References

442 References

References 443

References

References 445

Kock, A., Reyes, G.E.: Some calculus with extensive quanti-

Kolar, I., Michor, P.W., Slovak, J,: Natural Operations in Dif-

Koon, W.S., Marsden, J.E.: The Hamiltonian and Lagrangian
approaches to the dynamics of nonholonomic systems. Reports

Kosko, B.: Neural Networks and Fuzzy Systems, A Dynamical Systems Approach to Machine Intelligence. Prentice–Hall,
New York, (1992)

Kosko, B.: Fuzzy Engineering. Prentice Hall, New York,
(1996)

Krener, A.: Approximate linearization by state feedback and

Langer, J., Perline, R.: Local geometric invariants of integ-
(1994)

Lee, J.M.: Introduction to Topological Manifolds. World Scientific,

Lee, J.M.: Introduction to Smooth Manifolds. New York,

Leimkuhler, B.J., Reich, S.: Symplectic integration of con-
strained Hamiltonian systems. Math. Comp. 63, 589–605,
(1994)

Mathematical Society Lecture Notes Series, Cambridge Univ.

Leinster, T.: Operads in higher-dimensional category theory.

Lewis, A.D.: Aspects of Geometric Mechanics and Control of
Mechanical Systems. Technical Report CIT-CDS 95-017 for
the Control and Dynamical Systems Option, California Insti-

Lewis, A. D. and Murray, R. M.: Controllability of simple
790, (1997)

Lewis, A.D.: Affine connections and distributions with appli-
cations to nonholonomic mechanics, Reports on Mathematical
Physics, 42(1/2), 135–164, (1998)

Lewis, A.D.: When is a mechanical control system kinematic?,
in Proceedings of the 38th IEEE Conf. Decis. Con., 1162–1167,
IEEE, Phoenix, AZ, (1999)

Lewis, A. D. and Murray, R. M.: Configuration controllability
of simple mechanical control systems, SIAM Review, 41(3),
555–574, (1999)
References

References

References

References 451

SW72. Sulanke, R., Wintgen P.: Differential geometry und faser-
bundel; bound 75, Veb. Deutscher Verlag der Wissenschaften,
Berlin, (1972)

Sus83. Sussmann, H.J.: Lie brackets and local controllability: a suffi-
cient condition for scalar–input systems, SIAM J. Con. Opt.,

Sus87. Sussmann, H.J.: A general theorem on local controllability,

Swi75. Switzer, R.K.: Algebraic Topology – Homology and Homoto-

Thi79. Thirring, W.: A Course in Mathematical Physics (in four vol-

Springer, New York, (1979)

TPS98. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for
air traffic management: A case study in multi-agent hybrid

Sma99. Van der Smagt, P.: (ed.) Self–Learning Robots. Workshop:

Voi02. Voisin, C.: Hodge Theory and Complex Algebraic Geometry

VJ69. Vukobratovic, M., Juricic, D.: Contribution to the synthesis

VJF70. Vukobratovic, M., Juricic, D., Frank, A.: On the control and
stability of one class of biped locomotion systems. ASME J.

VJF70. Vukobratovic, M., Juricic, D., Frank, A.: On the stability of

VS72. Vukobratovic, M., Stepanenko, Y.: On the stability of anthro-

VS73. Vukobratovic, M., Stepanenko, Y.: Mathematical models of
general anthropomorphic systems. Math. Biosci. 17, 191–242,
(1973)

Vuk75. Vukobratovic, M.: Legged Locomotion Robots and Anthropo-
morphic Mechanisms (in English). Mihailo Pupin, Belgrade,
(1975); also published in Japanese, Nikkan Shim bun Ltd.
Tokyo, (1975); in Russian, “MIR”, Moscow, (1976); in Chi-
nese, Beijing, (1983)

Shim bun Ltd, Tokyo, (1978)

VP82. Vukobratovic, M., Potkonjak, V.: Scientific Fundamentals of
Robotics, Vol. 1, Dynamics of Manipulation Robots: Theory
and Application (in English), Springer-Verlag, (1982); also
published in Japanese, extended version, Japanese Springer-
Verlag, (1986); and in Chinese, Beijing, (1991)

VS82. Vukobratovic, M., Stokic, D.: Scientific Fundamentals of
Robotics, Vol. 2, Control of Manipulation Robots: Theory and
452 References

Application (in English), Springer-Verlag, (1982); also published in Russian, “Nauka”, Moskow, (1985); and in Chinese, Beijing, (1991)

Index

1–form–field, 405
Abelian category, 60
Abelian group, 39
absolute covariant derivative, 158, 164
absolute derivative, 401
abstract functor machine, 279
abstract scalar field, 432
acceleration, 83, 158, 294, 402
achieved, 378
actin, 409
action, 419
action functional, 19
action potential, 413
action principle, 18, 19, 21
action principle – path integral, 19
action–angle system of canonical coordinates, 226
action–angle variables, 202
activated, 353
activation heat, 411
active joints, 354
active state, 413
actually are, 30
adaptive control, 316
adaptive neural measure, 353
adaptive path measure, 378
adaptive sensory–motor transition
amplitude, 353
adaptive signal tracking, 349
additive functor, 61
adenosine diphosphate, 418
adenosine triphosphate, 408
adjoint group action, 123
adjoint map, 114
adjunction, 52
adjustable pattern generator, 355
admissible controls, 333
admissible variation, 275
affine, 340, 386
affine connection, 160, 196, 384
affine control system, 340
affine Hamiltonian control action, 356
affine Hamiltonian control function, 354
affine Hamiltonian servo–system, 354
affine Levi–Civita connection, 219
algebra, 109
algebra homomorphism, 109
algebra of classical observables, 197
almost complex structure, 179
alpha, 30, 417
Ambrose–Singer theorem, 155
amplitude, 353
analogous, 421
antagonistic muscle–pairs, 28
anthropomorphic product–tree, 134
anti–holomorphic, 178
antiderivation, 93
approximate feedback linearization, 330
arc, 13
arc–element, 160
area functional, 242
arrows, 43
associated tensors, 395
associative composition, 42
associativity of morphisms, 43
asymptotically stable, 199, 323
456 Index

