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Abstract

A new method is proposed for estimating the parameters of ball joints, also known as spherical or revolute joints and hinge joints
with a fixed axis of rotation. The method does not require manual adjustment of any optimisation parameters and produces closed
form solutions. It is a least squares solution using the whole 3D motion data set. We do not assume strict rigidity but only that the

markers maintain a constant distance from the centre or axis of rotation. This method is compared with other methods that use
similar assumptions in the cases of random measurement errors, systematic skin movements and skin movements with random
measurement noise. Simulation results indicate that the new method is superior in terms of the algorithm used, the closure of the

solution, consistency and minimal manual parameter adjustment. The method can also be adapted to joints with translational
movements. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study and measurement of human joint kine-
matics have many applications in biomechanics, motion
synthesis and analysis. Articulated kinematic chain
models of varying sophistication are used in modelling
human joint movements. In this context, estimation of
the centre of rotation (CoR) and the axis of rotation
(AoR) for limb complexes relative to various observa-
tion frames is often important as an aid to gait analysis
and treatment of anatomical defects. It can also be
indirectly important in building better models for
motion capture systems used in biomedical research.
CoR arises with ball joints and AoR with hinge joints.
The literature on estimation of CoR has mainly

divided into finding the instantaneous CoR, as in
Woltring (1990) and the average CoR as in Halvorsen
et al. (1999) and Silaghi et al. (1998), over the given time
interval. The instantaneous CoR has zero angular
velocity in the observe’s coordinate system and is mostly

estimated using two time instances, in practice, although
smoothing is possible. Woltring (1990) estimates the so-
called instantaneous helical axis (IHA) assuming the
joints have both translational and rotational compo-
nents. A least squares method is applied to this set of
IHAs to calculate the average CoR or the average AoR
where appropriate. Halvorsen et al. (1999) use a least
squares cost function formed by the vector differences of
the points traced out by each marker. The solutions are
in closed form. The lengths of these difference vectors
or, equivalently, the choice of the time lags, are crucial
for the performance of the method. Silaghi et al. (1998)
use a cost function based on the fact that the markers
should be on a sphere centred on the CoR in the case of
a stationary joint. But Silaghi et al. (1998) do not give a
closed form solution and use a weighted average of the
CoRs given by individual markers.
We assume that the 3D coordinates of markers

attached to the moving anatomical parts are given in
an arbitrary coordinate system which is the camera
coordinate frame if acquired by a motion capture
system. In this paper, we present new least squares
solutions to the estimation of the CoR or the AoR
which are in closed form and require no ‘tuning’
parameters. It should also be noted that the CoR or
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AoR is estimated using the whole data set. Also we do
not depend on the method used to acquire the data as
we accommodate for errors in a least squares sense.
Since the least squares estimation is only optimal
in the case of Gaussian errors (see, e.g. Anderson and
Moore, 1979), the performance of the method may
vary for systems with different error distributions. In
this context, we consider the effect of skin movements
as reported by Cappozzo et al. (1996). In our de-
rivation, we do not assume strict rigidity of the
markers in relation to the joint but instead assume that
a given marker traces out a sphere centred at the CoR or
a circle around the AoR. Thus, substantial and
systematic radial movements will affect the performance
of the method. We compare the new method with the
methods of Halvorsen et al. (1999) and Silaghi et al.
(1998).

2. Centre of rotation estimation

Here we assume that a set of vectors on a body
rotates around a time varying AoR with the CoR fixed.
The ‘tips’ of the vectors should then lie on co-centric
spheres. If v

p
k represents the pth vector in the kth time

instance, the centre of rotation is m; and the radius of
the sphere marked out by the pth vector is rp (see
Fig. 1a), it is possible to form a least squares cost
function,

C ¼
XP

p¼1

XN
k¼1

½ðvp
k �mÞ2 � ðrpÞ2�2 ð1Þ

assuming there are P markers and N frames. This means
that we do not assume that the vectors at different time
instances or frames are related by a rigid body rotation
(i.e. all the P vectors are not assumed to have the same
amount of rotation) but each pth vector is indivi-
dually rotated around the CoR. Note that the rigid
body rotation is a subset of the above assumption.
Hence the method is also applicable in the case of rigid
body rotations. To estimate the rp and m that mini-
mise the cost function, we can first differentiate with
respect to (wrt) the scalar quantity rp and arrive at the
result

rp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1
ðvp

k �mÞ2
r

: ð2Þ

Also, using the definition of vector differentiation (see,
e.g. Therrien, 1992), we can differentiate wrt vector m to
obtain the result

