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Over the years, many divergent meanings have been associated with the term 'self- 
organization', e.g. automatic creation of structured systems and optimization of 
parameters in adaptive learning. In this paper, we shall discuss a special type of 
data-driven self-organization, namely, automatic formation of ordered, compressed 
representations of sensory events. Such ordered and organized representations of an 
organism's experiences and environment exist in the nervous systems, where specific 
feature-sensitive information-processing functions are usually associated with these 
representations. As a matter of fact, three types of neuronal organization called 
'brain maps' can be distinguished: sets of feature-sensitive cells, ordered projections 
between neuronal layers, and ordered maps of abstract features, respectively. The lat- 
ter are most intriguing as they may also reflect quite abstract properties of the input 
data in an orderly fashion. It is proposed that such 'maps' are learned in a process 
that involves competition between sets of neural cells on common input data, and 
sensitization or tuning of the most strongly responding cells and their local neigh- 
bours to this input. While serving as a model for brain maps, the 'self-organizing 
map' principle has been used as an analytical tool in exploratory data analysis. In 
the latter, it has had practical applications ranging from industrial process control 
to marketing analyses, and from linguistics to bioinformatics. 

Keywords: brain model; data mining; data-driven self-organization; 
representation of sensory events; neural network; self-organizing map 

1. Introduction 

In this paper we shall discuss data-driven self-organization, in particular the emer- 
gence of ordered and structured representations and corresponding detector functions 
of sensory events. 

The brain is a highly structured system of information-processing functions. Many 
of these functions have been developed in phylogenesis over many generations, and 
passed on to the next generations by the genes. However, many functions are also 
learned directly, postnatally, by adaptation to sensory experiences and other occur- 
rences. A significant part of this adaptation involves self-organization. 

What we call 'artificial neural networks' are computational principles believed to 
underlie the operation of the biological neural networks. They were initially intro- 
duced as models for what were believed to be the neural circuits in the brain. First 
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of all, the operations of the cells of the network are not fixed as in digital computers, 
but adaptable: when the cells transform signals, a required transformation can be 
learned, with the help of a teacher or even autonomously from the signals. Second, 
unlike in the digital circuits, the same signals are propagated through the network 
along many parallel paths, and thus their transformation depends on a great many 
cells. On the other hand, many different transformations can be implemented by the 
same network. This feature is called the distributedness of the operations, and in 
biological information processing it provides for robustness. Third, it is characteris- 
tic of the more advanced artificial neural networks that their computing functions 
and/or structures are created by self-organization, in the same way as the informa- 
tion processing ability emerges in the biological brain during its adaptation to the 
environment. 

These three properties, namely adaptability, distributedness and self-organization, 
are useful and even necessary when one has to deal with natural information (such 
as speech, pictures, natural text) or process data, that is, information of an unknown 
nature. The natural signals are usually very noisy and unstable, but at the same time 
the signals depend on each other in many ways. One may imagine an industrial pro- 
cess, the internal conditions of which may change in an unpredictable way. Therefore, 
only the most central information should be extracted, and the most robust measur- 
ing and analysis techniques be applied. The situations in the industrial processes very 
often resemble those of the biological organisms, for which the nervous systems have 
evolved. The more advanced artificial neural networks are similarly able to evolve 
and be adapted to difficult environments and conditions. What we aim at is a model 
of experimental data, not of the process variables. 

It is amazing that although masses of experimental data and observations con- 
vincingly demonstrate the existence of a meaningful spatial order and organization 
of the brain functions, and this order seems to be ubiquitous in the nervous systems, 
the majority of works on artificial neural networks do not take it into account in any 
way. This order is useful for many different reasons, such as the following examples. 

(i) By bringing mutually relevant functions close to each other spatially, the wiring 
can be minimized. 

(ii) If the responses are spatially segregated (although the underlying network may 
be distributed), there will be minimal 'crosstalk' between the functions, and 
the brain architecture can be made more logical and robust. 

(iii) It seems that for effective representation and processing of knowledge one any- 
way needs some kind of metric 'conceptual space' (Girdenfors 2000) to facilitate 
the emergence of natural concepts. 

