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A PROCEDURE FOR DETERMINING RIGID BODY TRANSFORMATION 
PARAMETERS 

John H. Challis 
Applied Physiology Research Unit, School of Sport and Exercise Sciences, The University of Birmingham, 

Edgbaston, Birmingham B15 2’IT, U.K. 

Ah&act-For many biomechanical applications it is necessary to determine the parameters which describe 
the transformation of a rigid body from one reference frame to another. These parameters are a scaling 
factor, an attitude matrix, and a translation vector. The paper presents a new procedure for the &termina- 
tion of these parameters incorporating the work of Arun et al. [IEEE Trans. Pattern AMY. Machine Intel& 9, 
698-700 (198711 but expanding their analysis to allow for the determination of a scale factor, the scalar 
weighting of the least-squares problem, and the problem of obtaining the incorrect determinant when 
determining the attitude matrix. The procedure, which requires the coordinates of three or more non- 
collinear points, is based around the singular value decomposition, and provides a least-squares estimate of 
the rigid body transformation parameters. Examples are presented of the use of this procedure for 
determining the attitude of a rigid body, and for osteometric scaling. When used for osteometric scaling 
mirror transformations are possible, therefore a right-hand specimen can be scaled to the left-hand side of 
another specimen. 

INTRODUCl’ION 

In many biomechanical analyses it is necessary to determine 
the rigid body transformation parameters; parameters which 
describe the transformation of points from one reference 
frame to another. These parameters are a scale factor, an 
attitude matrix, and a position vector. The scale factor 
alfows these parameters to be used to describe the trans- 
formation required to map points between reference frames 
of dint scales. One application of scaling of this sort is 
osteometric scaling, which allows the locations of the origins 
and insertions of muscles and ligaments that are inaccessible 
on a live subject, and therefore not easily measurable, to be 
obtained from the results of cadaver dissection and measure- 
ment. Lew and Lewis (1977) demonstrated that the direct 
application of dry bone data to a live subject is inappropriate 
and that some form of scaling is appropriate as the physical 
dimensions of the bones of the cadaver and the experimental 
subject are likely to be different. Osteometric scaling has 
been performed for biomechanical analysis by Morrison 
(1970) who scaled between a dry bone specimen and an 
experimental subject by scaling along axes defined within the 
bone of interest. Lew and Lewis (1977) described a technique 
which incorporates a uniform stretch of differing amounts 
along three mutually orthogonal axeS defined in both rigid 
bodies. Neither of these approaches takes account of the 
errors in the measured positions of landmarks on either the 
specimen or subject. Sommer et al. (1982) however, proposed 
a scaling technique which employed linear least-squares 
principles and therefore took some account of such errors. 

If  the scale factor is equal to unity and the attitude matrix 
is proper orthonomtal then the rigid body transformation 
parameters can be used to describe the position and orienta- 
tion or movement of a rigid body. The attitude matrix is 
often parameter&d to describe the orientation of a rigid 
body. For example, helical axis parameters are extracted (e.g. 
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Siegler et al., 1988), or a set of angles &lined by a sequence of 
‘planar’ rotations is computed (e.g. Woltrin& 1991). .A num- 
ber of different procedures have been proposed for the deter- 
mination of these r&id body transformation parameters. 
Spoor and Veldpaus (19@) w a least-squares method 
which required the calculation of the eigenveotors of a three 
by three matrix. Veldpaw et al. (1988) presented a similar 
technique but it obviated the need to compute eigenvectors. 
In contrast to these techniques which used least-squares 
principles Laub and ShiRett (1932) proposed a me&d based 
on linear algebra and applying matrix perturbati0n theory to 
take account of the lack of precision in the data; a similar 
procedure was presented by Angeles (1986). 

Unfortunately any measurement procedure involves er- 
rors, those used in biomeehamcs are no dint. The posi- 
tions of the points used to determine the rigid body trans- 
formation parameters will contain errors, therefore it is im- 
portant that procedures adopted for the determination of 
these parameters attempt to take account of these errors. It is 
the purpose of this paper to present a procedure which 
allows the rigid body tramsformation parameters to be deter- 
mined using a linear lea&squares method. It is based on the 
work of Arun et al. (1987) but expands their analysis to atlow 
for: the determination of a scale factor; the scalar weighting 
of the least-squares problem; and the problem of obtaining 
the incorrect det erminm% when determining the attitude 
matrix. Similar equations to those of Arun et al. (1987) were 
presented by Woltring (1992). Examples of the use of this 
procedure to determine the orientation of a rigid body fusing 
varying numbers of markers to define the rigid body), and for 
osteometric scaling are given. 