atlas, 64
ATPase, 419
attracting set, 200
autogenetic, 30, 416
autogenetic motor servo, 30, 416
autogenetic–reflex action, 353
autonomous dynamical systems, 11
back adjunction, 52
ball–and–socket joints, 119
Banach manifold, 65
Banach space, 65
base space, 72
basic formula of feedback control, 313
basin of attraction, 200
Bendixon’s criterion, 201
Betti, 46
Betti numbers, 46, 98, 292
bi–invariant differential forms, 116
Bianchi covariant derivative, 194, 219
Bianchi symmetry condition, 163
biholomorphism, 176
bijection, 44
bijective, 33
bilinear map, 185
binormal, 402
biological images, 378
biomechanical action, 235
biomechanical bundles, 66
biomechanics functor machine, 279
biomechanics homology group, 311
body–fixed frame, 211
bone fractures, 286
Bott periodicity, 73
boundary, 15, 62
boundary operator, 298
brain–like control functor, 357
brain–motor–controller, 136
Brouwer degree, 168
Brownian dynamics, 278
bundle of cellular electrodynamic flux tubes, 381
Burgers dynamical system, 155
calculus of variations, 18
Campbell–Baker–Hausdorff, 105
canonical coordinates, 196
canonical formulation, 427
canonical transformation, 186
Cartan magic formula, 107
Cartan theorem, 152
Cartesian axes, 8
Cartesian coordinate basis, 397
Cartesian product, 33, 38
Casimir form, 228
Casimir functions, 260
categorification, 55
category, 43, 276
category of Lie groups, 66, 306
category of smooth manifolds, 309
category of vector bundles, 309
Cauchy’s theorem, 208
Cauchy–Riemann equations, 176
cerebellar electrical potential, 357
cerebellar level, 352
cerebellar models, 358
cerebellar sensory–motor amplitude, 356
cerebellar sensory–motor transition probability, 356
cerebellum, 136, 352, 354
chain complex, 61
chain rule, 32, 68, 95
Chapman–Kolmogorov law, 79, 86
characteristic distribution, 330
charge, 380
Chern–Simons quantum mechanics, 259
Christoffel symbols, 160, 219, 386, 399
class of objects, 43
classical biomechanical action, 235
classical muscular mechanics, 383
closed, 15
closed form, 62, 95
closed path, 36
closed–loop nonlinear system, 327
coadjoint group action, 123
coboundary, 62
coboundary operators, 289
cochain complex, 62
cocyclic category, 52
cocycle, 62
cocycle condition, 70
codifferential, 101
codomain, 33, 43
coframing, 90
cofunctor, 46
cohomologous, 70
covariant components, 8
covariant derivative, 387, 400
covariant differentiation, 157
covariant Euler–Lagrange equations, 275
covariant force equation, 239
covariant force functor, 188, 272, 313
covariant force functor, 357
covariant form, 391, 401
covariant functor, 46
covariant Hom–functor, 48
covariant inertia tensor, 10
covariant Lagrangian equations, 12
covariant muscular forces, 371
covariant vector, 393
covector, 393
covector–field, 87
cover, 35
covering, 35, 66
creatine kinase, 418
creatine phosphate, 418
critical path, 294
critical point, 297
critical points, 172
cross bridges, 410
cross striations, 408
curl, 14
curvature, 384
curvature operator, 157, 163
curve, 7, 63
curve on a manifold, 66
cycle, 62
D'Alambert–Lagrange principle, 91
D'Alembert's Principle of virtual displacement, 11
De Rham cohomology group, 18, 97, 291
De Rham complex, 95
De Rham differential complexes, 290
De Rham theorem, 96, 97, 100, 291
decomposable system, 280
defuzzification, 369
degree of symmetry, 182
derivation, 14, 74
derivative map, 85
desired, 378
desired response, 328
deterministic biomechanical jerk function, 287
deterministic chaos, 278
diagonal functor, 48
diffeomorphism, 44, 66
difference, 329
differential, 102
differential algebraic equation, 265
diffusion processes, 415
dimensional neural network, 353
dinatural transformations, 50
Dirac bracket, 259
Dirac equation, 182
Dirac matrices, 109
Dirac operator, 182
Dirac quantum commutator, 383
direct system, 42
directional derivative, 102
discrete time systems, 318
dissipation function, 269
dissipative Hamiltonian biomechanics, 28
dissipative structures, 27
distribution, 91, 336
disturbance, 128
divergence, 14
domain, 31, 33, 43
driving torque one–forms, 25, 27
dual, 68, 87
dual \((n – p)–\)forms, 17
dual picture, 46
dummy index, 391
dynamic force–velocity relation, 411
dynamics of the relative configuration, 127
Eccles model of synaptic activation, 384, 415
effective action, 114
Einstein’s summation convention, 1
electric current, 380
electrical current, 379
electrical field, 379
electrical muscular stimulation, 372
electrical potential, 380
electrodynamic field action principle, 379
electrodynamic flux tubes, 381
element, 13
ellipsoid of inertia, 10
Embden–Meyerhoff pathway, 418
endomysium, 408
endpoint conditions, 275
energy conservation, 24
ensemble average, 375
epic, 61
epimorphism, 44
epimorphisms, 33
equal, 421
equation of continuity, 403