If a logic concept were defined only in terms of its attributes, as made in the classical 
philosophy, one would run into the 'property inheritance' problem (Fahlman 1981), 
because a concept should contain all the attributes of its superordinates; but where 
could they be stored? It would be more natural that a concept is represented in terms 
of its relations to the most relevant concepts that are located in the neighbourhood 
in the ordered 'representation space'. 

The first work in which ordered representations, namely ordered orientation- 
specific neural cells, were produced in simulations was due to von der Malsburg 
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(1973). Later, topographically ordered anatomical projections between neuronal lay- 
ers were analysed, for example, by Amari (1980) and many others. 

Before proceeding further, it will be necessary to emphasize that one has to dis- 
tinguish the following three different kinds of 'maps' in the brain. 

(i) Feature-specific cells, i.e. neurons or neuron groups that elicit an active response 
upon presentation of a patterned object to the sensory organs, such as the 
silhouette of a hand, a human face, or an acoustic tune. The spatial locations 
of such cells then do not necessarily correlate with the feature values. 

(ii) Anatomical projection of some receptive surface onto, say, the cortex. Examples 
are the areas in the visual cortex that constitute transformed images of the 
retina, and the somatosensory cortex, which forms an ordered image of the 
body. 

(iii) Ordered maps of some abstract features, for which no receptive surfaces exist. 
An example is the colour map in the visual area V4. 

My own contribution to this theory was launched when I tried to define the self- 
organizing process in its most fundamental and abstract form around 1981-1982 
(Kohonen 1981, 1982a,b). I also discovered that topographically or topologically 
ordered 'maps' of very abstract features can be made to emerge automatically. The 
formation of many abstract feature maps known from neurobiology has been sim- 
ulated by this principle or algorithm called the 'self-organizing map' (SOM), and 
the SOM algorithm has also been introduced to a great number of applications in 
various fields of technology and science, ranging from industrial process analysis 
to knowledge discovery in databases, from linguistics to bioinformatics, and many 
others. 

2. The basic SOM 

The SOM is an unsupervised-learning (adaptive) algorithm in the neural-network 
category. It means that the representations of information are determined automat- 
ically from the metric relationships between the data items; no 'teacher' is needed, 
i.e. no input-output relations are defined a priori. 

The SOM forms a nonlinear projection from a high-dimensional data manifold 
onto a regular, usually two-dimensional, grid. Thereby it carries out clustering, visu- 
alization and abstraction of the multidimensional input data. 

The SOM thus consists of a two-dimensional regular grid of nodes. A model of 
some observation is associated with each node. Figure 1 delineates a two-dimensional 
hexagonally arranged grid intended to represent short-time spectra of natural speech 
(Finnish). 

The SOM algorithm computes the collection of the models so that it optimally 
describes the domain of (discrete or continuously distributed) observations. The mod- 
els are automatically organized in a meaningful two-dimensional order so that similar 
models become closer to each other in the grid than the more dissimilar ones. In this 
sense the SOM is a similarity graph and a clustering diagram. Its computation is a 
non-parametric, recursive regression process. 

The self-organizing process may be realized in any set of elements, illustrated 
schematically in figure 2, where only a few basic operational conditions are assumed. 
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Figure 1. An SOM grid. A model of a short-time spectrum of natural speech 
(Finnish) is associated with each node. 
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Figure 2. self-organizing model set. A n input message X is broadcast to a set of models Mi, 
of which M, best matches X. All models that lie in the vicinity of M, (larger circle) improve 
their matching with X. Note that the location of MV differs from one message to another. 

For simplicity, let the elements (e.g. single neurons or groups of closely cooperating 
neurons) form a regular planar array and let each element represent a set of numerical 
values Mi, which we call a model. These values may correspond to some parameters 
of the neuronal system, and in contemporary computational neuroscience it is cus- 
tomary to identify them with synaptic efficacies. We further assume that each model 
is modified by the messages the element receives. 