DETERMINATION OF RIGID BODY 
TRANSFORMATION PARAMEEERS 

The purpose of this section is to present a technique, based 
around the singular value decomposition (SVD), for comput- 
ing the parameters associated with rigid body transforma- 
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tions. The SVD is a technique for the factorisation of a single 
matrix into three (Golub and Reinsch, 1971). The technique 
presented here makes use of the properties of these three 
matrices to determine the rigid body transformation para- 
meters 

The rigid body transformation parameters can be used to 
transform points measured in one reference frame to an- 
other, this relationship can be described as 

yi=s.[R]xi+v, (1) 

where yi is the position of ith point measured in reference 
frame {B}; s the scale factor; [R] the attitude matrix (some- 
times called the rotation matrix); xi the position of ith point 
measured in reference frame {A} and v  the position vector of 
the origin of reference frame {A} measured in reference frame 
PI. 

When the scale factor is equal to unity then the rigid body 
transformation parameters can be used to describe the ori- 
entation of a rigid body relative to a given reference frame, or 
the movement of a rigid body from one position to another. 
Analyses for either of these purposes require that matrix [R] 
is a proper orthonormal matrix, which therefore has the 
following properties 

[RIT [R] = [R] [RIT = [R] - ’ [R] = [I], (2) 
det([R]) = + 1, (3) 

where [I] is the identity matrix and det([R]) denotes the 
determinant of matrix [R]. 

Given the rigid body transformation described in equation 
(1) and assuming for the preliminary part of this section that 
s = 1, equation (1) becomes 

yi=[R]~i+V, (4) 
where xi, yi are the points on a rigid body measured in two 
different reference frames; [R] is the attitude matrix and v  is 
a translation vector. 

Using a least-squares method the problem of determining 
[R] and v  is equivalent to minimising 

~i~([RIXi+V-Y.)r([Rlxi+v-y$, (5) 

where n is the number of non-collinear points measured in 
both reference frames (n > 3). 

To simplify the problem v  can be eliminated as an un- 
known. The mean vectors (zi and j) are computed 

(6) 

The vector v  can be determined from these mean vectors 

v = j - [R]T. (8) 

Substitution of this relationship in equation (5) gives 

i i$I(CRIXi - Yi + j - CRl3’CRlxi - Yi + j - CRlf). (9) 

Two new sets of vectors can be defined which can be used to 
simplify equation (9) as 

x;=xi-x, (10) 
yj = yi -J. (11) 

Appropriate substitution of these vectors into equation (9) 
and basic matrix algebra gives 

; i$lt~; - CR1x;)T(~; - CW4. (12) 

Expansion of this expression gives 

(;i$lt~:~; - YI~CRIXI - {CR14jTy; + {CRlx;}TCRlx;), 
(13) 

which can be reduced to 

; it1 ( ylTy; + xiTx’i - 2y3R] x’i) (14) 

since the following equivalents exist 

{[R]x;}~~; = yjT[R]x;, (15) 

{[RIx;}‘[R]x~ = xlTIRITIR]x; = xlTx;. (16) 
Therefore minimising equation (5) is equivalent to maxi- 
mising 

(17) 

which can be re-arranged, and summed to give the following 
to maximise 

i i$,(~?CRlx;) = tr [RI’! i$I~lx;T] = tr(CRITCcl). 

(18) 
where tr( ) refers to the trace of a given matrix and [C] is the 
cross-dispersion matrix (also known as the correlation 
matrix). 

