealing with very high dimensions, while we have been warned that large 
classes are useless, it might be the case that sensible classes am much 
too small. Besides, robust answers may be sensible approaches to a 
full Bayesian analysis or they can be clearly inappropriate, and whether 
one or the other applies is not always clear without assessing the prior. 
Thus, in certain problems in high dimensions, it might not be possible 
to avoid strong, detailed prior specifications, no matter how difficult or 
time consuming it can be. 

JOSI~ M. BERNARDO (Univet:~idad de Valencia) 
I would like to suggest the exploration of an information-based class 

of priors to study robustness. 
Let po(O) be a prior distribution for the quantity of interest 0 which 

may be claimed to have some priviledged position, either as a good ap- 
proximation to an honest subjective prior, or as some accepted standard. 
Then, there are a number of foundationally based arguments (see e.g., 
Bernardo and Smith, 1994, pp. 154-160) to consider the class 

fe  po(O)~ ~ } El = { Lp(O); 1,o(0) log2 dO < 
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for some e > O. Indeed, 

(i) the logarithmic divergence has an interesting interpretation as 
the expected loss to be suffered if p(O) is used instead of po(O), 
when preferences ate described by a proper, local score rule, 

(ii) the utility constant e may be given an information-theotetical in- 
terptetation as the number of bits of information which are nec- 
essary to recover po(O) from p(O) (Renyi, 1962/1970, p. 564), 
and 

(iii) the results would be invariant under one-to-one reparametriza- 
tions of the parameter of interest. 

Better still, if p(x  } 0) is the model to be used, one might consider 
the class 

fu ~,,0(x) 

where 
/ .  f 

"(*) = Jo v(:~ I o)v(o) do, ,~o(x) = ]o p(x t O)vo(O) do. 

In this case, 

(iv) the results would be robust with respect to the dimension of O, 
and 

(v) one explicitly considers ptediction robustness. 

For a given sample {a : l , . . . ,  a:n}, one could go ever further and 
analyse robustness with respect to the model by considming the class r3  

fv ~0(* I*l,...,:,,',d & < d, {p(x I 0); rr0(z I : q , . . . ,  :c,~) log2 7r(zlCCl,...,zn) 

where rr0(a: I z l ,  �9 �9 �9 a:,~) is the reference posterior predictive distribution 
(Bernardo, 1979, Berger and Bemardo, 1992) which con'esponds to 
the hypothesised model po(z t0) and rr(z [ a : l , . . . ,  xn) is the reference 
posterior predictive distribution which corresponds to any other model 
v(*10). 
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JUAN A. CANO (Universidad de Mltrcia) 

First let me compliment James Berger on his paper and talk that inter- 
estingly review a number of general issues in Robust Bayesian Analysis. 
Although, in the last years, there have been several reviews on the Robust 
Bayesian approach to inference, for instance, Berger (1984, 1990) and 
Wasserman (1992b), all of them are different from each other because 
they address different points; Berger (1990) focuses on sensitivity to the 
prior, Wasserman (1992b) deals with methodological advances up to that 
date and in this paper the author mainly presents his own opinions on 
general issues to statisticians not in the field. 

The discussion of a review is always a difficult task but in this case 
it has additional difficulties because when you read the paper you think 
that all that has been done is said and all that might be done is also said. 
In spite of this, I will give my own opinions on some issues 

My first comment is related to those facts this review addresses 
to statisticians not in the field. In Subsection 1.1 an overwhelming 
number of motivations to adopt the robust Bayesian viewpoint are given. 
Particularly good seems to me the idea of showing the lower bound/9, 
along with the respective P-value, when teaching and reporting to the 
users on hypothesis testing problems. A similar good idea would be 
to present the optimal robust credible set as defined in 4.6 along with 
the respective confidence interval; obviously, cautions pointed out in 4.6 
should be taken into account. On the other hand, it would be appealing 
for statisticians not in the field, mainly tbr classical statisticians and 
even /'or mathematicians, to undertake bayesian robustness problems 
where involved mathematics is needed; for instance, in Moreno and Cano 
(1992) a partial solution of the Monge-Kantorovich problem provides 
an approximation to the problem of sensitivity with respect to the prior 
for classes of bidimensional priors having specified marginals. 

Second, I specifically focus my attention on the problem of robust- 
ness with respect to sampling models. From a mathematical point of 
view the use of the Dirichlet process and other devices to put priors on 
the space of all probability distributions is very charming but it has some 
drawbacks that are being solved as is shown in Lavine (1992b) and ref- 
erences therein. On the other hand, to consider nonparametric classes 
of likelihoods such as .T'~: defined in subsection 4.4 reduces the problem 
to one of sensitivity with respect to the prior but does not reflect typical 
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types of uncertainty in g(xil8), tile density of the observable random 
variable Xi,  so that the other classes .T'f and .T g suggested by the author 
are more appealing. In Cano and Moreno (1993) a class of likelihoods 

{z: l(0) = 
?t 

i = 1  

where the class Q in .T'f is a density band class, say, a .~,~ type class, is 
considered. This class is not too large because it combines use of.F~ and 
~.~ and furthermore it is mathematically tractable. Cano and Moreno 
(1993) provides a way to compute bounds on posterior quantities with 
respect to this class in the discrete case; nice maths including Lagrangian 
multipliers and mathematical programming are needed. It is there shown 
that new difficulties emerge yielding undesirable results as is shown in 
the following example. 

Example 1. Consider 2( = {xl, x2, x3} and @ = {01,82, 03, 84, 85}. 
Assume the prior 7r(Oi) = 0.2; i = 1 , . . . ,  5. Let 9o(xilSj) be as dis- 
played in table 1. 

X 1 X 2 X 3 

81 .1 .2 .7 
82 .2 .3 .5 
83 .4 .3 .3 
84 .5 .3 .2 
05 .7 .2 .1 

T a b l e  1. Base probability mass fitnction go( xi [O j ). 

Consider the class ,T" with e = 0.2 where q(xi[Oj) E ~ with 
91(xilSj) = 9o(xilSj) + 0.1 and 92(xilSj) = 9o(xilSj) + 0.1. For dif- 
ferent samples, the upper and lower bounds of the posterior probabilities 
of {03} as the sampling model ranges over .T, denoted respectively by 
P and P__, are displayed in table 2. Here R denotes the corresponding 
ranges as given by P - _P. 

Table 2 shows a surprising drawback: in our example, adding data 
results in a larger R. Even more, consider the class of probability mass 
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X3 (X2, X3) 

P .15 .17 
P .18 .22 
R .03 .05 

Table 2. Posterior bounds for  different samples. 

functions 

.~,g = {g  : gO(XilOj)  -- (~ ~ g ( x i l O j )  ~_ go(x i ]Oj )  -n t- ~}.  

The respective Pp_ and P for the sample x2 are 0.125 and 0.4 for t5 = 0.1. 
But if we repeatedly observe x2, an asymptotically vacuous answer, that 
is P__ = 0 and P = 1, is obtained for any/~ > 0. This shows that the 
nature of the problem of global robustness with respect to the likelihood 
is very different to that related to the prior. 

My conclusion is that robutness with respect to sampling models 
needs further research and the finding of inherent robust situations in 
this context is needed. 

JULIAN DE LA HORRA (Universidad Autdnoma de Madrid) 

It is really hard to add something interesting to this complete review 
of recent developrnents in Bayesian robustness. 

I would like just to point out an idea for the case in which the 
parameter space is multidimensional. Sometimes, it is relatively easy 
to specify the prior marginals, but the joint prior distribution may be 
extremely difficult to elicit. There exists a vast literature about families 
of multivariate distributions with fixed marginals. These families of 
distributions are well-studied and this could be an advantage for knowing 
whether the prior beliefs fit to one of them. 

In De la Horra and Fernfindez (1994), the well-known Farlie-Gum- 
bel-Morgenstern system (see Johnson and Kotz (1975, 1977) for a good 
description of this family of distributions) is used for carrying out a ro- 
bustness analysis with respect to departures from the assumption of prior 
independence. The density functions of the Farlie-Gumbel-Morgenstem 



80 James O. Berger 

family are given by 

7r~,(01, 02) = f(O1)g(02)[1 +/k(1 - 2 F ( 0 1 ) ) ( 1 -  2G(02))], 

)~ E [-1,  11, 

where f(01) and 9(02), F(01) and G(02) are the marginal densities and 
the marginal distribution functions, respectively (both fixed). 

This model allows for moderate departures fi'om independence and, 
therefore, could be suitable for situations in which the marginal priors 
are easy to elicit and we have reasonable confidence in the assumption 
of prior independence, but we are not absolutely sure about it. The main 
problem with this class is that it is a parametric family and may be too 
narrow for some situations. But, even in this case, the simplicity of 
its analysis still makes this class worthy to be used at a first step of a 
robustness study, because, if a lack of robustness is found for this class, 
the same conclusion would be reached for a wider class (possibly, much 
more difficult to analyze). 

Similar studies could be carried out with other well-known families 
of multivariate distributions. 

JACINTO MARTIN and DAVID RIOS-INSOA 
(Universidad Polit~cnica de Madrid) 

Our discussion of Berger's excellent paper will be limited to some 
general remarks and a few technical points. 

Traditionally, Bayesian analysis has been criticised on three ac- 
counts: i) excessive precision demanded in the judgmental inputs to 
an analysis; ii) very involved computational problems; iii) failures as a 
descriptive theory of actual inference and decision making processes. 

The first two issues have been dealt with by Berger. The third one 
has led to an enormous volume of literature in the fields of Economics 
and Decision Sciences which seems to challenge Berger's suggestion 
of a common perception of subjective Bayesian analysis as the only 
coherent method of behavior, see e.g., Rios Insua (1994). The good 
news for robust Bayesians is that, somehow, robust Bayesian analysis 
may account for those failures. Consider, for example, a subject I:acing 
an Allais' type experiment. That is usually a fairly new situation for 
him and he has to respond without much analysis and guidance. We 
should expect him to have imprecise preferences, modelled through a 
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class of utility functions. If he is incoherent in the experiment, we could 
explain it by arguing that some functions in his class lead to one type 
of choice in the experiment and other functions lead to the opposite 
choice. A descriptive account of this type of model may be found in 
Leland (1992). Our first experimental results, Rios et al (1994), indicate 
that this might be an alternative explanation of those failures, fitting 
nicely in the robust Bayesian framework: incoherent perforrners are just 
imprecise perforrners who have not devoted enough time to think about 
decision making problems. 

We believe that most robust Bayesian analysis has been oriented 
towards inference problems, hence the emphasis on studying robustness 
mainly with respect to the prior and, to a lesser extent, to the likelihood. 
However, that theory is insufficient for decision making purposes, since 
it forgets another essential component, the utility/loss function. Berger 
identifies three reasons for this, but we are in partial disagreement. First, 
statisticians have avoided utilities, but perhaps because of traditional 
training in classical methods: eliciting utilities is not that difficult, and 
is probably easier than eliciting probabilities. At least that is our applied 
and didactical experience. Second, the Decision Analysis (e.g., Keeney 
and Raiffa, 1993) and Stochastic Dominance (e.g., Levy, 1992) literature 
have identified classes of utility functions, which would allow a theory 
parallel to that of robustness with respect to classes of priors. More- 
over, utility-only studies are probably easier than prior-only robustness 
studies, since the former case involves linear operators. 