Let there exist some mechanism by which an ingoing message X, a set of parallel 
signal values, can be compared with all models Mi. In brain theory it is customary 
to speak of 'competition' between the elements, when they are stimulated by com- 
mon input, and the element, whose parameters are fittest to this input is activated 
most. This element is called the 'winner' if it succeeds in suppressing the activity 
in the neighbouring neurons by, for example, lateral inhibition. The 'winner' model 
is denoted by Me. Neural circuits that implement the 'winner take all' function 
have been suggested, for example, by Kohonen (1993) and Kaski & Kohonen (1994). 
Another requirement for self-organization is that the models shall be modified only 
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in the local vicinity of the winner(s) and, after that, all the modified models shall 
resemble the prevailing message better than before. 

When the models in the neighbourhood of the winner simultaneously start to 
resemble the prevailing message X better, they also tend to become more similar 
mutually, i.e. the differences between all the models in the neighbourhood of M, 
are smoothed. Different messages at different times affect separate parts of the set 
of models, and thus the models Mi, after many learning steps, start to acquire 
values that relate to each other smoothly over the whole array, in the same way 
as the original messages X in the 'signal space' do; in other words, maps related 
topologically to the sensory events start to emerge, as can be proven mathematically 
(Cottrell et al. 1997). 

These three subprocesses-broadcasting of the input, selection of the winner and 
adaptation of the models in the spatial neighbourhood of the winner-seem to be 
sufficient, in the general case, to define a self-organization process that then results 
in the emergence of the topographically organized 'maps'. It has to be emphasized, 
however, that the mathematical theory is extremely difficult and its development is 
still in progress. Proofs exist only for the simplest cases (Cottrell et al. 1997). 

Simulations of self-organization with idealized networks can be implemented by 
many mathematical rules. The particular rules selected for this work constitute a 
compromise between effectivity of self-organization and biological realizability. 

A simple representation of message X is the data vector x = (xl, x2,..., xn), i.e. a 
list of numbers that represent the signal values. The model Mi is similarly represented 
by the 'model vector' mi = (mil, mi2, ..., min) of the same dimensionality as x. The 
degree of matching between x and mi, or actually that of mismatch, is expressible, 
e.g. as the Euclidean distance or difference between x and mi. The winner, or the 
best-fitting model me, shall then be defined by equation (2.1), which describes the 
comparison process 

c = argmint {x - mi |}. (2.1) 

A message x(t) at time t will modify the values of models mi(t) to new values 
mi(t + 1) one time-step later. The SOM algorithm applied in this article modifies 
the models in the neighbourhood of the winner so that the difference between them 
and the input message increases. 

Let the neighbourhood of the 'winner' be described by the neighbourhood function 
hci, which has its maximum for the winner (when i = c). The value of hci decreases 
with increasing distance of neuron i from the winner c in the array of neurons; hci 
may also change with time. In simulations, hci(t) can be given different mathematical 
forms. 

Equation (2.2) shows how the modified values of the 'winning model' and its 
neighbouring models are assumed to depend on the messages they receive: the larger 
the difference between the message at time t and the model mi(t), the larger is the 
change towards values of the message; however, hci(t) restricts the changes into the 
vicinity of the winner, namely, 

mi(t + 1) = mi(t) + hci(t){x(t) - mi(t)}. (2.2) 

When the SOM was introduced for the first time, it was shown that the initial 
values of its models in the learning process can be selected as random vectors. How- 
ever, it is not necessary to prove every time that the SOM algorithm will order the 
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models. Therefore, we now recommend that the initial models be chosen as a regular 
array of vectors on the hyperplane spanned by the two largest principal components 
of input data. The learning process then becomes smoother and faster. 

3. The generalized SOM algorithm 

In the previous section we exemplified the SOM algorithm with vectorial data and 
models. The following scheme, however, applies to both vectorial and non-vectorial 
(e.g. symbolic) input data, as long as some similarity or distance measure between 
the data items is definable. 

In order that data-driven self-organization be most effective, the following two 
partial processes should always be implementable in as pure a form as possible. 

(i) Find that cell in the network that matches best with the present input (in the 
sense of some criterion). 

(ii) Modify this cell and its neighbours in the network to improve their matches 
with the present input. 