The cross-dispersion matrix is computed from 

Ccl = i jItYi - 7)txi - n)T = i jIY:iT- (19) 

The SVD of [Cj is computed 

ccl = c~Icrlc~lT, (20) 
where [U] and [I’] are orthogonal matrices, and [W] is 
a diagonal matrix which contains the singular values of 
matrix [Cl, the number of non-zero singular values indicat- 
ing the rank of [CJ If the results of the SVD are substituted 
into equation (18) the following relationships exist: 

tr{CRITCCU = t~ICNTC~lE~lC~lT~ 
= t~VIT~RIT’C~lC~l~. 

A new matrix [Q] is defined by 
(21) 

CQI = C~ITCNTWI. (22) 
Since [VI, [R], and [U] are all orthogonal matrices [Q] 
must also be orthogonal. The Euclidean vector norm of the 
main diagonal of [Q] must be equal to or less than unity 
(lQiil d 1) implied by equation (2) as a basic property of 
orthogonal matrices. As [ B’l is a diagonal matrix it is only 
the elements along the diagonal of [Q] which have an influ- 
ence on the results of the computations described in equation 
(18). Therefore equation (18) is a maximum when [Q] is 
equal to the identity matrix, which implies that 

CR1 = WIWIT. (23) 
The description presented thus far parallels that of Arun et 
al. (1987), albeit with a different derivation. For certain cases 
when determining the rotation matrix for describing rigid 
body motion or relative orientation, this formulation does 
not work, and rather than getting a matrix of determinant of 
+ 1, the matrix [R] has a determinant of - 1, in which case 

it represents a reflection. The following modification ac- 
counts for this. I f  the SVD of [Cj has been computed then 
tr([RITICj) is maximised when 

CR] = [U][; 8 detIIi,LVIJ [VI’. (24) 

The matrix product ([VI. [VIT) does not need to be com- 
puted explicitly as the determinants of the two matrices can 
be multiplied to give the determinant of a matrix which is the 
product of the matrices. As [U] and [V] are both ortho- 
gonal matrices their determinants are + 1, obviously it is 
possible that certain combinations of [U] and [VIT will 
result in a matrix [R] which has a determinant of - 1. I f  the 
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value ofdet([U 1. [VI’) is equal to one then the intermediate 
matrix is not needed as it only represents the identify matrix. 
When the determinant is equal to - 1, without this correc- 
tion the matrix [R] would represent a reflection matrix 
(determinant of - 1) and would not be suitable for deter- 
mining rigid body attitudes and positions. A two-dimen- 
sional example is given to illustrate how [R] can be incor- 
rectly determined. Figure 1 shows two lines before and after 
a transformation, the transformation required for this map- 
ping can be described by either a reflection in the Y axis. or 
by a rotation; therefore a matrix representing either a reflec- 
tion or rotation would give a maximum to equation (16). It is 
possible for the example shown that with noise present either 
the reflection or rotation matrix could provide a maximum 
to equation (18). For describing rigid body attitudes it would 
be necessary to constrain the value of the determinant of [R] 
to + 1. If  the SVD based procedure is used for osteometric 
scaling then this stage can be omitted as a mirror trans- 
formation (determinant of - 1) allows a right-hand speci- 
men to be scaled to the left-hand side of another specimen or 
experimental subject. 

I f  scaling is employed then equation (5) becomes 

This equation can be expanded to give the following expres- 
sion to be minimised: 

o,’ + s’a: - 2s. tr([R]r[C]), (26) 
where 

and 

If equation (26) is differentiated with respect to the scale 
factor, and the value of the resulting function set to zero, then 
the scale factor can be determined from 

s = $ tr([RITIC]). (27) 

When determining the orientation of a rigid body relative to 
a given reference frame, or the movement of a rigid body 
from one position to another, any deviations of the scale 
factor (s) from unity will indicate rigid body deformations 
and/or errors in the measurements of the data used to define 
the body. For other applications the scale factor may be of 
more direct use for example in osteometric scaling. Given the 

Fig. 1. The line described by points P, and P, are trans- 
formed to new positions P’, and P’r, respectively. This trans- 
formation could be achieved with either a rotation or a re- 

flection in the y  axis. 

scale factor and mean vectors of the points, the translation 
vector can be computed 

v=j-s.[R]i. 128) 

It has been shown that the SVD can be used to compute rigid 
body transformation parameters. This procedure can be 
extended to allow for scalar weighting of points, in which 
case the objective function to be minimised becomes 

f ,il dC(CRlxi + v - yJr(CRlxi + v - YJI > WI 

where oi is a weighting factor reflecting the accuracy of the 
ith point. 