equation of geodesic deviation, 388
equilibrium point, 322
equilibrium solution, 199
equivalence relation, 33
equivalent muscular actuator, 417
equivalent muscular actuators, 28, 352
ergodic hypothesis, 375
error function, 29
essence of feedback control, 321
Euclidean 3D metric tensor, 10
Euclidean 3D space, 7, 8
Euclidean metrics, 394
Euler, 46
Euler characteristics, 390
Euler's vector equation, 222
Euler–Lagrange equation, 162, 192, 242, 243, 302
Euler–Lagrange functional derivative, 148
Euler–Lagrangian equations, 19, 21, 376
Euler–Poincaré characteristics, 98, 292
Euler–Poincaré equations, 195
evolution operator, 79
exact, 16, 60
exact form, 62, 95
excitation, 5, 28
excitation dynamics, 413
excitation model, 384
excitation-contraction dynamics, 352
existence of identity morphism, 43
exponential map, 112, 120, 139
exponentially stable, 323
exponentially stable in the large, 323
exponentiation, 138
extended Hamiltonian, 261
extended Pfaffian system, 274
extension principle, 284
exterior algebra, 88
exterior derivative, 14, 93, 128
exterior differential forms, 13
exterior differential system, 243, 405
exterior differential systems, 90
exterior Maxwell equation, 380
exterior product, 17
external coordinates, 134
faithful functor, 48
Faraday, 380
fasciculus, 408
feedback torque one–forms, 354
Feynman path integral, 18, 248, 375, 377
Feynman propagator, 248
fiber derivative, 252
fiber–derivative, 149
fibrations, 71
fibre, 68, 72
fibre bundle, 71
fibre derivative, 306
field, 41
field theory, 20
field–generated solitons, 381
fifth–order transmission cascade, 415
filamentary–overlap function, 413
final object, 43
Finsler metric, 380
first integral, 198
first variation, 243, 294
first variation formula, 162, 294
fisherman’s derivative, 102
fixed, 435
fixed point, 199
flag, 91
flow, 85, 405
flow line, 82, 86
flow property, 85
fluctuating noisy uncertainty, 377
flux, 415
flux tubes, 381
foliation, 337
force, 402
force equation, 219
force generator, 415
force plates, 7
forced dissipative Hamiltonian
biomechanics, 29
forced Hamiltonian biomechanics, 407
forced Lagrangian equation, 91
forced transition amplitude, 21
forgetful, 48
form commutator, 17
formal exponential, 86
forward dynamics, 7
forward kinematics, 134
Fréchet derivative, 220
Fredholm kernels, 382
free Ca–ion concentration, 413
free action, 114
free index, 391
Frenet–Serret formulae, 402
 Frobenius–Cartan criterion, 152
front adjunction, 52
full embedding, 48
full functor, 48
fully nonlinear control system, 321
function, 31
function space, 36
functional, 242, 243, 245
functional derivative, 19, 21, 220
functional electrical stimulation, 371
functional integral, 429
functional manifold, 155
functional of the path, 19
functor, 46
functor category, 49
functor machine, 280
functor morphism, 48
fundamental group, 47
fundamental groupoid, 45
fusiform, 408
fuzzy differential equation, 283
fuzzy inference system, 368
fuzzy numbers, 283
fuzzy region of uncertainty, 284
fuzzy set, 284
fuzzy–stochastic biomechanical jerk function, 287
fuzzy–stochastic transformation, 285
Galilei group, 117
gamma, 30, 417
gauge fixing, 433
gauge invariant, 433
gauge symmetries, 259
gauge symmetry, 24
gauge theory, 381, 433
Gauss map, 168
Gauss–Bonnet formula, 157
Gauss–Bonnet theorem, 98
Gaussian curvature, 13, 157
general functional transformation, 391
general linear Lie algebra, 105
general theory of systems, 279
generalized chain complexes, 290
generalized cochain complexes, 289
generalized coordinates, 11, 63
generalized force vector, 12
generalized Hamiltonian biomechanics, 407
generalized Hamiltonian control system, 407
generalized infinitesimal symmetry, 148
generalized Kronecker–delta symbol, 394
generalized momenta, 22
generalized vector–field, 147
generalized velocity vector, 11
generating function, 433
geodesic, 83, 160, 162, 399
geodesic action, 384
geodesic deviation, 165, 387
geodesic equation, 163, 384, 399
geodesic flow, 194, 219, 308
geodesic separation vector, 13
geodesic spray, 84, 194, 219, 308
geodesically generated distribution, 345
geodesically invariant, 345
geometric action principle, 384, 386
geometric isomorphism, 71
geometrical dual, 405
geometrodynamics, 6, 9
global complex analysis, 205
global geodesics problems, 292
global solution, 86
glucose–1–phosphate, 419
glycolysis, 418
goal of a control system, 315
Godement product, 49
Golgi tendon organs, 30, 354, 416
gradient, 14, 85, 161
gradient conformal Killing tensor, 183
gradient flow, 297
gradient force 1–forms, 276
gradient force vector–fields, 276
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grassmann algebra</td>
<td>88</td>
</tr>
<tr>
<td>Grassmann planes</td>
<td>403</td>
</tr>
<tr>
<td>Green’s functions</td>
<td>382</td>
