
14
Functional responses, functional
covariates and the concurrent model

14.1 Introduction

We now consider a model for a functional response involving one or more
functional covariates. In this chapter the influence of a covariate on the
response is of a particularly elementary nature: The response y and each
covariate zj are both functions of the same argument t, and the influence is
concurrent, simultaneous or point-wise in the sense that zj only influences
y(t) through its value zj(t) at time t. This contrasts with the more general
situation that we will defer for two chapters in which the influence of zj

can involve a range of argument values zj(s).
We will see that this functional/functional model involves only minor

changes at the computational level of the functional response and multi-
variate covariate model in the last chapter. Perhaps this is not surprising,
since a scalar covariate can be viewed as a functional covariate expanded
in terms of a constant basis, where the single coefficient multiplying the
basis function value 1 is the value of the covariate. Therefore the func-
tional/multivariate model is really contained within what we take up in
this chapter. But of course the fact that the functional covariate is not
constant does add new features that now need to be considered. We begin
with a concrete problem.
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14.2 Predicting precipitation profiles from
temperature curves

14.2.1 The model for the daily logarithm of rainfall
Predicting temperature is relatively easy, but predicting rainfall is quite
another thing. Certainly there are important precipitation effects due to
climate zones, but can we get additional predictability from the behavior
of temperature? It seems likely, for example, that on days when the average
temperature is high, precipitation tends to be low, at least in the summer.
In the winter, on the other hand, most of the snowfall comes when the
temperature is only a little below freezing; when it is really cold, it seldom
snows since the atmosphere is too dry.

Here is an extension of the functional ANOVA model (13.1) that we
could describe as a functional analysis of covariance model:

log[Precmg(t)] = µ(t) + αg(t) + TempResmg(t)β(t) + εmg(t). (14.1)

We consider the log of precipitation as the response since precipitation
is a magnitude, and experience indicates that logging magnitudes tends
to improve the fitting power of linear models. As in Chapter 13, g indexes
climate zones, m indexes weather stations within climate zones, and climate
zone effects satisfy the constraint

∑
g αg(t) = 0.

The variable TempResmg is the residual temperature after removing the
temperature effect of climate zone g by using the techniques of Chapter 13.
The motivation for removing temperature climate effects from the tem-
perature profiles before using them in this model is that we have already
allowed for these effects in the model. We don’t want climate zones in the
equation twice.

14.2.2 Preliminary steps
The average daily precipitation data for some extremely dry stations such
as Resolute contain a number of zeros, and we dealt with this by replacing
these with 0.05 mm since the smallest nonzero value was 0.1 mm. This
permits us to smooth the logarithm of average precipitation directly. We
first used 365 Fourier basis functions, and the same harmonic acceleration
roughness penalty that we have been using for the weather data. The gen-
eralized cross-validation or GCV criterion was minimized for λ = 106, a
level of smoothing that is equivalent to about 9.5 degrees of freedom. In
order to speed up computation, we then opted for a simple Fourier ba-
sis expansion with eleven basis functions and no roughness penalization.
For this analysis, we used an expansion of the daily average temperature
residual in terms of 21 Fourier basis functions.

The smooth log precipitation curves for all 35 weather stations are shown
in Figure 14.1. The rainiest place in Canada is unlucky Prince Rupert,
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Figure 14.1. The logarithm (base 10) of average daily precipitation after
smoothing for 35 Canadian weather stations.
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Figure 14.2. The log10 of average precipitation at Vancouver over 34 years is
indicated by the dots, the smooth of the data using 11 Fourier basis functions by
the solid curve, and the fit to the smooth curves by the point-wise linear model
(14.1) by the dashed curve.