We agree, though, with the fact that prior-utility (and model) ro- 
bustness studies are much more difficult computationally, see Proll et 
al. (1993) for comparisons. But this should be seen just as a challenge: 
mote work should be devoted to this area. Specifically, we believe that 
the computation Of nondominated actions with respect to classes of priors 
and utilities is a fundamental problem for those studies, which deserves 
urgent research. Incidentally, we believe that reweighting schemes such 
as those in section 5. I might provide a way forward, with switches from 
(h, 7r) to (h/, 7r~), rather than from 7r to 7r/. 

Berger mentions at various points determining whether a range of 
a certain posterior quantity is large or not, as a way to suggest whether 
additional analysis is necessary. But when is large large enough? The 
Robust Bayesian literature remains quite silent about this question, which 
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deserves additional work, if we do not want to rely on informal methods. 
Calibration procedures in McCulloch (1989) are probably good ideas. 

Finally, a minor technical point. Most robust Bayesian axiomatisa- 
tions lead to a convex class of priors modelling imprecise beliefs. Thus, 
a minimal requirement for a class in a robustness study is that it is con- 
vex. This would invalidate some classes used in the literature, specially 
some of the parametric classes. 

The following contributions were later received in writting. 

BRUNO BETR() (CNR-IAMI, Milano) 

Thanks to professor Berger for his comprehensive review of the 
rapidly growing field of robust Bayesian analysis. 

My only comments concern the Generalized Moment Class which 
in the paper is referred to under the heading of Moment Class. Indeed 
the class defined as 

C 
F = {rr: Je  Hi(O)rr(dO) <_ r i =  1 , . . . , n }  (1) 

where Hi am given rr-integrable functions and c~i, i = 1 , . . . ,  n, am 
fixed real numbers, includes a great variety of situations, not just sets of 
priors with a specified collection of moments. Hem are some of them: 

�9 given bounds on quantiles (f9 = R, Hi(0) = I(-oo,a~)(0)); 
�9 given bounds on prior probabilities (Hi(O) = IK i (O), I(i C 8) ;  
�9 given bounds on marginal probabilities of data (Hi(O) = J~r i 

lx(O) dx, c X). 
Notice that restrictions of  the above classes can be accomplished, 

without exiting the Generalized Moment Classs, if rc is taken to belong 
to a Contamination Class or to a Mixntre Class like the ones of Example 
7 in Berger's paper. Indeed it is easily seen that such restrictions can be 
incorporated without affecting the linearity of the constraints (1) and the 
linear ratio form of r  

Therefore the procedure for optimization within a Generalized Mo- 
ment Class outlined in Betrb, Mgczarski and Ruggeri (now 1994; to 
appear in J. Statist. Planning and Inference) provides a rather general 
tool for robust Bayesian analysis. 
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A. DASGUPTA (Purdue University) 

As always, Professor Berger has made a contribution that is illu- 
minating, informative, very enjoyable, and frequently provoking. Es- 
pecially useful and gratifying is the extensive bibliography, a point that 
deserves mention. On my part, I will do two things: I will elaborate a 
little on a few points made by Professor Berger in his article, but I will 
devote practically all of my time and space to a number of points not 
explicitly made in the article. 

Exactly what constitutes a study of Bayesian robustness is of course 
impossible to define. It seems, however, that Bayesians and others alike 
clearly appreciate the value and importance of a study of Bayesian ro- 
bustness. A few years ago, after a talk given by Persi Diaconis, Herman 
Rubin stood up and said that all statisticians should work only on prob- 
lems of Bayesian robustness. I feel less inclined to go that tar, but the 
comment signifies the importance of research in this area. Importance 
and usefulness are sometimes completely different things, however. Ul- 
timately the value of statistical work will be judged on the basis of 
whether people will use methods arising out of this work. It seems nat- 
ural and actually nearly inevitable on hindsight that work on Bayesian 
robustness started out in the form of sensitivity analysis. In fact, for a 
while, that is practically all one saw. These were important on a num- 
ber of grounds: they certainly helped clarity questions regarding when 
posterior robustness will usually obtain, occasionally they helped under- 
stand the role of the dimension of the data, and to me personally they 
shook us by our knees and showed that apparently abstract mathemat- 
ics can provide wonderful tools in obtaining answers: moment theory, 
Choquet capacities, operator differentials, these have been enormously 
useful in Bayesian robustness problems. It is not clear, at least to me 
personally, and on this I think I differ with Professor Berger, that beyond 
that sensitivity studies have any transparent and concrete use. I have 
not found a really satisfactory answer in my mind to the question of 
what should one do with the range of a posterior mean. I know there 
are plausible answers: continuous refinement, or use of the range as a 
credible interval by itself, etc. Classical robustness grew into a success- 
ful and flourishing area because they were able to answer to at least a 
reasonable degree the question of what is robust. All of this research 
would have been most likely much less influential if the results only 
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went as far as saying the sample mean is not a good thing to use unless 
you have pretty much normally distributed data. They were successful 
in providing alternatives that were apparently acceptable: the obvious 
energy that went into studies of M and L estimates is a testimony to 
that. Having said that, it is not at all clear what would be a criterion for 
prescription in our area. In my paper with Mei-mei Zen, I had shown 
that a posterior minimax choice, coincidentally but fortunately, results 
again in a Bayes procedm~e, Bayes with respect to one of the priors one 
started with. But undoubtedly, we will not see this phenomenon very 
often in other problems. Professor Berger's due concern about whether 
"robust choices" are not silly from a "real Bayes" perspective therefore 
has to be regarded with a lot of seriousness. In spite of that, more effort 
should probably go into this issue than has so far. 

Another point that Professor Berger (implicitly) makes and one with 
which I tully agree is that it is now time for us to go beyond the canonical 
problems. These are also the problems that are the hardest to "solve". 
The frequentists have the blessing that the technology of large sample 
theory is now so advanced that even the nastiest problem with the dirtiest 
model is amenable to some structured theory in the tbrm of limit theo- 
rems. The issue of finite samples aside, this is nice within the frequentist 
domain. Models that people really care about: all kinds of censoring, 
various regressions (Cox models, many more), and the now popular 
semiparametric models are just a few examples that really do need to be 
looked at. Will the choice of a link function matter? To what extent? 
These are entirely different sensitivity questions we can and should ask. 
It may very well be that no answers are possible: a consequence I will 
personally find very unlbrtunate. But we don't  know that. There is 
also the well understood need of a simultaneous likelihood-prior-loss(?) 
robustness study. But I have my doubts that much su'ucture will ever 
come out in this problem: we will be only successful in seeing what 
we knew we will see. I will have something more to say on this later 
Let me now touch on a few things that are not explicitly addressed by 
Professor Berger, but do seem to be natural. I have no real doubts in 
my mind that questions I ask myself are often "infected" with a dash 
of frequentism; I therefore caution the typical reader of this article that 
parts of what I will now show can appear to be grotesque and strange. 
I will give some precise theorems, mostly without proofs, because of 
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space and also because they will all appear elsewhere. 

1. Robustness with respect to the likelihood: the role of  dependence. One 
can make a very short case for this: real data are never really iid. Many 
questions suggest themselves: is the iid inference reasonably robust 
against moderate dependence, do noninformative or "robust" priors give 
some protection, etc. I will only talk about the first issue here, in the 
form of two results, one of which is rather surprising. For the rest of 
this part of the discussion, let us have the implicit understanding that we 
have data coming from a Gaussian process. 

Theorem 1. Consider n obselwations coming fi'om a weakly sta- 
tionary Gaussian process with mean of each observation equal to 
t, and a covariance kernel given by r ( i ,  j )  = r(]i  - Jl); let us pre- 
tend as though the covariances are arising from a continuous time 
fimction r(x)  (as is the case with how L estimates are defined, for 
instance). For estimating t using mean squared erJvr, let R(n)  stand 
fi)r the ratio of  the Bayes risl,:~ of the iid case Bayes estimator under 
the true model and the iid model; assume a standard normal prior 
for t in this. Then l i m R ( n )  (as n tends to infinity) exists under 
(fi'equently satisfied) conditions, and fitrthermore the limit equals 
i + 2. j0 

Corol lary  1. I f  dam are coming f i rm an Ornstein Uhlenbeck plv- 
cess that we mistakenly think as lid, then we will suffer a Bayes risk 
3 times as large as for the iid case even in the limit. 

Pro@ The covaliance kernel is r (x)  = exp( - ]z ] ) .  

This is somewhat disappointing; even an exponentially decreasing 
covariance results in a loss 3 times in magnitude. With slowly varying 
covariance kernels (see Karamata or Feller) as is the commonly made 
assumption in the fi'equentist world, the loss will often be infinitely more! 
One can state a more general version of this result in terms of two general 
kernels, not restricting to the case when one of them is the iid case. This 
result, because it talks about Bayes risk, is half-frequentist. The next 
result is purely conditional. 
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Theorem 2. Consider a 100(1 - (~)% credible interval that & the 
correct Bayesian interval if the data were lid. Consider the pos- 
terior probabili~ of  this interval when the process in reality is an 
AR(I  ) with parameter (9. Then, as r~ tends to infini~.; this posterior 
probability converges a.s. to 2A,((1 - (9).z~/'2) - 1, it being under- 
stood that the underlying probability space uses the true marginal 
distribution as the measure. 

Corollary 2. MiM at ttoregression is not much problem in this case 
if  we have lots o f  data, but being close to the unit root case is 
disastrous. 

My first version of Theorem 2 was corrected by N. D. Shyamalku- 
mar, a graduate student at Purdue. 

2. Group decisions: will they usually agree. Clearly this smacks of 
frequentism; but the apparently neat nature of the result following might 
make up for something. 

Theorem 3. Consider estimating a univariate normal mean t by 
using a credible interval with n iid observations. Bayesian 1 has 
N(O, "r'~) and Bayesian 2 has N(O, "r if) as prior for t. Denote by 
C1 ( X )  the 100(1 -  (~) % inte,val that Bayesian 1 will use (fleft alone. 
Let 19,2 (X )  denote the posterior probability of  C1 (X )  if  Bayesian 2 
iS fi)rced to use C1 ( X )  although it is not his Bayes solution. Then, 
f in 'any/3 such that 1 - [3 < 1 -ce,  P t {P2(X)  < 1 - / 3 }  converges 
to zero fi)r any t, as r~, tends m infini~. , and in fact 

l im{n, exp('n2"9/2).Pt{P.2(X) < 1 - [3} } 

= X / ' ~ .  1/3,, 

w h e r e  = ( / 3  - �9 

Some remarks are necessary because the statement can be baffling. 
The Theorem asks how often use of the other Bayesian's inference will 
lead to bad perfonuance if we have lots of data. The convergence to zero 
is not surprising. What is surprising is the extraordinary fast convergence 
and even more the fact that under each t, the limit on the fight side is 
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the same. In other words, so far as pointwise limits are concerned, t 
vanishes altogether from the field in the long run. Is there any role of t 
at all'? Yes indeed; the convergence is not uniform !! 

Table 1 gives some numbers for finite n. They clarity the finite case 
to some extent. I refrain from discussing. 

l - i l l =  0.7 l - a = 0 . 9  

r~ = 1 r,~ = 4 

0 n = 2  n = 5  n =  10 n = 2 0  n = 3 0  

0.5 0.00146033 8.1124 x 10 -13 O. O. O. 

1.0 0.0116026 1.37753 x 10 -9 O. O. O. 

1.5 0.0590335 6.91185 x 10 - r  O. O. O. 

2.0 0.196045 0.000103836 O. O. O. 

2.5 0.440885 0.00477846 6.43929 x 10 -15 O. O. 

