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ABSTRACT In many neural systems, sensory information
is distributed throughout a population of neurons. We study
simple neural network models for extracting this information.
The inputs to the networks are the stochastic responses of a
population of sensory neurons tuned to directional stimuli. The
performance of each network model in psychophysical tasks is
compared with that of the optimal maximum likelihood pro-
cedure. As a model of direction estimation in two dimensions,
we consider a linear network that computes a population
vector. Its performance depends on the width of the population
tuning curves and is maximal for width, which increases with
the level of background activity. Although for narrowly tuned
neurons the performance of the population vector is signifi-
cantly inferior to that of maximum likelihood estimation, the
difference between the two is small when the tuning is broad.
For direction discrimination, we consider two models: a per-
ceptron with fully adaptive weights and a network made by
adding an adaptive second layer to the population vector
network: We calculate the error rates of these networks after
exhaustive training to a particular direction. By testing on the
full range of possible directions, the extent of transfer of
training to novel stimuli can be calculated. It is found that for
threshold linear networks the transfer of perceptual learning is
nonmonotonic. Although performance deteriorates away from
the training stimulus, it peaks again at an intermediate angle.
This nonmonotonicity provides an important psychophysical
test of these models.

Empirical studies of neuronal response are yielding increas-
ing knowledge of its statistical properties (see, e.g., refs. 1
and 2). The goal of relating these properties to psychophys-
ical thresholds involves several basic questions. First, given
the response of a population of neurons to a stimulus, what
are the optimal procedures for performing tasks such as
estimation of stimulus parameters or discrimination between
two stimuli (3, 4)? Second, what are plausible neuronal
mechanisms that ‘‘read’’ the neuronal responses and perform
these tasks? Finally, how does the performance depend on
the tuning curve properties of the population? For a large
population of neurons whose fluctuations are statistically
independent, maximum likelihood (ML) procedures are op-
timal. The dependence of ML estimation error and discrim-
ination thresholds on the population size N is well known to
bel/ \/X’(S , 6). Using the Fisher information (5) as a tool, we
study the dependence of the ML performance on the tuning
curve properties in the context of neurons coding for the
direction of a stimulus.

Although the ML procedures provide important theoretical
bounds on actual performance, in general they do not seem
to have plausible neural implementations. We study simple
models, linear and threshold linear networks, for estimation
and discrimination of directional stimuli and compare their
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performance with the ML procedures. For direction estima-
tion we focus on a network that computes a population vector
by summing the preferred directions of the neurons weighted
by their response magnitudes. Some experimental evidence
for this scheme has been found in the generation of saccadic
eye movements in primates (7). It has also been suggested as
a code for the direction of arm movements (8) and as a model
of visual orientation estimation (9-11).

Here we study the performance of the population vector
relative to the optimal ML estimation. An important outcome
of our analysis of direction discrimination is that threshold
linear models require adaptation to perform well. We calcu-
late theoretical generalization curves for the amount of
transfer of learning from a trained stimulus to novel stimuli.
Testing these predictions by psychophysical measurements
could shed light on the neuronal mechanisms involved in
perception and perceptual learning (12-14).

ML PROCEDURES

Population of Direction Selective Neurons. We consider a
population of neurons coding for direction in two dimensions,
parametrized by 6 from 0 to 2#. For example, these could be
simple cells in visual cortex coding the direction of motion of
abar stimulus. We characterize the response of the ith neuron
by a single nonnegative integer r;, the total number of spikes
generated by the neuron in a fixed time interval following the
onset of the stimulus. Our starting point is the assumption
that the response of a neuron to a sensory stimulus is
stochastic—namely, that repeated presentations of the same
stimulus 6 induce responses that vary in a random fashion.
The response of a population of N neurons is described by a
conditional probability distribution P(r|9), where the vector
notation r is used for the responses r1, . . . , rn.

We model the responses {r;} of the population as indepen-
dent Poisson random variables. The mean of the spike count
of the ith neuron is denoted by (r;} = fi(6), where (- - -)
denotes an average with respect to ?(r|6). The variance of a
Poisson process equals its mean—i.e., {(8r;)2) = f{(6)—where
8r; = r; — (r;). A similar linear relationship between the mean
and variance of neural responses in cortex has been observed
(1, 2), although with coefficient of proportionality different
from 1.