250 14. Functional responses, functional covariates and the concurrent model

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

 J     F    M     A     M     J     J     A     S    O    N     D

 R
eg

re
ss

io
n 

C
oe

ffi
ci

en
t f

or
 T

em
pe

ra
tu

re

Figure 14.3. The regression coefficient for temperature with climate zone effects
removed in a model predicting log10 rainfall. The solid line is the regression
function and the cross-hatched area is the point-wise 95% confidence region for
the function.

which averages nearly 12 mm of rain a day in October. The driest station
is Resolute in the high arctic, where snowfall has a barely measurable rain
equivalent of 0.1 mm per day in the winter. Figure 14.2 shows the resulting
smooth to the precipitation data for Vancouver, a station that shows a
sharp drop in rainfall during the summer months, and even records two
days with no precipitation in 34 years.

14.2.3 Fitting the model and assessing fit
The unweighted least squares criterion for assessing fit is

LMSSE(µ, αg, β) =
4∑
g

Ng∑
m

∫
LogPrecRes2

mg(t) dt, (14.2)

where

LogPrecResmg(t) = [LogPrecmg(t) − µ(t) − αg(t) − TempResmg(t)β(t)].

When we fit the model, using an approach that will be described in detail
in the next section, we obtain a standard error of 467.9. If we drop TempRes
from the model, this increases to 510.8, and these values are equivalent to
R2 = 0.08. Overall, the temperature residual functions don’t seem to im-
prove the fit by much. Figure 14.3 confirms this by showing point-wise 95%
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confidence intervals for the estimated regression function for the residual
temperature functions. The only part of the year where temperature seems
to make a contribution is December through February.

However, it is potentially misleading to report that the regression co-
efficient is “significantly different from zero” at the end of January, since
we are, in a sense, optimizing significance over a year’s worth of results.
The right way to proceed is to construct a contrast, a linear weighting of
the entire year’s information that focusses on the effect of interest. We can
reasonably say that focussing on the effect in the winter is a test that we
could propose in advance of collecting the data; we knew already that there
is much more potential variation in rainfall across weather stations in the
winter months and much more variability in temperature available then to
predict it. As a contrast function or linear probe, we could propose

ξ(t) = cos[2π(t − 64.5)/365],

where the shift value of 64.5 is defined by finding the low point in the
mean precipitation profile, marking out empirically mid-winter. The inner
product of the regression coefficient function with this probe,∫ 365

0
ξ(t)β6(t) dt = 2.32,

in effect accumulates information across the entire year about the differ-
ence between the summer and winter influence in temperature. Using the
techniques described in Section 14.4, we can also work out the sampling
standard error of this quantity, which in this case works out to 0.77. Tak-
ing ratio of the probe value to its standard error, we obtain z = 3.0. It
is fairly reasonable to interpret this as a standard normal value under the
null hypothesis of no difference in influence between summer and winter,
and the value that we obtain appears to be inconsistent with this null hy-
pothesis. It seems appropriate to declare that temperature has a small but
statistically significant capacity to predict the log precipitation mean in
mid-winter. We can conclude that, if the mean temperature residual for a
weather station is high in winter, as it would be for marine stations like
Prince Rupert, then precipitation will also be high for that station relative
to other stations within the same climate zone.

14.3 Long-term and seasonal trends in the
nondurable goods index

The nondurable goods manufacturing index, introduced in Chapter 1 and
displayed in Figure 14.4 from 1952 to 2000, is a single long time series with
a typical multiresolution structure. The global trend across these years is
rather linear over large sections after logarithmic scaling. On a shorter
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Figure 14.4. The United States nondurable goods manufacturing index plotted
in logarithmic coordinates over the years 1952 to 2000.
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Figure 14.5. Four seasonal cycles for the logged United States nondurable goods
manufacturing index are plotted with any overall linear trend removed. Two
cycles in the 60’s are plotted as dashed lines, and two cycles in the 90’s as solid
lines.
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Figure 14.6. The fit to the smoothed logged United States nondurable goods
manufacturing index using the point-wise linear model for six typical years. The
points indicate the monthly values of the smoothed index, and the solid line is the
fit based on the point-wise linear model. The dotted line indicates the estimated
smooth nonseasonal trend.

scale, however, we see shocks to the system such as the end of the Vietnam
War in 1974, and these seem to result in long-term changes in trend.