3.0 1.0 0.0703178 4.52661 • 10 -l~ O. O. 

3.5 1.0 0.361147 2.75817 x 10 -6 O. O. 

4.0 1.0 0.777161 0.00152334 O. O. 

4.5 1.0 0.969992 0.0835089 O. O. 

5.0 1.0 1.0 0.578982 2.22045 x 10 -16 O. 

5.5 1.0 1.0 0.962497 2.44078 x 10 -9 O. 

6.0 1.0 1.0 0.999612 0.00015012 O. 

6.5 1.0 1.0 1.0 0.0839436 O. 

7.0 1.0 1.0 1.0 0.80429 1.99618 • 10 -12 

7,5 1.0 1.0 1.0 0.99901 0.0000134143 

8.0 1.0 1.0 1.0 1.0 0.0721139 

8.5 1.0 1.0 1.0 1.0 0.899443 

9.0 1.0 1.0 1.0 1.0 0.999971 

9.5 1.0 1.0 1.0 1.0 1.0 

Tab le  1. P o ( P 2 ( f ( )  < 1 - [3)for given n and 0 

Here is another result, which follows on use of  Dini's theorem, but 
I am almost certain it fol lows from known results on the postedor CLT 
or even the Portmanteau theorem. 

Theorem 4. In the set up of Theorem 3, let P i (X )  and P2(X) 
denote the posterior probabilities of  the common null hypothesis 
Ho: t < 0 under the two stated priors. Then the Pt joint distribution 
of (P I (X) ,P2(X) )  converges weakly, as n goes to infinity, to a 
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singular distribution supported on the main diagonal of  the unit 
square. 

Remark. Of course this is expected. The result can be stated in 
far greater generality; consequences of such results are that with a large 
probability, the two Bayesian's answers hang very close together. The 
case of k statisticians can be done with appropriate formulation. 

The valuable cases are cases where the two Bayesians differ more 
seriously, like normal vs. t. I believe similar results are valid there and 
they will appear elsewhere. 

3. Robusmess with respect to outliers: Shrinking neighborhoods. Again, 
so tar as concrete theory goes, the frequentists within their own domain 
are ahead on this. I will give only one result, purported to show that it 
is seemingly imperative to use shrinking neighborhoods, at least in this 
formulation. 

Theorem 5. Consider dam that are N ( t, 1) 100(I -e )% of the times 
and the lest of  the times we see an outlier at some x. In principle, 

can depend on the sample size n. Consider estimating t using a 
N(0, 1) prior and mean squared error as criterion. Let r(n) denote 
the Bayes risk of  the estimate that would be Bayes in the absence 
of  outliers (6 = 0). Then r(n) is unbounded unless ~ = O(1/n);  
it converges to zero only if c = o(1/n). If  e is O(k /n )  (meaning 
exact order), then r(n) converges to k2z 2, and hence with the usual 
definition, the Influence of  an outlier is unbounded. 

Many other questions can be raised here. I would not go into them. 
To sum it up, this is another profound contribution by Professor 

Berger to the profession. This made me think, helped me to under- 
stand. In chapter 14 of his book, Nicholas Young (the operator theorist) 
writes: "a mathematical model never describes the behavior of a system 
exactly...How well will an aircraft stand up to unpredictable external 
disturbances - -  gusts of wind or a stewardess wheeling a drinks trolley 
down the aisle? One might wonder why the idea (of robu,~t designs) was 
such a late starter. Part of the answer must be that engineers were un- 
aware of the relevant theorems and operator theorists of the engineering 
problem. The connection is developing rapidly .. .". Perhaps there is 
some interest in simply exploring as a matter of scientific truth whether 
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classical and Bayesian robustness will lead to common grounds: can 
one justify use of M estimates from a robust Bayesian viewpoint? From 
a strictly likelihood principle point of view, evidently not. But perhaps 
from another viewpoint. It is my feeling that that can only be good for 
the community as a whole. I offer my deepest gratitude to Professor 
Berger for again doing what he always does: open new doors. 

PAUL GUSTAFSON and LARRY WASSERMAN 
(Carnegie Mellon Univet:~ity) 

1. Introduction. We congratulate Professor Berger for this superb review 
of robust Bayesian inference. Professor Berger may rightly be called the 
leader of this field and this paper is a useful summary of some of the 
contributions he and others have made. We agree with his main points. 
We thus take this opportunity to elaborate on some points that he did 
not have space fo~. We also raise the question of why robust Bayesian 
techniques are not in routine use. 

2. Foundational Issues. Coherence arguments are often used to justify 
the Bayesian approach. These argument may be relaxed to justify ro- 
bust Bayesian inference. The most thorough recent account is Walley 
(1991). So it seems that robust Bayesian inference is on secure ground. 
There is one annoying problem that arises, however. The problem was 
dubbed "dilation" by Seidenfeld and Wasserrnan (1993). The problem 
is that bounds on probabilities may become uniformly more precise by 
conditioning. Specifically, consider a set of probability measures F, let 
A be an event and let B = {B1 , . . . ,  B,~} be a partition. We say that/3 
dilates A if for i = 1 , . . . ,  n, 

inf P(A[Bi) < i n f P ( A)  _< supP(A)  < supP(AlBi ) 

with at least one of the outer inequalities being strict for some i. The 
infimums and supremums are over P. When dilation occurs it seems 
that there is incentive to not observe .Di, which seems counter to the 
usual Bayesian philosophy. Seidenfeld and Wasserman (1993) showed 
that dilation is not pathological; most sets of probabilities dilate. We 
might add that even if the dilation is not uniform, that is, even if the 
bounds expand only for some  Bi, then there is still cause for concern. 
In a quantile class, tbr example, we begin with precise probabilities 
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on given sets A1, �9 �9 �9 Ak. It is somewhat embmTassing to start with 
inf P(A 0 = sup P(Ai) = Pi, say, and then find after collecting data 
we have inf P (Ai lx  ) < pi < sup P(Ailx) even if this doesn't  happen 
for all x. We wonder if Professor Berger has any advice on what do to 
in these circumstances. 

3. Local Sensitivity. We would like to elaborate on Professor Berger's 
comments regarding the local assessment of sensitivity via functional 
differentiation. The hope is that local methodology will lead to sim- 
ple, easily-computed diagnostic measures of the sensitivity of posterior 
distributions to priors. As a reflection of the overall sensitivity of the 
posterior distribution to the prior, it seems reasonable to start with the 
limiting ratio 

, t (n x, 
s(II, Q; x) = lira 

,.t(n, Q , )  ' 

where YI is the base prior, Q~ is the e- contamination of II by Q, super- 
script x denotes Bayesian updating after observing data x, and d (not 
necessarily a metric) measures distance between distributions on the pa- 
rameter space. To permit a variety of deviations from the base prior, we 
consider 

s(n ,  r ;  .:) = s,,t) s(rI, Q; .;), (1) 
Qer 

as a measure of local sensitivity, where F is a class of priors. This 
is a nonparametfic analogue of the diagnostic proposed by McCulloch 
(1989), and is similar in spirit to the fi'equentist diagnostics of Cook 
(1986). When d is total variation distance, S(II, Q; :~) can be interpreted 
as the restricted norm of a Frrchet derivative. Diaconis and Freedman 
(1986) considered the total variation case, though not in the context of 
assessing sensitivity to the prior. 

As discussed in Gustafson and Wasserman (1993), there is an as- 
ymptotic problem with using (1) as a sensitivity diagnostic. Specifi- 
cally, under a weak condition on f', s(Fi, F; x) will diverge to infinity 
as the sample size increases, even though we know the prior becomes 
less important as more data are collected. This problem persists if 05- 
divergence (which includes Kullback-Leibler divergence as a special 
case) replaces total variation distance, or if geometric contamination 
replaces e-contamination (the geometric contamination of density rr by 
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density q is the density proportional to pl-eqE). Thus it appears to be vei N 
difficult to construct a sensible local sensitivity diagnostic based on the 
whole posterior distribution, unless we are willing to restrict ourselves 
to a parametric class of priors. 

An alternative strategy explored in Gustafson (1993a) is to restrict 
attention to a particular posterior quantity, for instance the posterior ex- 
pectation of a function 9 (0) of the parameter. To use functional differ- 
entiation, we must embed the class of priors in a linear space. One way 
to do so is to consider (unnormalized) prior densities of the form rr + u, 
with u a nonnegative function. Based on invafiance considerations, a 
sensible way to measure the size of u, or equivalently the discrepancy 
between rr and rr + u, is by 

(s 
size (u) = 11"~/~; Illb> = (u'/~)z"sr* 

e s s  s t l  1) "u,/~ 
(-) 

: p <  oo, 
(.9) 

: p = -  OO. 

With respect to this norm, we can diftbmntiate Tgu, the posterior ex- 
pectation of 9(0) when the prior density is rr(0) + u(O). Under weak 
conditions, we obtain the Frdchet derivative at 0, To(0), and its norm: 

"40)'~ T~(O),,,, = Co,,,~ o(o), ,~(o) ) '  (3) 

where 

NZ'3(0)ll = max{Ha+; HNq, Ha-; HNq}, (4) 

,~(o) = (o(0)  - p & - " ( 0 ) ,  (5) 
,~(0) 

with py = E~9(O), and a + = max(a,  0), a -  = - rain(a, 0). Here q is 
the extended real number satisfying p - ]  + q-1 = 1. We have (4) as a 
measure of local sensitivity of the posterior expectation to the prior, in 
analogy to (1). 

The choice of p in (2) appears to be very important. In the case 
p = 1, the underlying prior structure is based on e-contamination, and 
the quantity (4) has been investigated by Ruggeri and Wasselman (1993), 
Sivaganesan (1993c), and Srinivasan and Trusczcynska (1990). When 
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p = o~, the underlying distance is the density ratio metric, and there 
are connections to the work of Ruggefi and Wasserman (1991). The 
problem in the Ibrmer case (p = 1) is that (4) is of constant (or increasing) 
order asymptotically, and therefore does not reflect the asymptotically 
diminishing role of the prior On the other hand, when p ----- oo, (4) 
asymptotically has no dependence upon the base prior. In practice this 
means the norm does not reflect the degree of data-prior conflict, again in 
contrast to what we would like to see in a diagnostic. Both these problems 
are obviated by taking an intermediate value of p; a convenient choice is 
p = 2, at least when the parameter space is one-dimensional. For higher 
dimensions, we find that the norm vanishes asymptotically only when p 
is larger than the dimension of the parameter space. This is an instance 
of the difficulty with high-dimensional parameter spaces alluded to by 
Professor Berger in Section 4.3.2. For a more detailed discussion of the 
pertinent asymptotics, see Gustafson (1993b). A practical strategy is to 
perturb one-dimensional aspects of the prior (marginals or conditionals) 
in turn; then using p = 2 suffices. 

4. Why Isn't Everyone a Robust Bayesian ?. Efron's (1986) paper "Why 
Isn't Everyone a Bayesian?" raised an important question: why isn't 
Bayesian inference the dominant form of statistical analysis, given its se- 
cure philosophical and logical foundations? Things have changed since 
1986 and, while it might not be that Bayesian statistics is the dominant 
mode of inference, it is much more so than seven years ago. This is 
largely due to advances in statistical computing. Where philosophical 
arguments fail to convince, ease of use does. 

So why isn't everyone a robust Bayesian'? Or for that matter; why 
isn't every Bayesian a robust Bayesian'? Our impression is that everyone 
who uses Bayesian methods agrees that some form of sensitivity analysis 
is important. But few use the formal techniques of robust Bayesian 
inference. Most often sensitivity analysis is not done or, at best, the 
data analyst tries out a few priors and stops there. Why haven't robust 
Bayesian techniques caught on? 