These partial processes will now be combined into the following batch computation 
scheme. Consider figure 3, where a two-dimensionally ordered array of nodes, each 
one having a general model mi associated with it, is shown. (It is not necessary to 
regard the mi here as real vectors, as earlier.) The initial values of the mi may be 
selected as random, preferably from the domain of the input samples. Then consider 
a list of input samples x(t), where t is an integer-valued index. Compare each x(t) 
with all the mi and list each x(t) into a sublist associated with that node, the model 
of which is closest to x(t) relating to some general distance measure. When all the 
x(t) have been distributed into the respective sublists in this way, we consider the 
neighbourhood set Ni around model mi. Here Ni consists of all nodes up to a certain 
radius in the grid from node i. In the union of all sublists in Ni, the next task is 
to find the 'middlemost' sample xi, defined as the sample that has the smallest 
sum of distances from all the samples x(t) in Ni. This sample xi is now called the 
generalized median in the union of the sublists. The name 'median' may be justified 
here, since it is easy to show that if the x(t) are real scalars, and the distance between 
two samples were the absolute value of their difference, then the generalized median 
would be identical to the arithmetic median of the samples. 

If xi is restricted to being one of the samples x(t), then it may be further proper 
to call it the generalized set median; notwithstanding the fact that it may be possible 
to find another item xz that is not one of the x(t) but has an even smaller sum of 
distances from the x(t) in Ni. For simplicity, however, we shall also then call x/ 
here the generalized median over the union of the sublists. Notice too that for the 
Euclidean vectors the generalized median is equal to their arithmetic mean if we 
look for an arbitrary Euclidean vector that has the smallest sum of squares of the 
Euclidean distances from all the samples x(t) in the union of the sublists. 

In the same way as in the traditional SOM algorithms for vectorial variables, one 
can also use weights in forming the smallest sum of distances. Consider that i is the 
index of the node around which Ni is centred, and let k be another node in Ni. Then 
the weighting can be made by the factor hik that is similar to the neighbourhood 
function in the traditional SOM. The next step in the process is to form zi or x 
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inputs 

x(l), x(2), x(3) 
x(4), x(5), x(6) 
x (7), ... 

x..(.k e ... 
.. 
. 

O~x(7) 

J @ i J ? J _J 

N? I ... I 
- ^ x(7) I m d l 

xi (generalized median) 

Figure 3. Illustration of the batch process in which the input samples are distributed into sublists 
under the best-matching models, and then new models are determined as generalized medians 
of the sublists over the neighbourhoods Ni. 

for each node in the above manner, always considering the neighbourhood set Ni 
around each node i, and to replace each old value of mi by xi or x', respectively. 
This subprocess is similar as in the Batch Map algorithm (Kohonen 1992). 

The above procedure shall be iterated until the mi can be regarded as stationary: 
in other words, in the next batch step of computation, the x(t) are again distributed 
into the sublists, and the new Xi or xi are made to replace the mi, and so on. 
The convergence, however, has not been proved for a general distance measure; as a 
matter of fact, only one related theoretical treatment for vectorial data exists so far 

(Cheng 1997). 
Notice also that the set of input samples x(t) used in-the process need not be fixed: 

from all the available inputs one can randomly pick up a smaller set of samples, which 
are then stochastically different at each cycle of iteration. As long as the stochastic 
process that defines the x(t) is ergodic, the mi are expected to converge. 

The following types of models have already been used in SOM architectures (Koho- 
nen 2001): 

(i) vectorial models with various distance measures; 

(ii) linear subspaces defined by sets of basis vectors; 

(iii) operators and parametrized filters such as the LPC estimator; 
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(iv) symbol strings; 

(v) fuzzy set expressions; 

(vi) genetic-algorithm parameters. 

4. Implementation of SOMs in the real brain 

Maps as clearly organized as those observed in various ideal simulation studies may 
not exist in the brain. Pre-processing in neural realms is already much more complex 
than that used in simulations. However, the mammalian brain is known to support 
several feature maps, either orderly representations of the receptive surfaces on skin, 
retina or cochlea, or purely abstract maps. The acoustic maps are assumed to be 
associated with sounds to which the organism is most frequently exposed. Tonotopic 
maps, i.e. maps that are organized according to frequency and sound intensity, known 
to exist both in auditory pathways and in several cortical auditory fields. 

Essentially every level of the nervous system exhibits plasticity under certain cir- 
cumstances, and thus feature maps can also be expected at all levels. Furthermore, 
even the 'hardwired' maps are known to depend on the sensory experience and they 
thus evidently are, at least to some extent, the result of self-organization. 