Moreover, like most economic indicators, there is a somewhat complex
seasonal trend, and this is illustrated for four fairly representative years in
Figure 14.5. There are three cycles evident in most years, separated by the
Easter/Passover, summer school, and Christmas holidays, respectively.

The seasonal behavior seems to be fairly stable from one year to the next,
but exhibits longer-term changes. The large autumn cycle shows a phase
shift between the 60’s and 90’s, but there is little change in amplitude.
The small winter cycle is much smaller in the 90’s, but the dip due to the
summer holidays is much more profound in the 60’s.

We can use the point-wise linear model to separate out the smooth long-
term trend from the seasonal trend, and at the same time show how the
seasonal trend evolves. Our objective here is also to showcase the analysis
of a single long time series rather than shorter but replicated series. This
analysis used the 577 monthly values in the years 1952 to 2000. The original
values were first smoothed by a smoothing spline with curvature penalized
with a smoothing parameter value λ = 10−6, and the smoothed version
had a degrees of freedom equivalent of about 521.

The first covariate function z1 is simply the constant function, and it
is multiplied by a regression coefficient function β1 that was expanded in
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Figure 14.7. The evolution of seasonal trend in the logged United States non-
durable goods manufacturing index. The top panel shows the modulus of the five
sine/cosine pairs with the frequencies indicated in years. The bottom panel shows
the phase for each pair, indicated as an angle in radians between −π and π.

terms of cubic B-splines with knots placed at each year. This knot spacing
is designed to allow β1 to show smooth trend, but is too coarse to accom-
modate any seasonality. To further ensure that β1 is sufficiently smooth,
we penalized curvature with a smoothing parameter λ = 0.01.

An additional 10 covariate functions z2, . . . , z11 were set up as a series of
sine/cosine pairs with periods 1, 1/2, 1/3, 1/4 and 1/5 years, respectively.
These are intended to model periodic seasonal effects. The corresponding
βj ’s were expanded in terms of seven B-spline basis functions with equal
knot spacing, and these coefficient functions permit us to see any smooth
changes in the structure of this seasonal tend.

Figure 14.6 shows the fit to the smoothed logged goods index by this
model for the years 1964 to 1970 along with the smooth nonseasonal trend
estimated by β1. We see that the fit, based on 121 parameters and some
smoothing, is quite good, and certainly captures the seasonal trend in a
reasonable way. The turbulent few years in the mid-seventies are not shown,
but the fit was not so good there, naturally, since we only allowed for rather
smooth seasonal evolution.

How does the seasonal trend evolve? The top panel of Figure 14.7 shows
the amplitude or modulus

Modj(t) =
√

β2
j (t) + β2

j+1(t)
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of the sine/cosine pairs corresponding to j = 2, 4, . . . , 10 of increasing
frequency. The conclusion seems fairly clear: In later years, more of the
seasonality is represented by the lowest harmonic with frequency of one
year, and the energies in the higher frequency components tend to decline.
Seasonal variation is tending to smooth out with time, perhaps due to the
effects of automation of production, and the shifting of manufacturing with
large seasonality to off-shore locations. The bottom panel shows the phase
angle, measured in radians,

Phasej(t) = arcsin[βj(t)/Modj(t)] .

Here we see little evolution, as we would expect since the timing of the
cycles is tied to holidays, in the case of summer and Christmas at least,
whose timing is fixed. We no doubt could have done better if we had allowed
for the variable timing of the Easter/Passover holiday.