We believe there are two reasons. First, there is the computational 
burden. Robustness is most important in complicated models. Formally 
constructing classes of priors and carrying out all the computations in 
complicated models is a serious burden. Even using an e-contaimination 
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class with unrestricted contaminations usually involves several high- 
dimensional maximizations. 

Second, and perhaps most important, we tend to overlook the fact 
that people need sensitivity analysis before they consU'uct a prior. That 
is, we need to know when it is worthwhile to even bother constructing 
a real prior, rather than using some convenient default prior. To answer 
this question, we need methods for assessing sensitivity to default pri- 
ors which are usually improper. The usual techniques cannot be used 
in this case (Wasserman 1993) though ongoing work (Srinivasan and 
Wasserman) suggests that it is possible to derive new diagnostics for this 
c a s e .  

It may be that local diagnostics are an answer to both problems. 
Sometimes they are quicker to compute and it may be possible to extend 
them to handle improper priors. If so, then the development of local 
sensitivity methods may be an important direction for robust Bayesian 
inference. In his discussion of Diaconis and Freedman (1986), Professor 
Berger extolled the potential value of local diagnostics. We are interested 
to know if he still feels this is a fruitful direction. 

JOSEPH B. KADANE* and CID SRINIVASAN 

(Carnegie-Mellon Univer~'ity) 

Professor Berger is to be congratulated for his excellent review which 
pulls together so many disparate strands of work. That so much has been 
accomplished is a great credit to Professor Berger, and the students and 
collaborators he has inspired. 

We wish to share a question about this body of work, however, with 
a view toward strengthening Bayesian robustness work in the future. We 
start with a likelihood, prior, and loss function believed to be accurately 
assessed, but wonder if the quality of the decision about to be made 
might be severely affected by errors in the inputs. The "typical" way 
to address this question in the literature Professor Berger surveys is to 

* The research of Professor Kadane was supported in part by the following grants; 
ONR: N0004-89-J-1851, NSF: SES-9123370, DMS-9005858 and DMS-9302557. 
Professor Srinivasan was supported in part by NSF grants ATM-9108177 and DMS- 
9204380. 
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examine the extent to which the posterior mean changes over a class P 
of prior distributions. 

We agree that sensitivity with respect to loss functions and likeli- 
hoods would also be nice, but concentrate on prior sensitivity, as does the 
literature. To use the posterior mean suggests that the decision problem 
is an estimation problem, and that squared en'or loss, or negative squared 
error utility, is being used. Given the declaration of such a loss function, 
it seems to us that what must be of concern is the sensitivity of expected 
loss (or expected utility), not the sensitivity of the optimal decision. To 
us, the optimal decision is merely a tool in achieving high expected util- 
ity or low expected loss. Two examples illustrate that expected-utility 
robustness is not the same as decision-robustness. 

Example A. Suppose the base prior is normal (0,1), and that the class of 
priors allows for epsilon symmetric contamination (whose mean exists) 
of the base prior. Take the likelihood to be flat (i.e. no data), and loss 
to be squared error. Under each member of the contamination class, 
the posterior (and prior) expectation is zero, so the optimal decision is 
maximally robust. However, the expected loss, which is the variance, 
can be arbitrarily large, as can be seen from the contamination 

{ - n  with probability 1 /n  

XT~ = 0 with probability 1 - 2 /n  , 

n with probability 1/r~ 

so the variance of the contaminated random variable is (1 - e) + 2en 
which goes to ec as ,r~ ---+ oc, for every e > 0. Thus decision-robustness 
does not imply expected-loss robustness. ,~ 

Example B. Suppose again the likelihood is flat, but that loss here is 
absolute error. Suppose the base prior has the following form: with 
probability 1/2 it is uniform on [0, 1], and with probability 1/2 it is 
uniform on [2, 3]. Then the optimal decision is the median, any number 
in the interval [1, 2]. Now suppose an e-contamination of this prior. By 
choosing different contaminations, the optimal decision can easily be 
moved to 1 - 2e or 2 + 2e, but in neither case will it's effect on the 
absolute error be substantial. So hem there is high sensitivity of the 
optimal decision, but robustness of expected loss. Hence expected-loss 
robustness does not imply decision-robustness. < 
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There is one case in which the difficulty we perceive does not apply, 
which is when posterior probabilities of sets are reported. Here the utility 
function is often 2-valued, say 0 if the set does not contain 0 and 1 if it 
does. Then expected utility is exactly the posterior probability of the set, 
so robustness of one is the same as robustness of the other. We hope that 
future work in Bayesian Robustness will take expected-loss robustness 
more seriously. 

MICHAEL LAVINE (Duke Universi~.') 

1. Overview. Let X 1 , . . .  , X.n be an exchangeable sequence of obser- 
vations in a space A" and let .Y" be the set of all probability distributions 
on A'. A prior # is a probability measure on f ' .  In a parametric analysis 
a small subset ~'(~ = {Fo : 0 E 0}  C f is designated and #(See) = 1. 
Berger says "Robust Bayesian analysis is the study of the sensitivity of 
Bayesian answers to uncertain inputs." In this case the inputs are the 
specification of R', the assumption of exchangeability, the data, # and 
possibly a loss function. Berger's paper is primarily devoted to the sensi- 
tivity of Bayesian answers to the way # distributes mass on f ' e  without 
questioning the assumption #(.Y'e) = 1. This is entirely appropriate 
for a review paper because ahnost all the work done so far in Bayesian 
robustness is devoted to the distribution of mass on f'(_). However, in my 
experience and for reasons sketched near Equation (4.12), posteriors axe 
much more sensitive to letting # put a little bit of mass a little bit away 
from .7- e.  

A similar situation holds in regression problems. Let r (z )  be the 
expected value of Y when the covariate is equal to a: and let g be the set 
of all possible regression functions. A prior # is a probability measure 
on ~ .  In a parametric analysis the prior is supported by a small subset 
of ~ .  Inferences may be very sensitive to moving a little bit of prior 
mass a little bit away from the subset. 

Of course inferences may also be highly sensitive to the specification 
of ,-g, the assumption of exchangeability, the data and the loss function. 
Therefore I believe that the major contributions of Bayesian robustness 
in the future will be in these areas and not in sensitivity to the way mass 
is distributed on .U~_). 
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2. Nonparametric Bayes. When there is no parametric subset .T" e de- 
serving all the prior mass statisticians sometimes resort to nonparametfic 
methods. Berger says "Bayesian nonparametrics can be considered to 
be an approach to automatic robustness with respect to model choice." 
Nonetheless, a nonparametfic analysis based on a single prior # does 
not address the question of sensitivity to # and still leaves a role to 
play for Bayesian robustness. Nonparametric priors, including Dirichlet 
processes and Gaussian processes, have features that are chosen for con- 
venience rather than because they accurately represent subjective prior 
belief. Therefore it is still desirable to investigate the extent to which 
inferences vary over small changes to # or over a class of reasonable 
priors. 

3. Inherently Robust Procethtres. In Section 2 Berger talks about inher- 
ently robust procedures, saying "use of distributions with flat tails tends 
to be much more robust than use of standard choices." Some practition- 
ers consider this to be a reason to use flat-tailed distributions. However, 
in problems where robustness is lacking for standard choices, the fact 
remains that there are some distributions consistent with the elicited in- 
puts that give widely different conclusions than other distributions also 
consistent with the elicited inputs. The fact that a neighborhood of priors 
exists over which the conclusions are robust is not comforting if there 
are other reasonable neighborhoods of priors over which the conclusions 
are highly variable. 

But perhaps part of the input is a statement by the investigator that 
"my posterior is robust to small changes in the prior or the data." Then 
it may be sensible to ask whether there really are models and priors for 
which the posterior is robust and, if there are, to use them. However, 
in view of the well known inability of humans to estimate posteriors 
accurately without formal calculations, it is not clear how much weight 
should be given to the input that posteriors are robust. 

4. Motivation for Bayesian Robusmess. In arguing for Bayesian ro- 
bustness Berger says " . . .  the question of interest may not depend on 
accurately knowing many of the parameters . . . .  there may only be a 
few crucial quantities that need to be elicited. Robust Bayesian tech- 
niques can help to identify these quantities." This does seem to be one of 
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the promises of robust Bayesian analysis. But Berger cites no examples. 
Does he know of any? 

ANTHONY O'HAGAN (University of Nottingham) 
Jim Berger has given us an elegant, thoughtful and scholarly review 

of recent work in robust Bayesian statistics. There is an impressive 
number of references, and the fact that the groat majority have been 
published in 1991) or later is a powerful testament to the vigour of current 
research in this field. Yet although there is a lot of work I am just a 
little disturbed at the lack of progress. One area of little progress is 
in tackling multivariate problems. Unless one can show how it can be 
built into morn complex problems, a robust analysis of a model with 
one parameter is a toy, not a practical tool. There are a few references 
to genuinely multivariate work on robustness, but the vast bulk is still 
one-dimensional. Another area of slow progress is applications. Toy 
theory can only lead to toy applications, so the two are linked, but the 
applications picture is a little better. Particularly in the area of using 
heavy-tailed modelling, some of the papers cited in section 2.2 are putting 
these models into practical effect. Here also there is some multivariate 
work, and I would like to add two more refemnces: O'Hagan and Le 
(1993) and Le and O'Hagan (1993) study a class of bivariate heavy-tailed 
models. 

The papers of O'Hagan (1994) and Goldstein and Wooff (1994) am 
cited as examples of applications, but I think it is important to point out 
that these involve ideas of robustness that am not mentioned in this re- 
view, although its coverage is otherwise impressive. In O'Hagan (1994) 
I stressed the importance of modelling and elicitation to robustness. A 
major reason for studying robustness is the difficulty of specifying or 
eliciting prior distributions (or likelihoods or utilities) accurately. Lack 
of robustness is a function of the inaccuracy or vagueness in those spec- 
ifications. Surely the primary way of achieving robustness is to improve 
the elicitation process. The key to this is asking the right questions. 
Modelling needs to express the problem in terms of parameters that are 
meaningful, and about which prior information is most easily expressed. 
Elicitation then needs to ask clear questions about sumrnaries of the prior 
distributions that express the most tinnly held beliefs. There is depress- 
ingly little published work on elicitation, but that might change if it 
were mcognised as a vital ingredient in the Bayesian robustness cru- 
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sade. Garthwaite (1993) and Garthwaite and Dickey (1993) are useful 
recent references. 

Both O'Hagan (1994) and and Goldstein and Wooff (1994) concern 
the application of Bayes Linear methods, which I believe can also con- 
tribute to robustness. The idea here is to use a limited specification of 
the prior distribution and likelihood, and so to limit the number of sum- 
ma~ies that must be elicited. Michael Goldstein has for too long been 
a lone voice advocating Bayes linear methods. He has been develop- 
ing it into a complex methodology capable of handling substantive real 
applications. 

Finally, I object to Jim Berger's use of the word 'objective' in con- 
nection with vague or improper priors. There never was and never will 
be anything objective about such a practice. There cannot be a unique 
improper or 'reference' prior to represent 'ignorance', 'letting the data 
speak for itself', or whatever your favourite phrase might be to try to 
justify these distributions. Which 'objective' distribution one uses will 
always be a matter of subjective choice. 

These grumbles apart, let me repeat my congratulations to Jim 
Berger for an excellent and authoritative paper. 