</tr>
<tr>
<td>Green’s operator</td>
<td>304</td>
</tr>
<tr>
<td>Green’s theorem</td>
<td>243</td>
</tr>
<tr>
<td>group, 39, 45</td>
<td></td>
</tr>
<tr>
<td>group action, 40, 119</td>
<td></td>
</tr>
<tr>
<td>group conjugation, 123</td>
<td></td>
</tr>
<tr>
<td>group homomorphism, 40</td>
<td></td>
</tr>
<tr>
<td>group monomorphism, 40</td>
<td></td>
</tr>
<tr>
<td>groupoid, 45</td>
<td></td>
</tr>
<tr>
<td>growth condition, 283</td>
<td></td>
</tr>
<tr>
<td>Haar measure, 114</td>
<td></td>
</tr>
<tr>
<td>Hamel equations, 195</td>
<td></td>
</tr>
<tr>
<td>Hamilton’s equations, 196</td>
<td></td>
</tr>
<tr>
<td>Hamilton’s principle, 18, 192</td>
<td></td>
</tr>
<tr>
<td>Hamilton–Dirac equations, 260</td>
<td></td>
</tr>
<tr>
<td>Hamilton–Poisson biomechanical system, 221</td>
<td></td>
</tr>
<tr>
<td>Hamiltonian, 130</td>
<td></td>
</tr>
<tr>
<td>Hamiltonian action, 187</td>
<td></td>
</tr>
<tr>
<td>Hamiltonian biomechanics, 69</td>
<td></td>
</tr>
<tr>
<td>Hamiltonian energy function, 196</td>
<td></td>
</tr>
<tr>
<td>Hamiltonian flow, 199</td>
<td></td>
</tr>
<tr>
<td>Hamiltonian function, 218</td>
<td></td>
</tr>
<tr>
<td>Hamiltonian mechanical system, 196</td>
<td></td>
</tr>
<tr>
<td>Hamiltonian phase–flow, 308</td>
<td></td>
</tr>
<tr>
<td>Hamiltonian vector–field, 196, 217</td>
<td></td>
</tr>
<tr>
<td>Hamiltonian way, 420</td>
<td></td>
</tr>
<tr>
<td>harmonic, 101</td>
<td></td>
</tr>
<tr>
<td>harmonic exterior differential form, 301</td>
<td></td>
</tr>
<tr>
<td>harmonic oscillator, 388</td>
<td></td>
</tr>
<tr>
<td>harmonic projection, 304</td>
<td></td>
</tr>
<tr>
<td>harmonic representative, 304</td>
<td></td>
</tr>
<tr>
<td>Hartman–Grobman theorem, 263</td>
<td></td>
</tr>
<tr>
<td>heat bath, 278</td>
<td></td>
</tr>
<tr>
<td>heat equation, 140, 146, 169, 303, 411</td>
<td></td>
</tr>
<tr>
<td>Hebbian–like learning, 353</td>
<td></td>
</tr>
<tr>
<td>Heisenberg commutation relations, 427</td>
<td></td>
</tr>
<tr>
<td>Heisenberg picture, 383, 428</td>
<td></td>
</tr>
<tr>
<td>hemodynamics, 404</td>
<td></td>
</tr>
<tr>
<td>Hermitian metric, 178</td>
<td></td>
</tr>
<tr>
<td>Hermitian position operator, 21</td>
<td></td>
</tr>
<tr>
<td>Hessian, 149, 161</td>
<td></td>
</tr>
<tr>
<td>hidden symmetries, 233</td>
<td></td>
</tr>
<tr>
<td>Hilbert, 41</td>
<td></td>
</tr>
<tr>
<td>Hilbert 19th problem, 234</td>
<td></td>
</tr>
<tr>
<td>Hilbert 23rd problem, 234</td>
<td></td>
</tr>
<tr>
<td>Hilbert 4th problem, 160</td>
<td></td>
</tr>
<tr>
<td>Hilbert manifold, 65</td>
<td></td>
</tr>
<tr>
<td>hiper–cube ≡ neuro–muscular control space, 416</td>
<td></td>
</tr>
<tr>
<td>Hodge Laplacian, 302</td>
<td></td>
</tr>
<tr>
<td>Hodge star, 17, 89, 100</td>
<td></td>
</tr>
<tr>
<td>Hodge theory, 302</td>
<td></td>
</tr>
<tr>
<td>Hodge’s theorem, 181</td>
<td></td>
</tr>
<tr>
<td>Hodge–De Rham decomposition, 302</td>
<td></td>
</tr>
<tr>
<td>Hodge–De Rham Laplacian, 298</td>
<td></td>
</tr>
<tr>
<td>Hodgkin–Huxley HH–neuron model, 413</td>
<td></td>
</tr>
<tr>
<td>Hodgkin–Huxley neural, 384</td>
<td></td>
</tr>
<tr>
<td>holomorphic cotangent space, 178</td>
<td></td>
</tr>
<tr>
<td>holomorphic tangent space, 178</td>
<td></td>
</tr>
<tr>
<td>holonomic atlas, 74</td>
<td></td>
</tr>
<tr>
<td>holonomic coframes, 75</td>
<td></td>
</tr>
<tr>
<td>holonomic frames, 74</td>
<td></td>
</tr>
<tr>
<td>holonomic frame field, 74</td>
<td></td>
</tr>
<tr>
<td>Hom–bifunctor, 48</td>
<td></td>
</tr>
<tr>
<td>homeomorphism, 44</td>
<td></td>
</tr>
<tr>
<td>homeostatic neuro–muscular feedbacks, 378</td>
<td></td>
</tr>
<tr>
<td>homoclinic orbits, 201</td>
<td></td>
</tr>
<tr>
<td>homogenous quadratic form, 11</td>
<td></td>
</tr>
<tr>
<td>homological algebra, 46</td>
<td></td>
</tr>
<tr>
<td>homologous in, 208</td>
<td></td>
</tr>
<tr>
<td>homology group, 46, 47</td>
<td></td>
</tr>
<tr>
<td>homology object, 61</td>
<td></td>
</tr>
<tr>
<td>homothetic Killing tensor, 183</td>
<td></td>
</tr>
<tr>
<td>homotopic, 35</td>
<td></td>
</tr>
<tr>
<td>homotopies of homotopies, 58</td>
<td></td>
</tr>
<tr>
<td>homotopy, 34, 35</td>
<td></td>
</tr>
<tr>
<td>homotopy axiom, 292</td>
<td></td>
</tr>
<tr>
<td>homotopy classes, 36</td>
<td></td>
</tr>
<tr>
<td>homotopy lifting property, 71</td>
<td></td>
</tr>
<tr>
<td>homotopy of loops, 37</td>
<td></td>
</tr>
<tr>
<td>homotopy operators, 96, 332</td>
<td></td>
</tr>
<tr>
<td>Human Biodynamics Engine, 369</td>
<td></td>
</tr>
<tr>
<td>hybrid dynamics, 278</td>
<td></td>
</tr>
<tr>
<td>hyperbolic force–velocity, 29</td>
<td></td>
</tr>
<tr>
<td>hyperbolic force–velocity curve, 411</td>
<td></td>
</tr>
<tr>
<td>hyperbolic force–velocity relation, 270</td>
<td></td>
</tr>
<tr>
<td>hyperbolic point, 199</td>
<td></td>