14.4 Computational issues

We have q covariate functions zij , each multiplied by its regression
coefficient function βj . Our concurrent multiple regression model is

yi(t) =
q∑

j=1

zij(t)βj(t) + εi(t) . (14.3)

Let the N by q functional matrix Z contain these zij ’s, and let the vector
coefficient function β of length q contain each of the regression functions.
The concurrent functional linear model in matrix notation is then

y(t) = Z(t)β(t) + ε(t) , (14.4)

where y is a functional vector of length N containing the response functions.
We estimate a basis function expansion for each regression function

βj , j = 1, . . . , q along with roughness penalties to control the smoothness
of the estimates for the βj ’s. We must allow for both the basis and the
roughness penalty to vary from one βj to another; some regression func-
tions may be assumed to only pick up very smooth effects requiring only a
few basis functions, while others may be required to model high-frequency
variability in the data. This means that we will have to possibly define a
roughness penalty

PENj(βj) = λj

∫
[Ljβj(t)]2 dt

separately for each regression coefficient function. Each penalty is defined
by choosing a linear differential operator Lj that is appropriate for that
functional parameter, such as the curvature operator Lj = D2 or the
harmonic acceleration operator Lj = (2π/365)2D + D3.
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The weighted regularized fitting criterion is

LMSSE(β) =
∫

r(t)′r(t) dt +
p∑
j

λj

∫
[Ljβj(t)]2 dt, (14.5)

where

r(t) = y(t) − Z(t)β(t).

Let regression function βj have the expansion

βj(t) =
Kj∑
k

bkjθkj(t) = θj(t)′bj(t)

in terms of Kj basis functions θkj . In order to express (14.4) and (14.5)
in matrix notation referring explicitly to these expansions, we need to
construct some composite or super matrices.

Defining

Kβ =
q∑
j

Kj ,

we first construct vector b of length Kβ by stacking the vectors vertically,
that is,

b = (b′
1,b

′
2, . . . ,b

′
q)

′ .

Now assemble q by Kβ matrix function Θ as follows:

Θ =

⎡
⎢⎢⎢⎣

θ′
1 0 · · · 0

0 θ′
2 · · · 0

...
... · · ·

...
0 0 · · · θ′

q

⎤
⎥⎥⎥⎦ . (14.6)

We can now express model (14.4) as

y(t) = Z(t)Θ(t)b + ε(t) . (14.7)

Note that the model can be formally transformed to a constant coefficient
linear model by defining N by Kβ functional matrix Z∗(t) as

Z∗(t) = Z(t)Θ(t)

so that

y(t) = Z∗(t)b + ε(t) . (14.8)

This doesn’t really gain anything computationally since we achieve constant
coefficients at the price of going from q covariates to the greatly expanded
number of Kβ covariates.

But this formalism (14.8) makes clear that the functional linear model
has Kβ parameters. If each of the Yi response functions is expanded in
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terms of Ky basis functions, then the total number of degrees of freedom
for error dfe in the model becomes

dfe = NKy − Kβ .

Keeping these numbers in mind helps us to avoid over-fitting the data, an
ever-present hazard in the world of functional data analysis. We will show
in a couple of chapters that all of the functional linear models considered
in this book can be re-expressed in this constant coefficient form (14.8).

In order to take care of the roughness penalties, we also need to arrange
the order Kj roughness penalty matrices multiplied by their respective
smoothing parameters,

Rj = λj

∫
θj(t)θ′

j(t) dt ,

into the symmetric block diagonal matrix R of order Kβ :

R =

⎡
⎢⎢⎢⎣

R1 0 · · · 0
0 R2 · · · 0
...

... · · ·
...

0 0 · · · Rq

⎤
⎥⎥⎥⎦ . (14.9)

We can now write down the normal equations weighted least squares
solution for the composite coefficient vector b:

[
∫

Θ′(t)Z′(t)Z(t)Θ(t) dt + R]b = [
∫

Θ′(t)Z′(t)y(t) dt] . (14.10)

The amount of numerical integration involved in these expressions is
really quite manageable. The scalar functions

ωj�(t) =
N∑
i

zij(t)zi�(t)

play the role of weighting functions for the functional inner products∫
θj(t)θ′

�(t)ωj�(t) dt, j, � = 1, . . . , q .

Similarly, on the right side, we have a set of inner products of the basis
functions θj with the unit function 1 weighted by the scalar functions∑N

i zij(t)yi(t). Computing these inner products by numerical integration
is a fairly routine procedure.