WOLFGANG POLASEK (Univer:~ity of Basel) 

Jim Berger is not only a leading person in the field of Bayesian 
robustness, he also has the ability to review the work in this area period- 
ically from many subtle viewpoints. Given the limitation of any article, 
his review is thorough and therefore I want to concentrate my discussion 
on rather general issues of Bayesian robustness (B.r.). 

1. The B.r. profile. Following the structure of the paper of J. Berger, I 
want to express my personal profile toward B.r. in the following ascend- 
ing order of importance: 

1) Inherent robustness; 
2) Local robustness (Diagnostics and Sensitivity); 
3) Global robustness; 
4) Computing robustness; 
5) Strategies for modeling robustness. 

This list also shows that robustness covers almost the entire spec- 
trum of applied statistics. Each of the 5 subjects can be further divided in 
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estimation, testing and prediction. Point 3) was renamed (after a sugges- 
tion of Learner 1978) because of earlier attempts to distinguish different 
approaches to B.r. Note that only the last point - modeling robustness - 
is not explicitly discussed in J. Berger's overview, it is only mentioned in 
the last section with the promising title 'future directions'. The absence 
is simply explained, since we rather need much more experiences on B.r. 
techniques and mole available software. 

In the last 50-70 years statistics as a science has grown substantially. 
As a newcomer in science of this century others now respect the ado- 
lescent strength of statistical methods which gained a lot of smartness 
using the advances of modem computing. Now as statistics stands on its 
own feet it is looking for robustness. This means that trying to be good 
looking to others depends on the ability to withstand harder and lighter 
blows on the original intention of statistical methods. 

The last decade in B.r., a decade which can be also considered to 
be pretty much the first serious decade in methodological research, was 
dominated by the advancement of theory. Applications are and have 
been rather scarce in this decade, with exceptions of a few interesting 
approaches like Grieve (1985). So we hope to see rather mole appli- 
cations in B.r. for the future but also more interaction between theory 
and practice of B.r This does not mean we don't  need more theory in 
B.r.B.r. is now very much in a state of an experimental methodology. 
I expect more impact on applications if we have more elegant ways to 
compute and communicate Bayesian or classical robustness. 

Mathematically, the most challenging area is the global sensitivity 
field in B.r. The nerve of any statistical analysis is hit here. As Bayesians 
we are full aware that any choice of a model is highly subjective which 
is only justified by computational convenience and driven by a wide 
acceptance of appliers. Naturally, we want to know if our conclusions 
hold if we make distributional assumptions in the neighborhood of the 
chosen one. The neighborhoods of distributions is the key lbr the range 
of B.r If it is to wide, then we get always a wide range of answers. 
If the class is to narrow then B.r. becomes meaningless. Also the 
curse of dimensionality is felt here. High dimensional variation might 
have a tremendous effect. Reading over all theoretical results obtained 
so far one gets the impression that a theory is waiting out there to be 
detected. Priors, outliers, likelihood and model choice might be amoving 
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pointer on a unknown scale. The only thing which I missed in the 
review is the connection to classical robustness. Since the prior and the 
likelihood is not a disjoint set of assumption there is a need for some 
more interactions in robustness in general. In Polasek (1992) I called 
this combined (classical and Bayesian) robustness effort 'joint sensitivity 
analysis'. 

2. Why B. r. ?. B.r right now comes rather as a meta language than a client 
language in statistics. This means that B.r. now tells the experienced 
Bayesian analyst what are the pro and cons of a certain Bayes procedure. 
B.r. is not developed so far to help an average practioner of statistics 
to find his or her sensitive aspects of an analysis. Therefore I want to 
express the following list of challenges: 

( i). B.r. today is beyond average client apprehension. Most clients want 
a clear cut answer even they know that the basis of a sampling process 
is a very random one. If statistics is the essence of modern science then 
a statistical answer should be straightforward and any if and thens are a 
sign of a less experienced if not to say low expert science. 

(ii). B.t: is a small sample problem, in general a limited d.f prob- 
lem. As for classical robustness, large amount of data will  bury many 
considerations of robustness. This statement is only true if the desire 
and appetite for more elaborate models does not increase with sample 
size (as it will usually do). More elaborate models come with a larger 
number of parameters and therefore we might find us again in a small 
sample situation. This type of behavior I call the curse of large sample 
modeling or simpler the limited degree of freedom (d.f.) problem. Lim- 
ited d.f. problems might again need robustness consideration, but when 
the number of parameters become large the robustness considerations 
multiply as well. 

(iii). B.l: is essentially an 'inference mapping' problem. What do we 
learn fi'om a sample, i.e. what is the message from the prior to the 
posterior, and how do we communicate this learning process'? Learner 
calls this 'The mapping is the message', a certainly true statement if 
clients would generally like to enjoy statistical sophistications. 

(iv). B.r. is a 'mere-methodology" p~vblem. Simple statistical inference 
depends on the assumption of meta-hypotheses, like normal distribu- 
tion or independence. Therefore advanced statistical methodology has 
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to explore the dependency of statistical inferences on assumed meta- 
hypotheses. Therefore semi- or non-parametric statistics has become 
an important topic. Despite a bad reputation of statistics as science in 
general, people like to be fooled by statistical statements if they only 
would serve their own interests. 'How to lie with statistics' byD. Huff 
is cited by many people who also enjoy living with the shortcomings 
of simple statistics, rather than to fuzz around with more scientifically 
honest and complicated statements which might tire the readers atten- 
tion and distract from the main focus of an empirical result. Therefore 
B.r. has the tendency to be a research topic between the priests of the 
statistical science community than between the priests and the laymen. 

(v). B.r. is a certain kind of intellectual refinement (game ?) If certain 
statistical statements can't be made clear enough to be generally accepted 
what is the use to 'play games with the data', i.e. to find out under what 
circumstances what conclusions could have been drawn and might lead 
to different answers'? Pushing this aspect too hard might lead to the same 
line of criticism we encounter in classical statistics where we have to 
take into account non-observed data. 

3. The future of B.r. Despite many critical remarks there is a future for 
B.r. 

(i). B.r. is most rewarding for multivariate problems. If one can look at 
the problem at hand then there is not so much gained by a B.r. analysis. 
Certainly more can be gained if the sensitive parts of a problem are not 
so obviously to detect or the parameters are so numerous that it is hard 
to see through. 

(ii). B.I: can be used for quick and dirty Bayesian analysis. By making 
this statement I don't recommend this. But people who don't want to 
think about their problems too much in advance and prefer to see 'the 
data' right away might find some help by getting immediately also first 
B.r. diagnostics. 

(iii). B.l: has a non Bayesian flavol: If the language of uncertainty 
is probability theory then we should learn to express our modeling un- 
certainty in an appropriate way. Right now we explore the range of 
inference by defining convenient prior classes of distributions. Rather 
than classes it might be more appropriate to define distributions, like 
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Dirichlet processes or Polya distributions. This needs to be worked out 
in future. 

(iv). B.t: reflects to a certain degree inappropriate current methodology. 
Certainly we need all these illustrious ideas as how to find out about the 
weak and the strong aspects of an inference problem. But in future there 
is a need for more efficient methodology to make B.r. more attractive 
for daily use. 

(v). B.r. will change ~h'amatically if Gibbs sampling becomes a standard 
tool in Bayesian software packages. Most B.r. analyses so far depend 
very much on mathematical convenience. This might change quite a bit 
if we get more used and experienced in reading numerical outputs. 

4. Conclusions. A viewpoint that I missed was the joint or combined 
view of classical and Bayesian robustness. The work of DasGupta and 
Studden hints in that direction. Also, I tried to push this area in Polasek 
(1992, 1993). While J. Berger cites many new ideas for more B.r. meth- 
ods, communication problems have not been the main focus in Berger's 
review. A successful B.r  method will be the one which gives immedi- 
ate insight into the inference sensitivity of a problem and does not need 
long explanations. Graphical methods would be a useful vehicle for this 
purpose, unfortunately, suggestions in this direction seem to be rare up 
to now. 

Personally, I have large difficulties with the concept of non-informa- 
tive priors. Bayesian statistics can be considered as the artof learning or 
simply as a device for information processing. It is virtually impossible 
to learn anything from scratch. I have not encountered any empirical 
analysis so far where I could not elicitate a sensible prior distribution. 
Therefore I claim that for any statistical analysis there exists a useful prior 
information. Rather than worrying about what is the most noninforma- 
tive or maximum ignorance prior it is more sensible to ask what size 
of prior information do I need to move my conclusion from the present 
inference position. Therefore, I think the so-called inherent approach 
is rather counter-productive to B.r If a result turns out to be extremely 
sensitive to prior'information then the~e is only one thing to do: for- 
get this! Statistics is simple no cute for ill-posed (empirical) problems. 
Non-informative priors is a kind of platonic love with Bayesian statistics 
- -  it misses the real fun it was designed for. Non-informative priors can 
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be used as scaling device in the learning process, e.g. what is the zero 
degree in the temperature scale if one uses a particular viewpoint. But 
it is not essential for our everyday life. On any scale on this earth we 
will find out what does it mean if is more colder or warmer or what is 
an enjoyable temperature. 

Also I don't  think that a t-likelihood assumption will be a major 
tool for B.r.. In Krause and Polasek (1992) we have calculated a t- 
based regression model for the simple but censored regression size of 
the flower depending on the size of stem and leaves. Figure 1 shows that 
both models are rather indistinguishable. 
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The first decade of B.r has come in a broad spectrum and I expect 
that the development will continue in this pace. B.r. is a challenging 
problem, a nice interface to classical statistics, but still a topic in search 
after a permanent role in applied statistics. 

CHRISTIAN E ROBERT (Universitd de Rotten) and 
CONSTANTINOS GOUTIS (University College London) 

We first want to congratulate Professor Berger on such an extensive 
coverage of the multiple facets of robust Bayesian analysis and for giving 
us further insights on the various issues at stake in this fascinating field. 
We want to take advantage of this tribune to address some directions 
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only briefly mentioned by Berger We discuss the ambivalent aspects 
of robust Bayesian analysis and, as a corollary, the problem of defining 
a measure of robustness. We then move to a related issue, namely the 
goal of re-placing robust Bayesian analysis within a decision-theoretic 
framework with loss functions, merely exhibiting some open problems 
in this direction. We conclude this discussion with remarks on a ro- 
bustification of conjugate priors by mixture distributions and their wide 
diversity, along with indications on the corresponding inference in such 
setups. 

1. Robustness versus robustness. Robustness is truly a Loch Ness mon- 
ster of Bayesian Statistics: often mentioned, sometimes sighted, but 
never truly exhibited. The elusive nature of this notion comes partially 
from a lack of proper definition. Berger's survey has definitely reduced 
the area where the monster roams to a single lake (son'y, loch!) but it 
may be that a lhrther reduction of its habitat would be harmful to the 
monster or its searchers! In fact, we do perceive two opposite trends on 
the literature on Bayesian robustness: 

(a) a selection of the "most robust" Bayesian procedure - hereafter the 
champion of the (Bayesian) world - for a given inferential prob- 
lem, with a more or less determined list of desirable, acceptable or 
loathsome properties; 

(b) a determination of a "minimal set" of Bayesian procedures (or of 
prior distributions) large enough to contain all the possible inferences 
a sane Bayesian would choose given the information at hand and not 
larger in order to exclude absurd or evidently biased procedures. 