These weighting factors are normally set so that they are 
inversely proportional to the expected variance of the coor- 
dinates of each of the landmarks. It is common practise to 
normal&e the weighting factors so that they lie between zero 
and unity. The weighting can allow for differences in the 
accuracy with which marker locations have been determined 
in the photogrammetric process, with missing markers being 
given a weighting of zero. The inclusion of a weighting factor 
only effects equations (6), (7), and (19), therefore these modi- 
fied equations become 

(32) 

The algorithm described in this section uses basic linear 
algebra so it can be easily implemented using matrix algebra 
software libraries such as LINPACK (Dongarra et al., 1978). 

APPLICATION I-RIGID BODY ORIENTATION 

In this section the procedure for determining the rigid 
body transformation parameters is utilised to examine the 
influence of the number of markers on the accuracy of angles 
which specify the relative orientation of one rigid body to 
another. 

The problem was to define the attitude of a cube (length of 
sides 0.50 m) relative to an inertial reference frame. For the 
cases examined here it was assumed that the origin of both 
the inertial and cube reference frames were coincident. A ref- 
erence frame was defined for the cube and the locations of 36 
points on the cube determined in the cube’s reference frame. 
The relative attitude of the cube was defined using helical 
angles (Woltring, 1991) with the criterion angles in the range 
180” to - 180” being generated using a random number 
generator. These angles were than used to specify the ori- 
entation of the cube in the inertial reference frame. White 
noise with an isotropic distribution was then added to the 
coordinates of the points, as measured in both reference 
frames. The standard deviation of the noise was 0.0015 m in 
the cases examined here. The problem was to determine the 
rigid body transformation parameters from this noisy data, 
using the SVD based procedure, and then from the attitude 
matrix to extract the helical angles. These estimated angles 
could then be compared with their criterion values. A set of 
100 helical angles were determined. The procedure presented 
in this paper requires at least three non-collinear points 
measured in both reference frames so that the transforma- 
tion parameters can be determined, but the option is avail- 
able to use more points. The task was to estimate each of the 
angles from the noisy coordinate data when the number of 
markers used to define the cube’s reference frame was se- 
quentially varied in increments of one from three to 36. The 
accuracy of the estimations of these angles was assessed by 



136 Technical Note 

o~::::::::::::::::::::::::::::::::I 
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 
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Fig. 2. The variation in the mean absolute relative difference in estimating the orientation of a rigid body 
with an increasing number of markers on the rigid body. Data showing trend of increased accuracy of 

orientation estimation with increased number of markers. 

computing the mean relative absolute difference between the to examine the utility of the SVD based procedure for deter- 
criterion values of the angles and their estimated values. The mining the rigid body transformation parameters including 
mean absolute relative difference was evaluated using the the scaling factor. The six points measured on the two tibia 
formula were the following: 

(1) tubercle of Gerdy, 
(2) lateral malleolus, 
(3) posterior cruciate attachment, 
(4) middle of tibia1 spines, 
(5) centre of lateral condylar surface, 
(6) tubercle on soleal line. 

(33) 

where ARDIFF is the mean absolute relative difference; n the 
number of angle sets (100); CAi the criterion angle value and 
EAi the estimated angle value. 

The mean absolute relative accuracy of the estimated 
helical angles was determined as the number of points defin- 
ing the cube’s reference frame was increased from three to 36. 

Figure 2 shows that the general trend was that as the 
number of markers increased, the accuracy of the estimation 
of the helical angles increased. The increase was most rapid 
when the number of markers was increased from three to 
four. In the analysis of human movement it is often not 
possible to attach more than three markers to a segment in 
positions where the influence of skin movement will not be 
too great. The graph illustrates how attitude determination 
accuracy was influenced by the distribution of the markers. 
An increase in the number of markers did not always in- 
crease the accuracy of the helical angle estimations; thus 
reflecting that the distribution of the markers is also an 
important factor in determining the accuracy of the rigid 
body transformation parameters. During the simulations the 
adjustment in the determinant of the attitude matrix as 
described in equation (24) was required, although the num- 
ber of times a reflection matrix (determinant of - 1) occur- 
red was not quantified. 