</tr>
<tr>
<td>ideal, 41</td>
<td></td>
</tr>
<tr>
<td>differential, 245</td>
<td></td>
</tr>
</tbody>
</table>
identity, 42
identity functor, 48
image, 16, 60
imprecision of measurement, or estimation, 278
impulse torque–time relation, 270
inclusion functor, 48
incommensurate, 202
independence condition, 245
index, 90, 172
index theorem, 296
indirect adaptive control, 317
inertia matrix, 403
inertia tensor, 10
infinite prolongation, 148
infinitesimal generator, 120
initial object, 43, 44
injection, 33, 44
inorganic phosphate, 418
input map, 280
input process, 280
insertion operator, 89
integrability, 233
integrable mechanical systems, 381
integrable systems, 188
integral curve, 82, 86
integral curves, 405
integral element, 90
integral manifold, 244, 245, 275, 336
integral over all possible paths, 428
integrands, 14
interactions, 432
interior product, 89
internal acceleration vector–field, 406
internal force 1–form field, 406
internal joint coordinates, 134, 405
internal velocity vector–field, 405
intervertebral disclinations, 286
intervertebral dislocations, 286
invariant, 393
invariant tori, 201
invariants of the dynamical system, 22
inverse kinematics, 134
inverse kinematics problem, 319
inverse loop, 37
inverse system, 42
inverted pendulum, 313
involution, 71, 138
involutive closure, 336
irreversible processes, 27
iso–energetic paths, 240
isolated equilibrium point, 322
isometric steady–state contraction, 410
isometry group, 182
isomorphism, 44
isotropy group, 115
Ito quadratic cotangent bundle, 283
Ito quadratic tangent bundle, 282
Jacobi equation, 387
Jacobi equation of geodesic deviation, 13, 165
Jacobi fields, 165, 295, 387
Jacobi flows, 387
Jacobi identity, 109, 220
Jacobi operator, 243
Jacobian, 32
Jacobian determinant, 392
jet bifunctor, 78
jet prolongation, 78
jet space, 141
jets, 244
Kähler condition, 303
Kähler form, 179
Kähler manifold, 302
Kähler metric, 179
Kähler potential, 180
Kähler structure, 179
Kalman filter, 318
Kalman regulator, 318
kernel, 15, 60
kernel of the operator, 434
Killing equation, 181
Killing form, 211
Killing spinor–field, 182
Killing tensor–field, 183, 233
Killing vector–field, 232
Killing–Yano equation, 182
kinematic constraint distribution, 256
kinematic singularities, 134
kinetic energy, 11
kinetic energy of muscular contraction, 382
Korteweg–De Vries equation, 147, 223, 383
Kronecker–delta, 394
lack of memory, 278
Lagrange multipliers, 251, 346
Lagrange stability, 324
Lagrange–d’Alembert principle, 251
Lagrange-Poincaré equations, 196
Lagrangian, 193, 242, 243, 430
Lagrangian action formalism, 19
Lagrangian biomechanics, 68
Lagrangian density, 20, 376
Lagrangian equations, 22
Lagrangian flow, 308
Lagrangian function, 13, 18, 19, 162
Lagrangian–field structure, 376
Langevin rate equations, 278
Laplace equation, 142
Laplace transform, 320
Laplace–Beltrami operator, 161
Laplacian, 18, 161
Laplacian symmetry, 184
latency relaxation, 411
lateral cisternae, 408
lattice regularization, 423
laws of motion, 80
Lax type representation, 151
leaf space, 337
least action principle, 375, 376
Lefschetz theorem, 181
left adjoint, 52
left cancellable, 44
left exact, 61
left extension, 112
left ideal, 109
left invariant vector–field, 111
left inverse, 44
left–invariant Lagrangian, 195
left–invariant Riemannian metric, 211
Legendre map, 149, 230
Legendre submanifold, 245, 246
transverse, 245, 246
Legendre transformation, 252, 253, 306
level curves, 201
level set, 81
Levi–Civita connection, 159
Levi–Civita connections, 406
Lie algebra, 105, 109, 127, 220
Lie algebra homomorphism, 109
Lie bracket, 104, 109
Lie bracket property, 145
Lie derivative, 76, 102, 131, 197
Lie functor, 112
Lie group, 110, 127
Lie subalgebra, 109
Lie–invariant geometric objects, 151
Lie–Lagrangian biomechanics functor, 272
Lie–Poisson bracket, 124, 220
limit, 51, 52
limit set, 199
line, 13
line bundle, 72
line element, 385
line integral, 14
linear controllability, 330
linear system, 329
linearization, 199
Liouville equation, 282
Liouville measure, 269
Liouville theorem, 224
Liouville–Arnold theorem, 227
Lipschitz condition, 84, 283
local geodesic, 292
locally accessible system, 340
locally configuration accessible, 343
locally configuration controllable, 343
locally exact, 95
loop, 36
Lorentz force, 380
Lorentzian spin geometry, 183
Lyapunov criterion, 349
Lyapunov exponent, 217
Lyapunov function, 324
Lyapunov function candidate, 316
Möbius bundle, 72
machine learning, 348
macro–level averaging lift, 381
macroscopic force–velocity model, 384
macroscopic muscle–load dynamics, 411
magnetic field, 379
maintenance heat, 411
Mamdani inference, 368
manifold, 63
manifold with boundary, 97
manipulability measure, 134
Markov chain, 278, 428