The first goal is to restrict the choice of a prior, whether it is infor- 
mative or non-informative, by imposing some "robustness" constraints 
like outlier rejection, prior insensitivity (somewhat of a contradiction 
with the Bayesian paradigm?), risk minimaxity etc. This is for instance 
the purpose of gamma-minimax analysis (see Kempthorne, 1988, as an 
additional reference) or of the asymptotic coverage properties of Stein 
(1985), for which Tlbshirani (1989) showed the relevance of the refer- 
ence priors (see also Liseo, 1993). The question is then: which prior 
should we choose among those that satisfy the imposed constraints? 
There is no answer if we are done with all the restrictions available in 
the current setup: any acceptable prior will be satisfactory (and the re- 
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verse!). Moreover, this type of approach is usually quite difficult and, 
basically, cannot be pursued outside the exponential family setup. 

While we can wonder about measures of robustness and the com- 
parison of priors in term of robustness, as we all know, "four legs good, 
two legs better!" This is supposed to mean that a prior with no crutch 
is better than a prior with two crutches... But how can we make the 
desiderata precise? O1, to be more precise ourselves, how can we com- 
bine robustness with the prior knowledge'? 

Consider first a given prior 7to which fits the best the feelings, in- 
tuition, understanding etc. of the experimenter but, unfortunately, does 
not meet the robustness requirements. The selected "robust" prior could 
obviously be chosen as the "closest" to 7to or, if we may speak so, as 
the projection of fro on the set g of acceptably robust priors. Definition? 
Given a functional distance d, such as the Kullback-Leibler distance, we 
select 7r~ which minimizes on $ the distance to 7to. If the information 
at hand is compatible with a whole class of priors, 2-, we can extend 
the previous idea as follows. For every 7to E 2-, define 7r~ as the above 
projection and d~r 0 = d(rco, ~r~). The selected robust prior should then 
be the least disruptive, i.e. the projection of a prior of 2" which mini- 
mizes d~r 0 over 2". The implementation of this idea is utterly awesome, 
of course! In fact, the set g is usually undetermined and lacks even the 
most basic structure for being a decent functional space... A relaxing 
approximation would be to replace g with a smaller set of manageable 
priors, such as hierarchical ones. In less chartered regions of the inferen- 
tial space, it may be appropriate to consider only mixtures of conjugate 
priors (see below). 

The second robustness goal is widely documented in Berger's over- 
view and we only stop at this station to wonder whether ranges of Bayes- 
ian answers (and subsequent uses of the width of these ranges as measures 
of robustness) can serve as proxies for further studies in the determina- 
tion of a robust prior This is because intervals (in !I~) o1" sets (in ~k) are 
not necessarily available to the layman as a type of true inference while 
assessment of the size of a set implies a con'ect perception of "small" 
and "large" sizes, i.e. a partial knowledge of a loss function related to 
the problem, which is an issue considered below. 
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2. Lost losses. As mentioned repeatedly and heatedly by H. Rubin in 
the last thirty years, loss and prior information are indistinguishable. 
Therefore, a study of Bayesian robustness should be completed by a 
corresponding study of the other side, as rightly indicated by Berger. 
In fact, as long as some information is available about loss or utility, 
it should be translated into restrictions on the prior distribution. Once 
again, to implement this drift of intbrmation in practice may be far 
beyond our reach but it must be considered, if only for the beauty of the 
concept. 

On a different loss front, while we may switch on the automatic 
pilot and select the Bayes rule associated with the quadratic loss and the 
Jeffreys prior, it always pays to think, if only for a while... Like it or not, 
�9 robustification of a procedure is an action, hence it involves an implicit 
loss function. Deciding on a procedure always invites some questions. 
What are the consequences if it is not robust'? Why choose this particular 
posterior measure to measure robustness'? Traditionally one examines 
the range of posterior means or posterior probabilities, but why? What 
if a class 1" has an acceptable range of posterior means but an appallingly 
wide (or nan'ow?) range of posterior probabilities'? Should we declare 
it a Good or a Bad class'? One can probably answer these questions by 
formulating the robustness problem from a decision theoretical point of 
view. Dare we write down a "robustness loss'"? Perhaps not, there is 
still too much water in Loch Ness to do so. (Still, see Robert, 1993, for 
a tentative approach to such losses.) 

Talking about losses, a somewhat neglected topic is robustness of 
the reported loss of the decision. If a Bayes rule ~* minimises some 
posterior expected loss 

f L(O, ~r)Tr(Olx)dO 

an integral part of the process is the reported loss 

f L(O, ~*)Tr(Olx),tO. 

Now, it is fair to impose on the selection criteria that it should also 
give a reasonable range for the latter quantity. Pushing it a little bit 
further, from a decision-theoretic point of view, the best action ~* is 
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unimportant if, no matter which (t we choose, we get the same expected 
loss. If reported loss and expected loss coincide, that begs the question 
whether robustness with respect to the loss is more important than with 
respect to the action itself. 

3. Mixed up priors. To conclude - as we somehow perceive a growing 
tenseness bordering on boredom in the most attentive of our readers - 
we want to mention the issue of mixtures. This is somehow our pet 
topic but it keeps popping up in most setups, and robustness is one of 
them. Although conjugate priors could and should be dismissed as over- 
conventional representations of the prior information, they are still used 
quite a lot, either blatantly or in disguised ways. Convention? Inertia? 
Maybe... But there is also a definite uncertainty in the information which 
propels us towards the most convenient choice. Detailed reasons why 
conjugate priors should not be used in general can be found in the best 
textbooks (see, e.g., Berger, 1985). But it follows fi'om Diaconis and 
Ylvisaker (1985) (see also Dalal and Hall, 1983 or even Robert, 1992) 
that mixtures of conjugate prior distributions are almost as general as 
one could wish since they approximate almost any distribution. The 
effect on the posterior inference can be slightly disruptive, as pointed 
out by Berger (1985b), but these mixtures still improve greatly upon the 
original conjugate priors. 

As also mentioned in Berger's overview, mixtures have a kind of 
universality if the finiteness of the number of components is dropped, 
since they encompass most of the classes described in w But, 
instead of commenting any further on the mixture class as perceived in 
the overview, we would rather support a "zen" version of it, namely an 
approximation of the true prior by a mixture of conjugate distributions 
involving as few components as possible. We even go further and dare 
to predict that, in a near future, a complete theory of mixtures will come 
as a competitor of non-parametric techniques such as Parzen-Rosenblatt 
kernel estimation. 

This truly brings us to our last - yes, last ! - remark. Neighbour- 
hood classes as those mentioned in the ove~,iew seem (to us) to be 
the archetype of robustness classes, once a proper distance measure has 
been selected - the influence of the choice being minor - as they offer 
a comprehensive view of all the possible uses of the prior - if not the 
posterior - distribution. The ideas we have been widely casting around 
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in this discussion thus boil down to the deterlnination of a most influ- 
ential direction in these neighbourhoods, similar to the developments of 
Salinetti (1994). Done! 

FABRIZIO RUGGERI (CNR-IAMI and Duke University) 

There are just a few comments I want to make about this extensive, 
really needed, review of the recent works on Bayesian robustness. The 
first one refers to the posterior quantity we look at to assess robustness. 
Many researches have been interested in finding bounds on posterior ex- 
pectations as the prior probability measures changed in a class 1 ~, whereas 
I believe that a different, very interesting, robustness problem could be 
faced by considering the distance among the posterior probability mea- 
sures. Such a distance could depend on some topology in the space of the 
probability measures. Here I am presenting two methods, which check 
if the distribution function (or the density) of any probability measure, 
obtained from a prior in F, is in a neighbourhood of a "base" distribution 
(or density). In particular, the first method that I suggest, a new one, 
is based on the distribution bands, considered by Basu and DasGupta 
(1992) to define a class of priors and compute bounds on many poste- 
rior quantities; it could be worth checking if, given a class F of priors, 
the corresponding posteriors are within a distribution band containing a 
"base" probability measure. Besides, the width of a band, containing all 
the posterior distribution functions, could measure the robustness under 
this criterion. 

A different approach is based on the concentration function, defined 
by Cifarelli and Regazzini (1987), and it was developed by Fortini and 
Ruggeri (1992, 1994). The density functions are considered to investi- 
gate if the posterior probability measures assign too much probability 
where a "base" probability measure P0 does not and the concentration 
function gives a natural tool to inspect it. The robustness criterion is 
given, in this case, by taking a continuous, convex, monotone nonde- 
creasing function 9 : [0, 1] --+ [0, 1], with 9((i)) = 0, and asking that 
any posterior probability measure P satisfies P(A) > 9(Po(A)), for all 
measurable subsets A. As an example (see Fortini and Ruggeri, 1994, 
for others), we could take 9(:~:) = (1 - g)a:, g:~: C [0, 1], which corre- 
sponds to P being in a c--contamination class, where the contaminating 
measure is any probability measure. The above requirement can be re- 
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stated by asking that the concentration function ~(x) of P w.r.t. 190 is 
such that ~(x) > 9(:e),g:~: c [0, 1]. 

Like Berger, I have my favoufite classes, the ones which have a 
simple interpretation and could be easily elicited by any unaccustomed 
user: the quantile class and the one based on conditions on the marginals, 
considered by Betr~, M~czarski and Ruggeri (1994). Since the former 
has been described in the paper, I just focus on the latter, which is 
defined by means of some conditions on the marginal distribution of the 
r.v. X,  e.g. some quantiles. Since X is usually an observable quantity, it 
should be rather easy to express prior judgements on some of its features, 
obtaining an appealing class F. Besides, the computation of bounds on 
posterior expectations, as the prior varies in P, is quite simple, being the 
functional optimisation problem transformed into a finite dimensional 
one. 

I believe that an effort should be taken in order to reduce the use of 
improper priors and the robust Bayesian approach could be very helpful 
in achieving such a goal, by asking people not to throw away the know- 
ledge, even poor, they have, in favour of a sometimes meaningless, but 
trouble solving, improper prior. 

Finally, I want to mention the conditional r-minimax approach as 
relevant and appropriate from a robust Bayesian point of view, because 
it chooses an action, among those a priori acceptable, under uncertainty 
in the prior; specifying a payoff which depends only on the posterior 
expected loss and the family P of priors. As two examples, DasGupta 
and Studden (1989) and Zen and DasGupta (1993) have considered the 
actions which minimise the supremum, as the prior varies in F, of the 
posterior expected loss and the posterior regret, respectively. 

GABRIELLA SALINETTI (Univel:~'itdt di Roma "'La Sapienza") 

1. Introduction. It is diflicult to discuss an overview papm, in particular, 
as in this case, on a subject which has registered an explosion of interest 
and literature in the last decade. The paper explores the vast areas of 
the field, exposes the general issues and delineates the technical devel- 
oigments. Looking at these vast areas one feels that approaching and 
solving a robustness problem is often a difficult task and the literature 
on the subject has registered a continuously increasing number of works 
in different specific situations. 
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On the other hand Bayesian stability and robustness problems are 
not substantially different, in their mathematical nature, from analogous 
problems approached and solved in different fields such as, for example, 
the stochastic optimization and the moment problem. 

The objective of this discussion is to point out some these connec- 
tions trying to illustrate how some specific results in related fields could 
reveal useful in approaching Bayesian robustness problems and possibly 
yield an easier computational setting. Major attention will be devoted 
here to the use of the results on the moment problem in the global robut- 
ness with respect to variations of the prior. 