The dependence of the mean response on the stimulus
direction is called the direction tuning curve of the cell. In our
idealized population the tuning curves all have the same
shape, £:(8) = f(8 — 6,), where f(6) is assumed to be an even
periodic function of 8 with a maximum at 6 = 0. The angle 6;
denotes the preferred direction of the ith neuron. The pre-
ferred directions 6; are evenly spaced on the circle, 6;
2mi/N, and Na/2w >> 1, where a is the width of f. For
concreteness, we will analyze model tuning curves of the
form

Abbreviation: ML, maximum likelihood.
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nin + (fmax — fmin)cos™(w6/2a), |6l <a
fl6) = .
JSmins otherwise.

If the stimulus 6 is close to 6; = a, we say that the neuron is
near threshold. Thus the exponent m controls the rise of the
tuning curve at threshold, and the parameter a controls its
width. The cases of m = 1 and m = 2 are shown in Fig. 1A.

ML Estimation. An estimation task is one that requires an
estimate of a continuously varying stimulus parameter. Here
we assume that the animal’s estimate 6 is based on the
responses r of the neuronal population—i.e., can be written
as a function 4(r). The mean- square error of th1s estimate can
be due to both systematic bias (§(r)) — 6 and the fluctuations
of r from trial to trial.

The ML estimate is the value of @ that maximizes the
likelihood 9(r|0). For a large population, its variance is given
by (@ — 6)» = 1/J[rl(6), where J[r](6) is the Fisher infor-
mation, defined as

62
J[re) = <—372 log @(r|o)>. 2]

The Fisher information is a functional of ®(r/6) and can be
interpreted as the amount of information in r about the
stlmulus 6. Because of the independence of the r;, J[r](0) =
=N, J[ril(9), so that J is of the order of N, implying that the
typical fluctuation of the ML estimate scales as § — 6 «
N~1/2_ This is in contrast to the bias of the ML estimate,
which is of the order of 1/N. Hence the variance is the
dominant contribution to the error in the large N limit. The
information contained in the response of neuron i is J[r:](9)
= f(6)?/f{(6), which can be interpreted as the square of the
signal to noise ratio of the neuron. The total information is
given by the sum of J[r;](0) for all neurons, which for large

N is
»d ’ 2
J[r]=Nf2 dé [9Y 3]
0

2m fld)

Note that because of the isotropic distribution of the pre-
ferred directions 6;, J[r] is the same for any stimulus 6 in the
continuum limit.
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F1G. 1. (A) Two tuning curves of the form given in Eq. 1. Both
smooth (m = 2, solid line) and sharp (m = 1, dotted line) thresholds
are shown. The ratio of background to peak response is p = fmin/fmax
= 0.01, and the width is a = 1. (B) Information J[r;}(6) in neuron i
as a function of 6; — 6for tuning curves witha = 1and p = 0.01. There
is no information in the neurons with 6; = 6, at their maximal firing
rates. For the sharp threshold population, the peak of J is at |6 — 6
= a and extends well beyond the top of the figure.
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By the Cramér-Rao inequality (15), no unbiased estimator
can have smaller variance than 1/J. Hence the ML estimate
is asymptotically optimal, since its variance saturates this
bound in the large N limit.

ML Discrimination. A discrimination task involves a finite
set of alternatives rather than a smoothly varying parameter.
In each trial of a single interval discrimination, either stim-
ulus @ or @ + 80 is presented at random and the task is to
determine which of the two stimuli was presented. Given the
response r, the ML discrimination is according to which
likelihood, P(r|6) or P(r|6 + 80), is greater. In a two-interval
discrimination (also known as two-alternative forced choice),
each trial contains a presentation of both stimuli in random
order, and the task is to determine in which order they were
presented. Here ML weighs the relative likelihoods of the
two orders. For a large population of uncorrelated neurons,
it can be shown that the probabilities of error for ML
discrimination are H(d'/2) for single-interval and H(d'/\/_)
for two-interval, where H(x) = 2m)~V/2 [2 dx e~*"/?is the area
under the normal distribution between x and infinity. The
quantity d’ is the discriminability d' of the two stimuli and is

given by
= |86] \/J[r](6), [4]

provided that |86] is scaled so that d’ is of order unity in the
large N limit. This is the relevant scaling for psychophysical
experiments, in which stimulus differences are adjusted so that
discrimination error is neither too small nor too large. These
results reflect two facts. First, for large N, the ML discrimi-
nation between two nearby stimuli on the basis of the response
r is equivalent to one based on the ML estimate d(r). Second,
the fluctuations in § are asymptotically normal. If the two
alternatives have equal prior probabilities of presentation, ML
discrimination is optimal.