Markov process, 278
mass conservation principle, 404
material covariant metric tensor, 404
material metric tensor, 11, 403, 406
matrix commutator, 105
Maupertius action principle, 162
Maurer–Cartan equations, 152
maximal geodesic, 83
maximal integral curve, 82
maximal integral manifold, 336
Maxwell, 380
Maxwell electrodynamics, 379
mean curvature, 242
mechanical action, 382
mechanical metric, 162
Melnikov function, 205
metric, 385
metric tensor, 8, 158, 219
microscopic sliding filament model, 383
microscopic theory of muscular contraction, 410
model space, 65
module, 41
molecular soliton model of muscular contraction, 383
moment of inertia, 10
momentum functions, 130
momentum map, 120, 187, 211
momentum map, 232
momentum phase–space, 26, 135, 217, 406
monic, 61
monomorphism, 33, 44
Moore–Penrose pseudoinverse, 392
morphism of vector–fields, 86
morphisms, 42
Morse function, 172
Morse index, 297
Morse theory, 172
motion capture, 7
motion planning, 151
motor servo, 353, 354
multiindex, 88
muscle fibers, 408
muscle–fat manifold, 389
muscular active–state element equation, 28
muscular contraction action principle, 382
muscular level, 352
muscular Riemannian configuration manifold, 376
muscular Riemannian metrics, 382
myocybernetics, 413
myofibrillar action propagators, 382
myofibrils, 408
myoglobin, 419
myosin, 409
n–categories, 53
Nambu–Goto action, 436
Nash strategies, 127
natural equivalence, 49
natural inclusion, 49
natural isomorphism, 49
natural projection, 67
natural transformation, 48
natural vector bundle, 75
neural control inputs, 407
neural path integral, 353
neural pathways, 353
neural phase–space path integral, 356
neural–image coordinates, 358
neural–image manifold, 364
Newton’s second law, 7
Newtonian equation of motion, 7, 382
Noether, 46
Noether Lagrangian symmetry, 148
Noether symmetries, 148
Noether theorem, 22, 243
Noetherian module, 42
Noetherian ring, 41
noise, 378, 384
non–anticipating solution, 283
non–cooperative case, 133
non–cooperative Nash equilibrium, 133
non–degenerate 1–form, 244
nondegenerate, 185
nonholonomic rolling constraints, 254
nonlinear affine control system, 321
nonlinear control design, 316
nonlinear controllability criterion, 336
nonlinear decomposable system, 280
nonlinear multivariate analysis, 391
nonlinear process–functor, 280
nonlinear Schrödinger equation, 222, 383
nonlinear sigma model, 436
nonlinear system behavior, 280
nonwandering set, 200
normal, 387
normal bundle, 73
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal subgroup</td>
<td>40</td>
</tr>
<tr>
<td>normal vector–field</td>
<td>81</td>
</tr>
<tr>
<td>normalization condition</td>
<td>432</td>
</tr>
<tr>
<td>normalized force across the series elastic element</td>
<td>413</td>
</tr>
<tr>
<td>normalized length of the contractile element</td>
<td>413</td>
</tr>
<tr>
<td>null object</td>
<td>44</td>
</tr>
<tr>
<td>nullity</td>
<td>296</td>
</tr>
<tr>
<td>number of degrees of freedom</td>
<td>9</td>
</tr>
<tr>
<td>numerical invariants of spaces</td>
<td>46</td>
</tr>
<tr>
<td>objects</td>
<td>42</td>
</tr>
<tr>
<td>observability map</td>
<td>279</td>
</tr>
<tr>
<td>one parameter subgroup</td>
<td>112</td>
</tr>
<tr>
<td>one–form</td>
<td>14, 393</td>
</tr>
<tr>
<td>one–to–one</td>
<td>33, 44</td>
</tr>
<tr>
<td>onto</td>
<td>33, 44</td>
</tr>
<tr>
<td>open cover</td>
<td>35</td>
</tr>
<tr>
<td>optimal cost</td>
<td>130</td>
</tr>
<tr>
<td>optimal Hamiltonian</td>
<td>130</td>
</tr>
<tr>
<td>orbit</td>
<td>40, 115</td>
</tr>
<tr>
<td>orbit space</td>
<td>115</td>
</tr>
<tr>
<td>orbitally stable</td>
<td>263</td>
</tr>
<tr>
<td>orientation</td>
<td>97</td>
</tr>
<tr>
<td>outer product</td>
<td>394</td>
</tr>
<tr>
<td>output map</td>
<td>280</td>
</tr>
<tr>
<td>output process</td>
<td>280</td>
</tr>
<tr>
<td>overall probability amplitude</td>
<td>377</td>
</tr>
<tr>
<td>overdetermined</td>
<td>233</td>
</tr>
<tr>
<td>parabolic Einstein equation</td>
<td>169</td>
</tr>
<tr>
<td>parabolic length–tension curve</td>
<td>410</td>
</tr>
<tr>
<td>parallel transport</td>
<td>194, 308</td>
</tr>
<tr>
<td>parameter update law</td>
<td>349</td>
</tr>
<tr>
<td>parameter variation</td>
<td>294</td>
</tr>
<tr>
<td>parking theorem</td>
<td>335</td>
</tr>
<tr>
<td>partial order</td>
<td>33</td>
</tr>
<tr>
<td>partially ordered set</td>
<td>33</td>
</tr>
<tr>
<td>partition functions</td>
<td>357</td>
</tr>
<tr>
<td>passive sarcomere tension</td>
<td>413</td>
</tr>
<tr>
<td>path</td>
<td>36</td>
</tr>
<tr>
<td>path components</td>
<td>36</td>
</tr>
<tr>
<td>path connected</td>
<td>36</td>
</tr>
<tr>
<td>path integral quantization</td>
<td>427</td>
</tr>
<tr>
<td>pennate</td>
<td>408</td>
</tr>
<tr>
<td>performance</td>
<td>313</td>
</tr>
<tr>