However, before approaching this aspect and without entering in 
the mathematical details, it can be relevant to observe that robustness 
and stability questions with respect to loss or utility functions, but more 
generally robustness and stability of Bayesian decision problems, have 
not received an adequate attention in the Bayesian literature; this avoid- 
ance is possibly due, among other reasons illustrated in the text, to the 
fact that robustness analysis involving loss functions can be technically 
more difficult than other types of Bayesian robustness. This difficulty 
mainly depends on the fact that it is required to analyze the behaviour 
of infima functionals and argmin functionals. From the mathematical 
point of view these are the same functionals faced in stochastic optimiza- 
tion problems for which stability and robustness are a major concern. 
Specific and recent literature, based on an appropriate convergence of 
functionals and their infima, could offer possibly fruitful technical tools 
to approach the robustness of Bayesian decision problems; examples are 
in Salinetti (1994). 

The rest in the following is more specific and points out the technical 
connection between moment problem and global robustness in different 
classes of priors. The potential of this connection does not seem to be 
adequately explored and often the connection is reduced to the moment 
class; this is probably due to the fact that the moment problem.is linear in 
nature and the key Bayesian quantities of interest are usually non linear, 
typi~cally ratios of linear functionals. However the use of the lineariza- 
tion algorithm for ratios, but more generally, convenient "conditioning", 
make the results of the moment problem theory applicable and reduce the 
robustness computations to optimization problems in finite dimension. 
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2. The Moment Problem. Consider the moment problem in the general 
form 

inf { f  hd. : f gid. < ai, i E I }  (2.1) 

where .M is a convex set of finite measures on the measurable space 
(O, B), I is an index set, not necessarily finite, and reasonable assump- 
tions make the quantities well defined; in particular it is assumed that 
the gi are integrable on .M for every # E .M. 

Explicit solutions for classes of problems (2.1) are known. Specific 
references are Kemperman (1972), Kemperman (1983) and for a more 
recent review Kemperman (1987) to which we refer here. 

For ,M = 79 = {class ofallprobability measures} we have: 

f = h(o) (2.2) 

For 3,4 class of mixtures # defined by 

#(A) = f K(u,A)u(du) (2.3) 

w h e r e / (  is a Markov kernel, i.e., for each 'u E U, K('u,, .) is a probability 
measure on/3 and for each A, K (., A) is measurable, u is any probability 
measure on U, we have (Kemperman (1987), Example 2.3): 

[ hd#= i , l f  [ h(O)K(u, dO). inf  (2.4) 
~M J ucU J 

For .,4,4 density band class, i.e., .M class of all measures # on O of 
the form 

f,, #(A) = p(O)u(dO) with a(0) _< p(O) <_ b(O),VO E 0 

with ix a ~r-finite measure on/3  and 0 < a(O) <_ b(O) given measurable 
functions; we have (Kemperman (1987), Example 2.5): 

inf J h(O)#(dO) = i h(O)ph(O)u(dO) (2.5) 
#cAd 

with ph(O) = a(O) if h(O) > 0 and ph(O) = b(O) if h(O) < O. 
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For the so called main moment problem (Kemperman 1987) 

H =  uEMinf [f h(o)~(do) f gi(o)~(do)=ai, i = l , 2 , . . . , n ]  

(2.6) 
with .A,'[ a given convex set of finite measures on/3, under general con- 
ditions, we have 

H = sup {< d ,~  > +H(d)} ;  (2.7) 

d = (dl, d2 , . . . ,  dn), < d, a > =  ~-~,i=1 diai and 

Observe that it" .A4 = 7' then by (2.8) and (2.2), (2.7) reduces to  

H = FV' d , ( , , - , , ( 0 ) / +  h(0)l. (2.9) 
d e ~ ' n  0 E |  k/---.~ .l 

Same type of results hold with inequalities constraints and many of the 
results above carry over to an infinite number of constraints; references 
are Kemperman (1972) and Kemperman (1983). 

3. Global mbusmess andmomentptvblem. The robustness of a Bayesian 
quantity of interest %b (~-) over a class F of plausible priors ~- is measured 
by the interval (infect r (Tr), supTrEr r (Tr)). Key Bayesian quantities, in 
addition to the marginal and the posterior, are ratio of linear functionals, 
typically 

r = .f h,( O) f ( O)Tr( dO) 
J" f (o )~( , to )  ' 

f denoting the likelihood. For this type of functional, under mild con- 
ditions the well known linearization algorithm states that the value 
infTrEr %b(~-) is the unique solution A0 of the equation in/~ 

inf [[h(O) - A]f(O)Tr(dO) = 0 (3.1) 
7rEF J 

(and symmetrically for the sup), thus converting the minimization of 
the ratio to a linear minimization problem together with a root-finding 
operation. 
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This relevant simplification still contains a minimization on the func- 
tions class F, a main source of difficulties in solving (3.1). 

For the main classes F of interest the moment problem results convert 
the minimization in (3.1) into an optimization in a finite dimension space 
yielding either an explicit solution for (3.1) or an equation easier to 
handle. 

For P class of mixtures as in (2.3), by (2.4) for every A we have 

inf / [ h ( O ) - / ~ ] f ( O ) K ( u ,  dO) ~r~vinf [h(O) - A]f(O)Tr(dO) = ,,,eu J 

and the equation (3.1) becomes 

inf [/h(O)f(O)K(u, dO)-)~/f(O)K(u,  dO)] =0. (3.2) 
ucU 

In this case the same argument of the linearization algorithm shows that 
the solution of (3.2) is 

Ao = i n f  f h(O)f(O)I((u, dO) 
,,eu f f(O)K(u, dO) 

(3.3) 

Observe that in cases of practical interest U is a finite dimensional eu- 
clidean space as in the examples in the text. The generality of (3.3) 
includes, as particular cases, the class of unimodal contaminations on 
the real line examined in Sivaganesan and Berger (1989) and the class 
of the multidimensional block unimodal contaminations examined in 
Liseo, Petrella and Salinetti (1993). 

For the density band class of Section 2 let F be the density bounded 
class, the class of probability measures rr with bounded density p 

a(O) <_ p(O) <_ b(O), VO E O, 

we have F = {~- E A : f ~r(dO) = 1} where A denotes the density 
band class. 
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For every A, by (2.5) and (2.7) we have 

A]f(O)Tr(dO) 

{ f t, (o)- ly(e>IaO, . f 
--sup{,/+ ~ ([h(O) - A]f(O)-d)a(O)y(dO) 

dER (A,d) 

+ s ~]y(0)- a)b(O)~(dO) 

where A()~,d) = {0 E 69: [h(0) - A]f(0) > d} and B(A,d) = {0 E 
e :  [h(o)- ~]f(0) < d}. 

The infarct ~b(Tr) is solution Ao of the equation in A obtained setting 
equal to 0 the last member of the above relation. Again the optimization 
in the equation is on the real line. An equivalent equation in A, more 
suitable for computations, could also be obtained still based on the notion 
of admissible solution for the moment problem. 

For the quantile class 

F= {TrE79:fAiTr(dO)=~ i = l , 2 , . . . , n }  

with 7 9 class for all the probability measures and {Ai, i = 1, 2 , . . . ,  n} 
partition of O, the main moment problem, by (2.9), reduces the equation 
(3.1) to 

sup inf [~-~di(ai IAi(O))+[h(O)--)qf(O)] =0. 
dE~n0EO i=1 

Again the optimization in the equation is in finite dimension and the 
particular nature of the constraints makes the solution of the equation 
reasonably handleable. In addition it is relevant to observe that, as in the 
case of mixture classes, the argument of the linearization algorithm can 
be used to obtain the solution A0 as optimal value of a ratio of functions 
in d and O. 
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It is immediate to realize that the same type of result holds tbr the 
moment class. 

It is relevant to emphasize the flexibility of the result (2.7). In fact it 
allows to deal with more complicated classes F, for example classes of 
mixtures with quantile constraints or more generally linear constraints, 
once one has a reasonable expression for H(d). 

4. Final remarks. The use of the moment problem in solving robustness 
problems has the appeal to restate the problem in finite dimension and 
seems to delineate easier computational directions. The linearization 
algorithm reserved to ratios of linear functionals allows its use. An 
alternative use based on suitable "conditioning" can actually be pursued 
and extended to more general cases. Thus the robstness of the ratio of 
linear functionals 

f h, fdTr 
inf (4.1) 
~r~r f f drc ' 

under rather mild conditions, can also be approached as constrained 
minimization problem 

inf inf { ~ f h f dTr : / f dTr = x } 
xE[D-,D +] 7rEF 

where D -  = inLr~r f fdTr, D + = supper f fdTr. 
The main moment problem allows the computation of the range 

[D-,  D +] of the denominator DQr) = f fdTr and of the constrained 
problem 

inf {f hfdrc: f fd r=x}. 
rrEF 

This approach is pursued in Perone Pacifico, Tardella and Salinetti (1994) 
for the density bounded class. 

The case where the numerator in (4.1) is not linear, of the type 

N(~r) = f h(O,/3(Tr))f(O)Tr(dO) 

can be approached through the moment problem as a double constrained 
minimization problem on the possible values of the denominator and the 
possible values of/3(~v) for ~v E F. The most common example arises 
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from h(O,/3(rr)) = (0 - E(rr)) 2 where E(rr) is the posterior mean and 
then ~b(rr) is the posterior variance. It can be convenient to convert the 
non linear quantity into conditional linear quantities 

inf [l  f h(O,y)dTr : E(Tr) = y,D(Tr) = z] 
reEF 

to which applying the moment problem tools and then minimizing over 
(x,v). 

Certainly the idea is not new and in particular it is sketched in Berger 
(1990). The emphasis here is on the fact that the technical potential of the 
moment problem in the problems of sensitivity to the prior is particularly 
rich, only partially explored and perhaps it has not been taken the most 
of it. 

SIVA SIVAGANESAN (University of Cincinnati) 
There has been an explosion of research in the field of robust Bayes- 

ian analysis since Professor Berger's last review, Berger (1990). Despite 
the enormity of the literature in the field, Professor Berger has given us 
an excellant overview of not only the past developments, but also of 
possible fnture developments in the area. This will undoubtedly serve 
as a very valuable reference for new and current researchers in this area; 
we ought to be very grateful to him. 

In this discussion, I will focus on two areas, namely: local robust- 
ness, and multidimensional priors. In the first, a brief review of the 
literature is given with some comments. The second topic is relatively 
large and is well covered by Berger; here I focus only on certain classes 
of priors. For convenience, I will follow the notation and references in 
the main article. 