XP

p¼1

XN
k¼1

½ðvp
k �mÞfðvp

k �mÞ2 � ðrpÞ2g� ¼ 0: ð3Þ

Substituting Eq. (2) into (3) and applying simple
algebraic manipulations yields

XP

p¼1

½ðvpÞ3 � vpðvpÞ2�

¼ 2
XP

p¼1

1

N

XN
k¼1

v
p
kðv

p
k 	mÞ � vpðm 	 vpÞ

" #
; ð4Þ

where ðvpÞ3 ¼ 1=N
PN

k¼1 ðv
p
kÞ
3; ðvpÞ2 ¼ 1=N

PN
k¼1 ðv

p
kÞ
2

and vp ¼ 1=N
PN

k¼1 v
p
k; note that ðvp

kÞ
3 
 ðvp

kÞ
2v

p
k: Since

we can write ai ðb 	 cÞ ¼ aibjcj ¼ Mci; where matrix M ¼
ðabTÞ and ak; bk; ck are the vector components (assum-
ing column vectors), it is possible to put Eq. (4) into the
form

Am ¼ b; ð5Þ

where

A ¼ 2
XP

p¼1

1

N

XN
k¼1

v
p
kðv

p
kÞ
T

( )
� vpðvpÞT

" #

b ¼
XP

p¼1

½ðvpÞ3 � vpðvpÞ2�:

We have derived the above result using geometric
algebra (see, e.g. Hestenes and Sobczyk, 1984) although
standard techniques can also be used. The complete
derivation is given in Hiniduma Udugama Gamage and
Lasenby (2001). It should be noted that Eq. (5) is linear
and a robust solution can be obtained using linear
algebra. Also note that this method does not rely on any
particular time (frame) difference as in Halvorsen et al.
(1999) or on the method of averaging the P sphere
centres adopted by Silaghi et al. (1998). In addition, the
solution is in closed-form and needs no manual
adjustment of weights unlike the method suggested by
Silaghi et al. (1998).

3. Axis of rotation estimation

When the joint is modelled as a hinge (e.g. knee joint),
the concept of CoR does not apply. In this case, it is not
possible to find a unique CoR since each point on the
axis is stationary. Hence we find a single point on the
AoR and, in addition, the direction of the AoR using
another least squares cost function. These two define the
axis of rotation.
We assume that a set of vectors on a body rotates

around a fixed AoR. Therefore, the ‘tips’ of the vectors
are on circles with their centres on a straight line, where
the line is the rotational axis. Note that this implicitly
assumes that minimum distances from the markers to
the axis are fixed. If v

p
k represents the pth vector in the

kth time instant, mp any point on the plane traced out by
the pth vector ‘tip’ and n the unit vector in the direction

S.S.H.U. Gamage, J. Lasenby / Journal of Biomechanics 35 (2002) 87–9388



of rotational axis, (see Fig. 1b) then it is possible to form
a least squares type cost function as

C ¼
XP

p¼1

XN
k¼1

½ðvp
k �mpÞ 	 n�2

assuming there are P markers and N frames. This is
based on the fact that the vector components v

p
k �mp

should ideally be on a plane perpendicular to the AoR.
In the noisy case, the sum of the magnitudes of
components parallel to the AoR is minimised. Note
that this is similar to the cost function used by
Halvorsen et al. (1999) except that we do not assume
any particular displacement of v

p
k: Similar to the method

adopted in Section 2, we first differentiate the cost
function wrt to n and set the result to zero to give

XP

p¼1

XN
k¼1

fðvp
k �mpÞ 	 ngðvp

k �mpÞ ¼ 0: ð6Þ

Differentiating wrt mp results in

mp 	 n ¼
1

N

XN

k¼1

v
p
k

 !
	 n ¼ vp 	 n: ð7Þ

By substituting for mp 	 n from Eq. (7) into Eq. (6), we
get

XP

p¼1

XN
k¼1

fvp
k 	 n� vp 	 ngvp

k ¼ 0: ð8Þ

Again, writing aðb 	 cÞ in matrix form, Eq. (8) can be
simplified to

XP

p¼1

1

N

XN
k¼1

v
p
kðv

p
kÞ
T

( )
� vpðvpÞT

" #
n ¼ 0;

An ¼ 0: ð9Þ

Note that A takes the same form as in the case of
estimating the CoR. The solution to this linear equation
is the eigenvector corresponding to the eigenvalue with
the smallest magnitude since A is symmetric. The
complete derivation is given in Hiniduma Udugama
Gamage and Lasenby (2001). This can be efficiently
evaluated using the singular value decomposition (SVD)
(see, e.g. Press et al., 1992).
In order to define the axis of rotation, a point on the

axis is also required. Take any point on the axis as m;
and the distance from that point to the circular arc as rp

(which marks out a section of a cone), it is then possible
to form a least squares cost function as