<td>perimysium</td>
<td>408</td>
</tr>
<tr>
<td>period</td>
<td>98</td>
</tr>
<tr>
<td>perturbation theory</td>
<td>203</td>
</tr>
<tr>
<td>perturbative expansion methods</td>
<td>378</td>
</tr>
<tr>
<td>Pfaff theorem</td>
<td>244</td>
</tr>
<tr>
<td>Pfaffian exterior differential system</td>
<td>274</td>
</tr>
<tr>
<td>Pfaffian system</td>
<td>243</td>
</tr>
<tr>
<td>phase space</td>
<td>7</td>
</tr>
<tr>
<td>phase trajectory</td>
<td>199</td>
</tr>
<tr>
<td>phase–space path integral</td>
<td>424</td>
</tr>
<tr>
<td>phase–space spreading effect</td>
<td>269</td>
</tr>
<tr>
<td>Philip Hall basis</td>
<td>338</td>
</tr>
<tr>
<td>piecewise smooth paths</td>
<td>293</td>
</tr>
<tr>
<td>planar rigid body</td>
<td>341</td>
</tr>
<tr>
<td>Planck constant</td>
<td>375</td>
</tr>
<tr>
<td>Poincaré</td>
<td>46</td>
</tr>
<tr>
<td>Poincaré lemma</td>
<td>14, 95, 96, 291</td>
</tr>
<tr>
<td>Poincaré–Cartan form</td>
<td>246</td>
</tr>
<tr>
<td>Poincaré–Hopf theorem</td>
<td>98</td>
</tr>
<tr>
<td>point particle</td>
<td>19</td>
</tr>
<tr>
<td>pointed set</td>
<td>36</td>
</tr>
<tr>
<td>pointed topological space</td>
<td>36</td>
</tr>
<tr>
<td>Poisson bracket</td>
<td>131, 151, 197, 257</td>
</tr>
<tr>
<td>Poisson evolution equation</td>
<td>220</td>
</tr>
<tr>
<td>Poisson manifold</td>
<td>219</td>
</tr>
<tr>
<td>Poisson tensor–field</td>
<td>229</td>
</tr>
<tr>
<td>Polyakov action</td>
<td>436</td>
</tr>
<tr>
<td>position</td>
<td>420</td>
</tr>
<tr>
<td>positional stiffness</td>
<td>30, 416</td>
</tr>
<tr>
<td>possibility distribution</td>
<td>284</td>
</tr>
<tr>
<td>potential</td>
<td>7, 162</td>
</tr>
<tr>
<td>potential energy</td>
<td>12</td>
</tr>
<tr>
<td>potential field</td>
<td>19</td>
</tr>
<tr>
<td>predecessor</td>
<td>129</td>
</tr>
<tr>
<td>principal axes of inertia</td>
<td>10</td>
</tr>
<tr>
<td>principal normal</td>
<td>402</td>
</tr>
<tr>
<td>principal planes of inertia</td>
<td>10</td>
</tr>
<tr>
<td>probabilistic transition micro–dynamics</td>
<td>377</td>
</tr>
<tr>
<td>probability</td>
<td>435</td>
</tr>
<tr>
<td>probability amplitude</td>
<td>427</td>
</tr>
<tr>
<td>prolongation</td>
<td>141</td>
</tr>
<tr>
<td>prolonged generalized vector–field</td>
<td>147</td>
</tr>
<tr>
<td>prolonged group action</td>
<td>144</td>
</tr>
<tr>
<td>pseudo–inverse</td>
<td>134</td>
</tr>
<tr>
<td>pull–back</td>
<td>76</td>
</tr>
<tr>
<td>pull–back diagram</td>
<td>37</td>
</tr>
<tr>
<td>pull–back vector bundle</td>
<td>70</td>
</tr>
<tr>
<td>push–forward</td>
<td>76</td>
</tr>
<tr>
<td>quantization</td>
<td>19</td>
</tr>
</tbody>
</table>
quantum biomechanical action, 235
quantum electrodynamics, 381
quantum evolution equation, 383
quantum–like adaptive control, 356
quantum–mechanical transition amplitude, 430
quantum–mechanics propagator, 428
quotient space, 136
radius of a circular protected zone, 128
range, 31, 43
rank condition, 333
Rayleigh – Van der Pol’s dissipation function, 27
reachability map, 279
reachable set, 340
reaction, 352
realization problem, 280
reciprocal activation, 354
reciprocal inhibition, 354
reciprocal innervation of agonists and inhibition of antagonists, 352
recurrent, distributed parameter, 415
recursive homotopy dynamics, 276
red, 408
reduced curvature 1–form, 156
reduced phase–space, 188
reduction equivalence relation, 136
redundancy, 134
redundant manipulator, 271
redundant system, 392
related vector–fields, 77
relation, 33
relative acceleration, 165, 387
relative degree, 328
relative order, 328
representation of a category, 48
representation of a group, 48
representative point, 63, 405
retraction, 44
Ricci antisymmetric tensors, 394
Ricci curvature, 158
Ricci flow, 169
Ricci tensor, 158, 163
Riemann curvature tensor, 13, 157, 163, 386, 395
Riemannian kinetic energy form, 406
Riemannian manifold, 8, 13, 89, 191
Riemannian metric, 157, 219, 238, 394
Riemannian metric tensor, 375
right adjoint, 52
right cancellable, 44
right exact, 61
right ideal, 109
right inverse, 44
rigid body, 211
rigid body with a fixed point, 211
ring, 40
robotic leg, 340
robust control, 316
robustness, 313
Rodrigues relation, 122
rolling disk, 346
rotational Hill’s parameters, 29
rotational symplectic geometry/mechanics, 25
saddle, 127
saddle solution, 129, 130
safe operation, 128
sarcolemma, 408
sarcomere, 409
sarcoplasm, 408
sarcoplasmic reticulum, 408
scalar curvature, 158, 165, 387
scalar electrical potential, 379
scalar function, 14
scalar invariant, 393
scalar potential field, 406
scalar product, 8
scalar–field, 396
Schrödinger picture, 428
Schwinger formalism, 381
second tangent bundle, 71
second variation, 243, 294
second variation formula, 166, 295
second vector bundle, 71
second–order contravariant tensor, 394
second–order covariant tensor, 394