1. Local Robusmess. In local robustness study, one seeks to obtain 
a measure of sensitivity of ~(Tr, f )  to small deviations from the base 
model 7r0 (and/or f0). This is achieved by using a (suitable) deriva- 
tive of ~b(Tr, f )  with respect to a convenient measure of deviation (from 
7r0). For instance, consider the c-contamination class re  of priors 
7r = (1 - r + r Let Dq~ be the derivative of ~b(Tr, f )  w.r.t, e eval- 
uated at e = 0 (i.e., at 7r= 7r0). It is reasonable to u s e  Dq~ as a measure 
of sensitivity of ~(Tr, f )  to small deviations in the direction of q. When 
a class Q of possible deviations is of interest, the (maximum) sensitivity 
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measure/9~b = sup Dq~/: may be used instead. Alternatively, one may 
want to consider the dmivative D~,  at rr = re0, of ~b = sup,~c r ~b(rr, f) .  
In tact, for density bounded and density ratio classes, this second ap- 
proach is taken in Ruggeri and Wasserman (1991), which seems to be the 
only workable approach for these classes. There, the authors consider 
these two classes where the upper and lower bands are given by L 1 = ~TrO 
and U = krro for a fixed prior 7to and a constant k > 1, and calculate the 
derivatives of 13, w.rt. k, at k = 1 For e-contamination classes, how- 
ever, both approaches lead to the same answer in most cases of interest, 
see Sivaganesan (1993c). One of the advantages of this_approach is that 
the robustness measures proposed here, viz. D~b (or D~b), am generally 
easier to compute than the global robustness measure ~ (and ~). In 
particular, this approach is .just as easily tractable for investigating the 
robustness of likelihood (f)  using non-parametric deviations with typi- 
cal uncertainties about f ,  see Sivaganesan (1993c). However, as Berger 
describes in Section 4.4, with global robustness approach, this becomes a 
very complicated problem. Such computational ease of the local robust- 
ness approach also makes it appealing in other mote complex situations, 
such as hierarchical prior settings and those where multidimensional pa- 
rameters are considered, e.g., see Sivaganesan (1993c) and Gustafson 
and Wasserman (1993). Another possible application raises from the 
simple notion that the larger the value of/9~b is, the more sensitive ~b 
would be to deviations from the base prior (or base likelihood). Exam- 
ples of such application can be tbund in Sivaganesan (1993c). There, 
local robustness measures/7)~/: are used, on a comparative basis, to de- 
termine whether ~b is more sensitive to small deviations from the (base) 
prior ~0, or to small deviations from the (base) likelihood f0. In another 
application, robustness with respect to the specification of hierarchical 
prior is considered with the goal of determining which stage prior causes 
most sensitivity in #:. When there is a lack of robustness, such analyses 
would be useful in determining where to concentrate the re-elicitation 
efforts, in order to make most gain in robustness. 

There lies, howevei; a difficulty with the local robustness approach. 
It is not clear how to interpret a single value of, say, b~b, o~, how small it 
should be so that one can be satisfied that robustness exists. The answer 
to such questions, in general, have to be problem specific. But, even in 
specific situations, it seems more work would be required to gauge the 
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values of measures such as b~/J. Note that global robustness measures 
such as ranges do not share these, difficulties, and are easy to interpret. 
This said, it is perhaps worth pointing out again that in many complex 
situations where global robustness approach with realistic priors are hard 
to carry out, local robustness approach can be useful. 

The idea of using derivatives goes back to Diaconis and Freedman 
(1986), where Fr~chet and Gateaux derivatives are suggested as mea- 
sures of sensitivity. These ideas are followed up in Rugged and Wasser- 
man (1993), where these derivatives are derived and explored, while in 
Gustafson and Wasserman (1993), rates of convergence of certain local 
robustness measures are studied for different classes of priors. In a re- 
lated paper, Cuevas and Sanz (1988) investigate the differentiability, in 
the Fr~chet sense, of the Bayes operator (or the posterior distribution) 
with respect to prior. In Srinivasan and Truszczynska (1990, 1993), these 
derivatives are used to obtain good approximations to global robustness 
bounds. Other related papers are Salinetti (1994), where stability prop- 
erties (or, qualitative aspects) of Bayes decision rules are considered; 
Basu, Jammalamadakka and Liu (1993a), where local robusmess is stud- 
ied in parametric settings using partial and total derivatives; and Basu, 
Jammalamadakka and Liu (1993b), where certain classical robustness 
notions such as qualitative robustness and stability are adapted and in- 
vestigated in the context of posterior distributions and related quantities. 

2. Multidimensional Plqors. In general, classes which have consid- 
erable smoothness constraints would be desirable in high dimensional 
problems. In this sense, density based classes such as density ratio or 
density band classes, or mixture classes would seem particularly attrac- 
tive choices. Marginal and Independence classes are attractive from both 
elicitational and computational viewpoints. From computational view- 
point, however, many of the aforementioned classes seem to be tractable 
only for low dimensional problems, e.g., see Lavine (1991b), Lavine, 
Wasserman and Wolpert (1991), Sivaganesan (1994). 

One of the few exceptions is the density ratio class where U = k~0 
and L = ~.Tr0 for some .fixed k > 1 and a fixed (base) prior ~r0. In a 
very interesting paper, for arbitrary dimension, DasGupta and Studden 
(1988b) obtained a closed folT[l solution for the set of posterior means 
in the normal linear model problem. Later, in a b~eakthrough paper, 
Wasserman and Kadane (1992a) developed a method of computing the 
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bounds for this class (and for some other classes) using Monte Carlo sim- 
ulation. Although this class has thus been shown to be computationally 
tractable, its adequacy has been somewhat questioned, e.g., see Berger's 
discussion to Wasserman (1992b). In the following, an example is given 
that also seems to support such concerns, although possibly from a dif- 
ferent viewpoint. This example illustrates a certain phenomenon which 
is rather counterintuitive, but is commonly associated with this class. 

Suppose that X1, ...,Xn ale i.i.d. N(0,0.2), where 0 is a real pa- 
rameter, and 02) > 0. Assume that (0, 0.')) is given the (base) prior 

7r0(0, 0.2) = 7r~1)(0)rc~2)(0.2). Consider the two density ratio classes F1 
and F9 given by 

1 
F1 = {generalized 7r(0, a 2) : TTro _< 7r _< kr 

F2 -= {generalized 7r(0, o -2) = 7r(1)(0)Tr~ 2) (o.2) 

:~. 0 ~ 1  71.(1) 71.(1) ~ ]~7r~1 ) }. 

Note that, marginally, these two classes represent the same prior 
information about 0. However, in terms of how 0 and o .2 are related, and 
in terms of the prior information about 0.2, these two classes represent 
very different information. Whereas the class r l  allows 0 and ~r 2 to be 
dependent and entertains some uncertainty about the (marginal) prior for 
o.2, the class F2 does neither. But, it is easy to see that, for A C R, 

inf P(O E A[x,70 = inf P(O e Al:r,, 7r), 
7rEF 1 7rEF 2 

i.e., these two classes yield the same lower bound for the posterior prob- 
ability that 0 E A. In other words, when considering the parameter 0, 
the structure of the density ratio class seems to ignore both the nature 
of the uncertainty about the prior intbrmation about the (other) parame- 
ter 0 .2 , and the possible interdependency between the two parameters. 
This seems counterintuitive, since one would anticipate that the differ- 
ent nature of the prior information about 0.2 (as given above) would 
yield different bounds for the posterior probability concerning 0. This 
particular phenomenon of the density ratio class, which holds in any 
multidimensional problems, may actually be ralated to the invafiance 
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property for this class established by Wasserman and Kadane (1992a). 
Note that tbr other classes, e.g., the density band class with the same 
bands as above, this phenomenon does not hold, and that the bounds for 
the two analogous classes would, in general, be different. Although the 
density ratio class has definite advantages in terms of compuatation, in 
light of the phenomenon above, it seems one ought to be cautious about 
using this class. 

REPLY TO THE DISCUSSION 

This is perhaps the finest set of discussions that I have seen for a discus- 
sion article. Several discussions ate essentially quality articles in their 
own right, and all convey illuminating viewpoints or developments. Par- 
ticularly gratifying is that the discussions overcome the limitations of 
the paper, by elaborating or explaining topics that were inadequately 
treated in the paper. Taken as a whole, the discussions foma essentially 
a complementary review paper, and one that is fascinating reading. My 
first attempt at preparing a reply to the discussion was to search for areas 
of contention and elaborate further on the disagreements. With consid- 
erable surprise, however, I found that there were almost no substantive 
areas of disagreement. Many discussants perceived the 'truth' tu a 
different perspective than mine, and there were naturally quite different 
predictions as to what is likely to be important in the future, but I found 
the tolerance among robust Bayesians to be refreshingly sincere; we all 
seem to recognize that, at this period in the development of the field, 
scope and support must be given to a great variety of approaches. My 
second attempt to prepare a reply was to outline or provide an index to 
the discussions. I quickly realized that this too was essentially impos- 
sible, because the discussions were astonishingly different; their scope 
of coverage and diverse viewpoints virtually defied my attempts to im- 
pose structure. Thus I was left with only the smaller job of replying to 
questions specifically raised in the discussions. There were three such 
questions. 

Drs. Gustafson and Wasserman discuss the "annoying problem" of 
'dilation,' and ask if I have any advice about what to do when the problem 
occurs. I might quibble with the phrase "annoying problem" since I view 
the dilation phenomenon as one of those delightful facts of our subject 
that make it subtle enough to be interesting. My original reaction to dila- 
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tion was much like my reaction to the fact that the posterior variance can 
actually be larger than the prior variance; the subject suddenly became 
more interesting. I imagine, however, that Gustafson and Wasserman 
are asking the serious question of whether certain robust Bayesian ap- 
proaches might be more resistant than others to dilation phenomena; 
alas, I do not know. 

The second question of Gustafson and Wasserman concerns my 
currant views on the potential value of local diagnostics. I was delighted 
to see discussion of such diagnostics by many of the discussants, because 
it was certainly an area that was not adequately covered in the paper. My 
view today is simultaneously morn positive and morn negative than it 
was in the discussion of the Diaconis and Freedman (1986) paper. It is 
more positive in the sense that I have seen a large variety of fascinating 
local diagnostic tools developed since then; the negative feelings come 
fi'om a sense that the tools are hard to use because interpretation is often 
difficult. 

I am not a strong believer in the notion that our profession can learn 
to 'calibrate' tools whose initial interpretation is unclear; after all, we are 
still miserable calibrators of P-values. That said, I do believe that local 
diagnostics are likely to end up being an important part of the robust 
Bayesian toolkit. 

The remaining question, asked by Dr. Lavine, is whether I know of 
any examples in which robust Bayesian analysis has helped to identity 
unknown quantities for which subjective elicitation is necessary. My 
answer is 'yes,' if one is willing to be somewhat generous in the definition 
of robust Bayesian analysis. First of all, for some general situations I 
think that robust Bayesian analysis has crystallized the understanding of 
which features of the analysis are most irnportant in terms of assessment. 
One such example is the recognized importance of the 'spread' of the 
priors in hypothesis testing and model comparison; robust Bayesian 
analysis has aided this understanding, partly by clearly demonstrating 
the lack of robustness of the answers to such quantities, and partly by 
showing that alternatives such as P-values (which were even sometimes 
recommended by Bayesians as a reasonable 'solution' to the problem) 
are simply not tenable. 

On a more practical level, I think we use robust Bayesian reasoning 
all the time in analyzing data, even if we do not yet routinely use formal 
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robust Bayesian methods. During an involved data analysis I initially 
play around with the model and various crude or automatic priors, with 
the primary goal being to see which elements of the problem remain 
essentially fixed and which vary considerably. It is upon these latter 
elements that I then locus attention, with the stable quantities typically 
just being assigned a noninformative prior For the unstable quantities, 
I typically first attempt to impose some reasonable structure, perhaps a 
hierarchical structure or constraints on, say, ordering or positivity. If such 
structural assumptions are not warranted or do not seem to be sufficient 
to provide robustness, then I attempt subjective elicitations, in the usual 
sense, from the subject-matter client. Of course, the previous steps of 
the analysis, involving model building, playing around with priors, and 
imposing structure, are also done with the client, but they will often 
require far less of the client's time than will formal prior elicitation. 

Let me finish by thanking all the discussants for their highly illumi- 
nating contributions. Also, I would like to express the thanks of all of us 
to the Spanish Statistical Society and the Editor and editorial board of 
TEST for providing our community with the opportunity to review this 
rapidly growing and exciting field. 
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