APPLICATION Z-OSTEOMETRIC SCALING 

Lew and Lewis (1977) presented data of the locations of six 
bony landmarks on two human tibias; these data were used 

The bones used by Lew and Lewis (1977, p. 174) were 
selected so that the ‘geometry differences between the bones 
were as large as possible’. 

In this study one bone was used as a reference and the 
rigid body transformation parameters were determined for 
mapping from that bone to another bone. Given that there 
were not many points with which to assess the accuracy of 
the procedure the cross-validation procedure of Allen (1974) 
was used. An unbiased estimate of error was obtained by 
calculating the rigid body transformation parameters for 
sub-sets of the original data set. The sub-sets were achieved 
by removing one of the body landmarks from both original 
data sets. The removed value was then estimated using the 
rigid body transformation parameters; by doing this sequen- 
tially for each of the six points it was possible to get six 
estimates of error from which the mean absolute relative 
error was computed. The resulting cross-validation errors 
indicate the predictive capabilities of the model. 

From the results presented in Table 1 it can be. seen that 
the scaling from one bone to another using the procedure 
described here produces small errors in the estimation of 
points known on one bone but not on another. For point 
two, the lateral malleolus, the results are the least accurate. 
Although no reason for this is obvious this difference could 
have arisen due to experimental errors in the procedures for 
measuring and locating the positions of landmarks, or due to 
the assumption that the geometry differences between bones 
can be accounted for using homogeneous scaling 
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Table 1. The absolute relative differences between the true 
value and estimated value for each of the points identified on 
the tibia. The mean absolute relative differences indicate the 
small errors arising when using the SVD based procedure for 

osteometric scaling 

Absolute relative differences 
Point excluded/ ~ -- 
predicted x r’ 2 

1 0.016 0.004 0.008 
2 0.072 0.022 0.052 
3 0.028 0.010 0.010 
4 0.009 0.008 0.009 
5 0.025 0.003 0.000 
6 0.015 0.007 0.009 

Mean 0.027 0.009 0.015 

DISCUSSION 

A procedure has been presented which allows the estima- 
tion of the rigid body transformation parameters in a least- 
squares sense. When using this procedure for the estimation 
of the relative attitude or movement of a rigid body the scale 
factor is assumed to have a value of one. The algorithm will 
of course estimate the scale factor, any deviations from unity 
for the scale factor will be due to the combined effects of 
marker movement, and errors in locating the positions of 
these markers. Marker movements arise because the seg- 
ments are not truly rigid, which means that markers may 
have movement relative to the reference frame they are 
intended to define. Evidence of the advantage of using 
a least-squares technique for determining the attitude and 
position of a rigid body is provided by Challis (1994) who 
showed that compared with a number of other commonly 
used procedures a least-squares based procedure gave the 
most accurate estimates of rigid body position and attitude. 

The use of the SVD based procedure for osteometric 
scaling means the scaling along the three coordinate direc- 
tions is homogeneous. Therefore this procedure can make 
use of data such as that of Brand et al. (1982) who provided 
the averaged scaled locations of the origins and insertions of 
47 muscles from the dissection of three cadavers (six lower 
limbs), and White et al. (1989) who also provided data 
suitable for osteometric scaling for 40 muscles of the lower 
limb. A non-homogeneous technique has been presented by 
Lewis et al. (1980) which is based on finite element principles. 
Non-homogeneous scaling is a non-linear least-squares 
problem so is not solvable using the least-squares procedure 
presented here. The procedure of Lewis et al. (1980) requires 
eight landmarks on both the specimen and experimental 
subject/specimen. In an analysis of two human femurs the 
non-homogeneous scaling was more accurate than homo- 
geneous scaling. Unfortunately in the analysis of human 
subjects in uiuo without the use of X-ray photogrammetry it 
is difficult to locate eight bony landmarks so that the non- 
homogeneous transformation procedure of Lewis et al. 
(1980) can be used. Future developments should permit 
non-homogeneous scaling with fewer than eight markers, 
until such time the homogeneous scaling technique present- 
ed here is valuable, particularly for in viuo studies. 
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