14.5 Confidence intervals

In order to compute confidence intervals, we also have to explicate the role
of the coefficient matrix C in the basis function expansions of the response
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functions, expressed as y = Cφ, where the basis function vector φ is of
length Ky. This results in

b̂ =
[ ∫

Θ′Z′ZΘ + R
]−1[ ∫

Θ′Z′Cφ
]

=
[ ∫

Θ′Z′ZΘ + R
]−1[ ∫

φ′ ⊗ (Θ′Z′)
]
vec(C) . (14.11)

Here the Kβ by KyN composite matrix φ′ ⊗ (Θ′Z′) has the structure⎡
⎢⎣

φ1θ1Z′
1 · · · φKy

θ1Z′
1

... · · ·
...

φ1θqZ′
q · · · φKyθqZ′

q

⎤
⎥⎦ ,

where the vector function Zj is the jth column of Z. Recall that in this
expression φk is a scalar basis function, whereas θj is a basis function vector
of length Kj .

Here again, the numerical integration can be reduced considerably when
the jth covariate has the expansion Zj = Djψj . In this event, φ′ ⊗ (Θ′Z′)
is ⎡

⎢⎣
φ1θ1ψ

′
1D

′
1 · · · φKy

θ1ψ
′
1D

′
1

... · · ·
...

φ1θqψ
′
qD

′
q · · · φKyθqψ

′
qD

′
q

⎤
⎥⎦ .

We see in this expression that we need inner products 〈θj ,ψ
′
�〉 with

weighting functions φk.
Finally, the matrix representing the mapping C2BMap that we need to

put together the mapping Y2RMap to construct confidence intervals is

C2BMap =
[ ∫

Θ′Z′ZΘ + R
]−1[ ∫

φ′ ⊗ (Θ′Z′)
]

. (14.12)

14.6 Further reading and notes

Models that are closely related to the point-wise linear model have been
considered by a number of authors. West, Harrison and Migon (1985)
investigated what was essentially model (14.3), but with the restriction
that the regression coefficient functions βj(t) have a simple autoregressive
time series structure. They referred to this structure as a dynamic general-
ized linear model, and went on to consider various extensions in West and
Harrison (1989).

Hastie and Tibshirani (1993) looked at a version of this model within
what they called varying coefficient models of the form

yi =
∑

j

βj(Rij)zij + εi. (14.13)
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They explored various strategies for obtaining flexible estimates of the
functions βjs, including the use of spline basis expansions with roughness
penalties. This paper, as well as the work of West, et al (1985, 1989), con-
tain many interesting examples and illustrate the principle that a number
of estimation strategies can be developed for models like these. The discus-
sions associated with the two journal articles cited here also contain many
useful alternative perspectives.

The varying coefficient model has subsequently received a lot of atten-
tion, with much of this devoted to estimation of smooth regression functions
by kernel smoothing (Wu, Chiang and Hoover (1998)), local polynomial
smoothing (Fan, Yao, and Cai (2003); Neilsen, Nielsen and Joensen, Mad-
sen and Holst (2000); Zhang and Lee (2000); Zhang, Lee and Song (2002))
and local maximum likelihood estimation (Cai, Fan and Li (2000); Cai, Fan
and Yao (2000); Dreesman and Tutz (2001)). Gelfand, Kim, Sirmans and
Banerjee (2003) used a Bayesian model for spatial variation in regression
coefficients.

While the varying coefficient model certainly involves one or more func-
tional parameters, the data involved are more typically multivariate rather
than functional. In many applications, the argument variable rj for βj is a
spatial dimension, and the corresponding covariate zj is fixed rather than
varying over some argument. From this perspective, the varying coefficient
model is closer to the generalized additive model (Hastie and Tibshirani,
1990).

It is likely, though, that the techniques associated with varying coeffi-
cient problems will prove useful in functional data settings as well. This is
especially evident in Eubank, Muñoz Maldonado, Wang and Wang (2004),
where the model being investigated is essentially the concurrent functional
linear model.