second–order mixed tensor, 394
section, 44
sectional curvature, 164
sections of biomechanical bundles, 79
self–organized, 378
semidirect product, 125, 136
sensory–motor integration, 352
separatrix, 201
servoregulatory loops, 30, 417
set of morphisms, 43
short exact sequence, 60
shortening heat, 411
shortest path, 384
signal, 378
similar in all animals, 355
simple mechanical control systems, 338
simple mechanical systems, 192
simple statistical system, 390
singularity, 199
skew–symmetric, 185
sliding filament mechanism, 410
sliding filament model, 410
slow fibers, 419
small time locally controllable, 333
small–time local controllability, 340
smooth, 64
smooth homomorphism, 110
smooth manifold, 14
smooth map, 65
solitary model of muscular excitation–contraction, 381
soliton, 222, 381
source, 46, 356, 431
space of all weighted paths, 382
special Euclidean group in 3D space, 123
special Euclidean group in the plane, 122
special Euclidean group of motions, 271
speed, 83
spinal control level, 352
spinal level, 352
spindle receptors, 30, 354, 416
spino, 109
spinor–fields, 181
spray, 87
spring constant, 388
stability, 313
stable, 199
stable in the sense of Lyapunov, 322
standard action, 430
star–shaped, 96
state feedback, 339
state vector, 428
state–space approach, 315
stationary, 242, 243
step size, 379
stiffness–servo, 29
stimulus–response–type, 372
stochastic forces, 278
stochastic influence, 278
stochastic Taylor expansion, 283
stochastic tensor bundle, 282
stochastic transformation, 282
Stokes formula, 14, 97
stretch potentiation, 413
string tension, 436
structure equations, 171
subgroup, 40
submanifold immersion, 244
sum over fields, 381
sum over fractal geometries, 389
sum over histories, 382
sum–over–histories, 18
supervising, 353
surface integral, 14
surjection, 33, 44
swept volume, 151
symmetric, 161
symmetric affine connection, 159
symmetric product, 344
symmetrical load–lifting, 266
symmetry, 243
symmetry group, 140
symplectic form, 185, 186
symplectic group, 185
symplectic Lie algebra, 125
symplectic Lie group, 125
symplectic manifold, 186, 196
symplectic map, 186
symplectic matrix, 125
symplectomorphism, 185
synaptic weights, 353, 378
system dynamics, 279
system’s center of mass, 10
T tubules, 408
tangent, 402
tangent bundle, 67, 72, 134
tangent functor, 79
tangent Lie algebra, 121
tangent map, 66, 67
tangent space, 66
tangent vector, 9
tangent vector–field, 81
tangential, 387
target, 46
target set, 128
tensor bundles, 75
tensor contraction, 395
tensor–field, 74, 396
terminal object, 44
the sectional curvature, 157
theory of fluctuating geometries, 390
thermodynamic partition function, 383
thermodynamic relation, 411
thermoelastic heat, 412
three–form, 14
time average, 375
time ordered products, 433
time–dependent flow, 80
time–dependent Schrödinger equation, 423
time–dependent vector–field, 86
topological group, 111
topological manifold, 63
topological space, 34
topologically dual functors, 309
torque–jerk, 286
torque–time, 28
torsion, 160
torsion free, 161
total action, 375
total derivative, 145
total energy function, 407
total space, 72
total system’s response, 279
trajectory, 84, 128
transducer neurons, 414
transformation
contact, 242
point, 242
transformation classical, 242
transformation gauge, 242
transition amplitude, 19, 247, 377, 431, 435
transition entropy, 357, 383
transition functor, 374
transition maps, 64
transition probability, 377
transitive action, 114
translational biomechanics, 7
translational Hamiltonian equations of
motion, 7
translational vector geometry, 5
trapping region, 200
triad, 408
triangular identities, 60
trivial fibration, 72
twistor forms, 182
twistor operator, 182
two–form, 14
two–sided ideal, 109
two–sided inverse, 44
Tychonoff product–topology theorem, 367
uniaxial rotational joint, 198
uniformly asymptotically stable, 323
uniformly bounded, 324
uniformly stable, 323
uniformly ultimately bounded, 324
unique functorial relation, 304
unique minimal geodesic, 293
unit natural transformation, 52
universal properties, 38, 51
unsupervised, 378
vacuum expectation, 433
variation vector–field, 162
vector bundle, 69
vector bundle functor, 75
vector bundle homomorphism, 69
vector–field, 80, 396, 405
velocity, 83, 158, 294, 420
velocity phase–space, 26, 135, 193, 405
vertical lift, 71, 343
virtual displacement, 12
virtual work, 12
volume form, 101, 219
volume integral, 14
weak functorial inverse, 52
wedge product, 88, 89
well–posed variational problem, 274
white muscle fibers, 408, 419
Wick rotation, 378
Wiener measure, 425, 426
winding number, 207
zero morphism, 44
zero–sum dynamical game, 128
International Series on
MICROPROCESSOR-BASED AND
INTELLIGENT SYSTEMS ENGINEERING

springeronline.com