C ¼
XP

p¼1

XN
k¼1

½ðvp
k �mÞ2 � ðrpÞ2�2:

This is identical to the cost function used in Section 2
(Eq. (1)). Hence Eq. (5) can be used to find the vector m:
But note that in the no-noise case, the pseudo-inverse of
A has to be taken since A is singular according to

Eq. (9). In practice, we perform an SVD on matrix A;
taking the vector corresponding to the smallest singular
value as an approximation to n and use the remaining
singular values to calculate the pseudo-inverse (see, e.g.
Strang, 1980). This solution of n is an approximation to
the null space of A: Also note that the value for m is the
solution that is entirely in the row space of A since the
pseudo-inverse is the minimum-norm solution. There-
fore, the equation of the AoR,

xAoR ¼ mþ tn;

is a straight line passing through m in the direction of n;
parameterised by a scalar t: Since the direction and the
location of the axis are known, it is possible to find the
centres of the circles traced out by each marker, mp

c ; (see
Fig. 1) using

mp
c ¼ mþ tpn ð10Þ

where tp is a constant for each set of p vectors. Taking
the inner product wrt to n in Eq. (10) gives

tpn 	 n ¼ mp
c 	 n�m 	 n:

Since mp is also on the plane of the pth circle, we can use
Eq. (7) and the fact that n 	 n ¼ 1 to give

tp ¼ ðvp �mÞ 	 n:

4. Simulations and results

In the first set of simulations, we estimate the AoR
and have chosen the same points as Halvorsen et al.
(1999). We have also compared our method with the
Halvorsen et al. (1999) method using different choices of
time interval. The marker coordinates relative to a frame
fixed in the femur with the x-axis in the anterior
direction, the y-axis in the medial direction and the z-
axis in the superior direction, are ð0; 0;�5Þ; ð0; 0;�30Þ;
ð0;�5;�15Þ; ð0; 5;�15Þ in cm (see Fig. 2a). The points
were rotated 11 per frame for 60 frames around an axis
parallel to the y-axis and going through the point
ð0; 0; 5Þ: Three sets of simulations were carried out. First
with the addition of pseudo-random Gaussian error
sequences. Second with added skin movements as
observed by Cappozzo et al. (1996). Third with the
more realistic situation of random errors plus skin
movements. The standard deviation of the added noise
was chosen to be 0:01: Note here that the marker
positions were chosen in order to make direct use of the
skin movements observed by Cappozzo et al. (1996) as
in Halvorsen et al. (1999). The random errors are
intended to account for observation errors (calibration,
reconstruction, tracking, etc.).
Another set of simulations was carried out to evaluate

the validity of the methods of finding the CoR. The
orientation of the coordinate frame was chosen as
shown in Fig. 2b according to the scheme given in
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Cappozzo et al. (1996) and the origin was chosen to be
the femoral head (CoR). The axis of rotation at the
initial frame was along the z-axis. With each frame,
the AoR was allowed to change direction by adding a
vector with each component drawn from a pseudo-
random Gaussian sequence of standard deviation of 0:1;
and re-normalising, for 100 frames. The marker posi-
tions were ð7;�1; 5Þ; ð5;�16; 12Þ; ð3;�26;�1Þ; ð2;�34; 5Þ
in cm. In this set of simulations, we have repeated the
experiments using both the methods of Halvorsen et al.

(1999) and Silaghi et al. (1998). In the Silaghi et al.
(1998) method, we have used Eq. (5) instead of the
numerical search algorithm as proposed by Silaghi et al.
(1998) for a single marker since the new method is the
closed-form solution to their cost function in this
context.
In both sets of simulations, the cases which involve

the addition of Gaussian noise were repeated 30 times
and the values averaged to give the final result. The
results are presented in Figs. 3–5.

Fig. 1. (a) Assumption of spherical marker movement in a ball joint. rp is the radius of the pth sphere, m is the centre of rotation and v
p
k is the

observed vector at the kth time instant. (b) Assumption of circular marker movement in the case of a hinged joint.mp
c is the centre of the pth circle, mp

is an arbitrary point on the plane containing the pth circle, m is an arbitrary point on the axis of rotation and v
p
k is the observed vector at the kth time

instant.