Threshold Effect. A striking feature of Eq. 3 is its sensitivity
to the shape of f(8) near threshold. Most importantly, if the
ratio of background to peak response p = fiin/fmax is small,
and the slope f'(6) remains finite as the mean response f{6)
drops to fmin, neurons just above threshold can carry anom-
alously high information, and their contribution may domi-
nate the total information J[r]. For example, for the tuning
curve given by Eq. 1 with m = 1, the neurons at the threshold
contribute the maximal information (per neuron), max;{J[r;]}
= (w/2a)?/p, which can be large if p is small. This threshold
effect is evident in the sharp peaks at the thresholds seen in
Fig. 1B, where we plot the information in neuron i as a
function of preferred direction 6;. In contrast, there is no
threshold effect for the tuning curve with smooth threshold
corresponding to Eq. 1 with m = 2 because f'(6) vanishes at
threshold. Instead, the most informative neurons are sepa-
rated from the threshold by aV/pfor small p, as demonstrated
in Fig. 1B.

The total information is given by the sum of the J[r;], which
is the area under the curves of Fig. 1B. For the smooth
threshold (m = 2) case, the total J[r] is not sensitive to the
value of p for p << 1. In this case, J[r] = Nfmax7/2a, which
is finite for all values of @ > 0. This is demonstrated in Fig.
2, where we present J for the m = 2 tuning curve as a function
of a for p = 0.01 and 0.1. In contrast, for the sharp threshold
tuning curve (m = 1) the total information is J[r] = (Nfmax/
8a)|log p|. Thus, the contribution of the neurons near the
threshold of activity leads to a logarithmic divergence of J as
Jmin — 0. Finally, for all values of m, J « a~!, implying that
narrower tuning improves performance.

MODELS OF “READOUT”

Direction Estimation by Population Vector. Although ML
estimation is asymptotically optimal, it is not clear whether
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FiG. 2. Total information J[r] and information in the population
vector J [£] as functions of a, for the smooth threshold (m = 2) tuning
curve of Eq. 1 with p = 0.01 and 0.1. For large a, J[£] behaves like
JIr], but as a — 0, J[r] diverges, while J[Z] falls to zero. The peak
in J[£] is broad and shifts to larger a as p increases (see Eq. 7).

it possesses a plausible biological implementation. A biolog-
ically plausible alternative to ML is the population vector
(7-11), which can be interpreted as a linear unbiased estima-
tor of the 2d vector representation of the stimulus, (cosé,
sin6). In the following it is more convenient to use the
equivalent complex number representation z = e The
population vector is given by the sum of N complex numbers,
each pointing in the preferred direction of a neuron and
weighted by its response,

N .
1=—— D ek (5]

In the prefactor, f; is the first Fourier component of f, where
the nth Fourier component is defined by £, = @m™! J3" d6
ein® f(0). For large N, (£) = (fi/|fi)e®. If A6) is nonnegative
and has a single maximum at the origin, as in the cases
considered here, f; is real and positive, () = z, and the
population vector (Eq. 5) is an unbiased estimator of z. The
population vector can be interpreted as the output of a single
layer network with two linear nodes whose weight vectors
are proportional to cos6; and sing;, respectively.