Materialization of the SOM principle in the nervous system would first require 
a mechanism that distributes essentially the same, or strongly correlated, informa- 
tion to the neurons or neuron groups of a certain region. Spatial diameters of the 
maps are then determined by the longest distances reachable by common (or highly 
correlated) input in the neuronal layer. The SOM principle might work well in the 
thalamocortical system, where the diameter of the map would be primarily deter- 
mined by the size of the thalamocortical axonal arbours, reaching maximally 1-2 mm 

(Jones & Peters 1984), and by the ramifications of the apical dendritic trees of the 
receiving cortical cells, with diameters less than 3 mm. Thus a typical cortical map 
that describes a single type of abstract feature would be maximally 5 mm wide. 

Second, one needs a mechanism that 'selects' the 'winner' neurons, i.e. the centre 
around which adaptation shall take place. Lateral interconnectivity with excitatory 
and inhibitory connections may play a central role in this selection, resulting in 
enhanced discharge rates at a place where the original excitation was high, and 
suppression of activity elsewhere. 

Third, restriction of learning to the neighbourhood of the winner(s) may simply 
follow the clustering of triggering activity, but one can also assume that some kind 
of chemical 'learning factor' that controls modification locally, but does not activate 
the neurons, is emanating from the active neurons. 

5. Applications 

Over 5000 scientific publications on the SOM have been written. For a documented 
list of most of them, see Kaski et al. (1998). The main application areas are 

(i) statistical analysis at large, in particular data mining and knowledge discovery 
in databases; 

(ii) analysis and control of industrial processes and machines; 
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(iii) new methods in telecommunications, especially optimization of telephone traf- 
fic and demodulation of digital signals; 

(iv) medical and biological applications. 

The SOM has been used in Finnish forest industries for control purposes since 
1985, and for numerous industrial applications over the world since then. Recently, 
for the continuous casting of steel, an on-line monitor based on the SOM has been 
developed (Alhoniemi et al. 1999). 

Practical applications have been introduced to finance, for instance bankruptcy 
analysis, profiling of customers, and analysis of macroeconomic systems (Deboeck & 
Kohonen 1998). A promising area is in real estate business. The new Finnish forest 
taxation legislation in 1992 was based on segmentation results obtained by the SOM. 

Of the numerous applications from very different scientific fields one may mention 
the analysis of the Hubble Space Telescope data, where a new quantitative classifi- 
cation of thousands of galaxies has been developed (Naim et al. 1997). 

Another novel example is from criminology, where an SOM-based system for 
computer-aided tracking of homicides and sexual assaults has been developed by 
the Battelle Pacific Northwest Division, in cooperation with the Attorney General 
of the State of Washington. 

The biggest SOM, with over one million models of dimensionality 500, has been 
developed for document organization, namely for the similarity diagram of about 
seven million patent abstracts (Kohonen et al. 2000). This text corpus is over 20 times 
as big as all the 34 parts of the Encyclopaedia Britannica together. Each document is 
described by the collection of the words it contains. Five hundred statistical indicators 
of the high-dimensional word histograms, with a vocabulary of about 50 000, are used 
as real 500-dimensional input vectors to the SOM. Standard browsing tools are used 
to display and search for the documents of interest. The two-dimensional order in the 
document maps makes it possible to find additional relevant information, after the 
starting point in the document collection has been defined (Kohonen et al. 2000). 

About 20 monographs, textbooks and edited volumes that concentrate on the 
SOM have appeared: in addition to Kohonen (2001) and Ritter et al. (1992) one 
may mention Deboeck & Kohonen (1998), Miikkulainen (1993), Tokutaka et al. 
(1999), van Hulle (2000), Oja & Kaski (1999), Allinson et al. (2001), Obermayer & 
Sejnowski (2001) and Seiffert & Jain (2002). A special issue of Neurocomputing has 
been dedicated to the SOM (Sanchez 1998). 

6. Conclusion 

While serving as a model for brain maps, the 'self-organizing map' principle has 
been used as an analytical tool in exploratory data analysis. In the latter it has had 
practical applications ranging from industrial process control to marketing analyses, 
and from linguistics to bioinformatics. 
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