Fig. 2. Marker placements for the simulations. (a) AoR estimation. (b) CoR estimation. (The leg anatomy was taken from Green and Silver, 1981.)
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4.1. Interpretation of results

From Fig. 3, it is evident that the performance of the
Halvorsen et al. (1999) method is extremely sensitive to
the choice of number of frames used to calculate the
vector differences, in contrast, the new method is free
from this defect. Note that the choice of frame difference
as half the total sequence length is not ‘near optimal’ in
general; depending on the nature of the motion, the link
can be moving in such a way as to make the effective
vector lengths small. A strength of the new method is
that it can be applied straightforwardly to find the
direction of the rotational axis without manually
considering the ‘optimal’ choice for the frame difference,
while having similar performance to the best choice of
frame difference.
It can be seen from Figs. 4a and b that with the effect

of systematic skin displacements, the new method
performs comparably with the best case of Halvorsen
et al. (1999). Note that with a bad choice of frame

difference, the Halvorsen et al. (1999) method performs
very poorly. Since the new method does not use the
frame differencing, its performance does not degrade.
With the systematic skin error and random measure-
ment noise as in Figs. 4c and d the results are similar,
but deterioration of the Halvorsen et al. (1999) method
is worse than that for the pure skin displacement errors.
We see similar behaviour for estimation of the

CoRFsee Fig. 5. The method proposed by Silaghi
et al. (1998) under-performs consistently when com-
pared to the new method since it averages the estimates
of the centres of rotations for each marker, as opposed
to finding the CoR from all the data simultaneously. In
general, the Silaghi et al. (1998) method should do worse
than that depicted in the graphs since it uses the
Levenberg–Marquardt method (see, e.g. More, 1977) to
achieve the least squares minimisation instead of the
closed-form solution presented in Eq. (5). Effectively,
the closed-form solution to the cost function of Silaghi
et al. (1998) is a subset of Eq. (5). In addition, the

Fig. 3. Error in the direction of the axis of rotation in the case of random errors compared with Halvorsen et al. (1999). The solid line is the new

method and the dotted line is the Halvorsen et al. (1999) method. Total number of frames used is 60: Here the frame displacement is the frame
difference used to calculate the vector difference in the Halvorsen et al. (1999) method. Hence it only effects the Halvorsen et al. (1999) method. (a)

and (b) show the error in the angle of the estimated axis of rotation when 30 frames and 1 frame respectively are used in the Halvorsen method

compared to the new method. (c) and (d) show how the errors in the two methods vary with number of frames used for two values of the noise.

S.S.H.U. Gamage, J. Lasenby / Journal of Biomechanics 35 (2002) 87–93 91



solution of Silaghi et al. (1998) requires adjustment of
weights manually to achieve good results because of the
weaknesses mentioned above. The new method requires
no subjective adjustments of weights.

5. Discussion and conclusion

It should be noted that the methods proposed here do
not assume strict rigidity of the movements since the
constraining cost function only assumes each vector
relative to the centre or the axis of rotation to trace out a
sphere or a circle. These methods would not perform
well if there is significant radial displacement from the
centre or the axis of rotation. But note that methods
that assume rigid body motion such as S .oderkvist and
Wedin (1993) would also suffer in this case.
In this paper, we have presented a new method of

estimating the CoR of a stationary ball joint (i.e.
without translation of the CoR) as well as estimating
the direction and the plane centres in the case of a

stationary hinge joint. This method does well when
compared to the best case of the Halvorsen et al. (1999)
method and has the advantage of not requiring manual
adjustment of the unknown ‘optimal’ frame displace-
ment. Also it can be used to estimate the instantaneous
centre or axis of rotation if the number and the
configuration of markers are sufficient (at least three
non-planar markers in general). The new method
outperforms the method outlined in Silaghi et al.
(1998) being superior in the areas of the methodology
(i.e. CoR from the whole data set vs. the average of
individual CoRs), the solution (i.e. closed-form vs.
numerical search) and the necessity of manual interven-
tion (without vs. with weight adjustment). These three
facts were outlined in Section 4.1. The new method can
also be applied to joints with translational movements
by referring the marker positions to a coordinate frame
fixed in one of the links as done by Silaghi et al. (1998)
and would be superior due to the reasons given above.
We envisage that this method can be used straight-

forwardly and automatically for biomedical purposes

Fig. 4. Error in the direction of the axis of rotation in the case of skin movement compared with the Halvorsen et al. (1999) method. The x-axis is the

percentage of errors introduced as described by Cappozzo et al. (1996). The solid line is the new method and the dotted line is the Halvorsen et al.

(1999) method. (a) and (b) show how the methods compare when 30 frames and 1 frame respectively are used in the Halvorsen method; only

systematic skin movements are included. (c) and (d) show similar results when both skin movements and noise are added. In (c) and (d) the added

Gaussian noise has a variance of 0:01: Total number of frames used is 60: The frame displacement is the frame difference used to calculate the vector
difference in Halvorsen et al. (1999) method. Hence it only effects the Halvorsen et al. (1999) method.
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directly as well as in extracting CoR and AoR data from
optical motion capture systems.
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