Due to the Poisson fluctuations of r; in Eq. 5, both the
magnitude R and direction 6 of 2 = Re9 fluctuate. The
performance of the population vector in the estimation of
direction is measured by the variance of the directional
fluctuations. This can be calculated by considering the fluc-
tuations of £ perpendicular to z. Alternatively, one can
calculate the information in £ about 6, using Eq. 2 and the fact
that for large N, £ has a two-dimensional Gaussian distribu-
tion. The result is

2f3
-0) l=J[]=N—. 6
@— 0)°) [z] e (6]

An important outcome of Eq. 6 is that the performance of
the population vector is insensitive to the shape of the tail of
the tuning curve. It depends mainly on the width a and the
background noise fmin. As a result, J[£] is almost identical for
the sharp and smooth threshold tuning curves. This can be
understood from Eq. 6, which can be interpreted as the
square of the ratio of a population-averaged signal to a
population-averaged noise. Because of this averaging, the
population vector is not as sensitive to the presence of highly
informative neurons near threshold, as is the full information,
Eq. 3, which sums the squared signal to noise ratios of the
individual neurons.
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The population vector and the ML estimator also differ in
their dependence on the width a of the tuning curve and on
the ratio p of background to peak activity, for small values of
a and p. Whereas J[r] diverges as a — 0 like J ~ Nfpaxa~?!
relatively independently of p (for the smooth threshold case),
J[£] behaves roughly as J[Z] ~ Nfmaxa?/(a® + p). Thus, J[Z]
vanishes as a — 0 for any fixed p > 0 and has a maximum at
a finite value of a (see Fig. 2). The location of the maximum
increases with p as

amax ~ P> (71

and the value of J[£] at amax grows with decreasing p as J[?]
o p~1/3_ This behavior of the population vector results from
the fact that for small @ most neurons are below threshold and
produce noise, with variance fyin, Without contributing to the
signal. In contrast, the total information J[r] increases for
small a because ML can make use of the gradient of the
response. As the tuning curves become narrower, the in-
crease in signal |f’| more than offsets the decrease in the
number of neurons above threshold. In addition, the neurons
below threshold are completely ignored by the ML estimator.

Discrimination by a Threshold Linear Network. The sim-
plest neural network that is capable of performing discrimi-
nation between two directions is a single-layer perceptron,
which computes a linear sum of its inputs, followed by a
thresholding. For concreteness we consider a two-interval
discrimination task, where the network has to signal 1 if 8
preceded 6 + 80 and —1 otherwise. For this task, the output
of the perceptron is assumed to be sgn(R — R’) where

N N
R = 21 w;ri, R’ = ‘21 0),"',! [8]
i= =

and {r} and {r{} are the neural responses to the first and
second stimuli, respectively. This model presupposes the
existence of a short-term memory that stores the summed
response R of the first stimulus. By evaluating the probability
of error of such a decision rule, we find that for large N the
error of the perceptron is given by H(d'/ V/2) with discrim-
inability d’ = |56|VJ[R](6y) and J[R] is the information in R,

=N, wifi(O)F

JIRYO) =S
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FiG. 3. (A) Weights w; of perceptron and vector discriminator
adapted to 6, for the smooth threshold tuning curves. Each curve is
normalized so that the maxima are at +1. For the perceptron, the
largest weights are f12 away from threshold. (B) Discriminability d’
in units of |86]V Nfmax of stimuli 8 and 6 + 86 for the perceptron and
vector discriminator after adaptation to 6.
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The numerator is the square of the ‘‘signal’’ part of R (for
discriminating stimuli near 6) and the denominator is the
variance of the ‘‘noise’’ in R (evaluated with the Poisson
statistics of {r}).

An important property of the perceptron is that for any
choice of weights {w;}, the information J[R](8) vanishes for
some angle 6, since the numerator of Eq. 9 is the square of
a total derivative of a periodic function of 6. This implies that
for any fixed choice of weights, the performance of the
perceptron will be close to random in some regime of angles.
Thus, in order to perform well for all angles 6 the weights
have to be adapted to the stimulus 6.

Suppose the system is trained to perform a discrimination
task around 6, allowing unrestricted changes in the weights
to maximize the performance at this angle. To calculate the
optimal choice of weights we maximize J[R](6p) with respect
to w;. The result is w{6o) ~ fi(6)/fi(6). Fig. 3A shows these
weights as a function of 6; — & for the tuning curve of Eq. 1
with m = 2. Note that the neurons with maximal response (6;
= @) are given zero weight. This is due to their vanishing
derivative f}, which means that they carry little information
relevant to discrimination at 6. Substituting the optimal w; in
Eq. 9 demonstrates that for this choice of weights J[R](6y)
equals J[r], Eq. 3. Thus the discriminability of the stimuli 6,
and 6, + 80 to a perceptron that is fully adapted to this
particular discrimination is identical to that of the ML dis-
crimination. In other words, for 8 = 6, there is no loss of
information in the transformation r — R for the fully adapted
perceptron.

If the network is trained for a given stimulus 6, its ability
to generalize to 8 # 6y without further modification of weights
is determined by d’ or equivalently J[R](6) for 6 # 6. This
measure of ‘‘transfer’’ of learning to other angles is shown in
Fig. 3B as a function of @ — 6. These results show that if a
perceptron is fully adapted to 6, its ability to generalize
decreases rapidly as a function of 8 — 6. An important
feature of Fig. 3B is the nonmonotonicity in the performance
of the perceptron. The discriminability drops to zero quickly
but then increases again manifesting auxiliary peaks, away
from the center, and finally drops to zero again for all values
of |6 — 6| that are larger than 2a.

Discrimination with Population Vector. The fully adaptive
perceptron performs optimally in the adapted angle but
requires the adaptation of all its N weights. An alternative
network that requires less adaptation can be constructed by
adding a second layer to the population vector network. The
second layer consists of a single output neuron that sums
linearly the outputs of the two components of the population
vector with weights ¢,, @ = 1, 2. Thus, this network is
equivalent to a single perceptron with N weights o; = c;w} +
c;w?, where w} and w? are the 2N weights of the first
layer—namely, w} = cos6,, and w? = sin6;. Suppose the
network learns to perform the discrimination around a par-
ticular angle 6,. It is reasonable to consider a situation in
which the first layer of 2N weights (w}, w?) = (cos#;, sin6)
that give rise to the population vector is fixed, and learning
occurs only in the second layer weights, ¢; and c¢;. The
optimal second layer weights can be calculated by maximiz-
ing J[R](6y) with respect to c,, yielding ¢; = sinféy and ¢, =
—cos 6. The meaning of this optimum can be understood by
noting that with these values of c, the weights of the
equivalent single layer perceptron are w; ~ sin(6; — 6). These
weights are plotted as a function of 6; — 6 in Fig. 3A. Note
that unlike the fully adapted perceptron the weights from the
background neurons in the population vector network are not
Zero.

With the above optimal ¢, the performance of the network
in the discrimination task at 6 is given by H(d’/\/i) with
discriminability d' = |86V J[R](6), where J[R](6) is given
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by Eq. 9 with the weights of the equivalent perceptron w;
above. Evaluating Eq. 9 with these weights we find that
J[R](0) is equal to J[Z], Eq. 6. Thus at 6, the optimal
discriminator based on the population vector utilizes all the
information in £. This performance is somewhat inferior to
that of the ML discriminator, since J[Z] < J[r], as shown in
Fig. 2.

The transfer curve for this network is determined by
JI[R](6) for 6 # 6, which is plotted in Fig. 3B. As seen in this
figure J[R] is a periodic function of 6 — 6, with a periodicity
of 7. The central maximum has a width of the order of the
tuning curve width a. There is no transfer for directions at
right angles to 6y, and transfer is maximal for a direction that
is opposite to the direction used in training.

DISCUSSION

Using the Fisher information, we have compared the perfor-
mance of linear and threshold linear networks with ML,
which is optimal for a large uncorrelated population. If the
variance of neuronal response is linearly proportional to the
mean and background activity is low, as is the case for simple
cells in visual cortex, the ML performance exhibits a strong
sensitivity to the shape of the tail of the tuning curve, because
weakly active neurons have minimal noise. Depending on the
shape of this tail the information can be highly concentrated
in the neurons near threshold. ~

A biologically plausible alternative to ML estimation is the
population vector, which provides an unbiased estimator of
direction. Since the population vector gives relatively uni-
form weight to every neuron, it depends primarily on the
width of the tuning curve and on the activity level of the
background neurons and is insensitive to the tails of the
tuning curve. The information in the population vector is
optimized by a width that increases with p, Eq. 7. A value of
p = 0.01 is a reasonable estimate for the ratio of the
background to peak activity in simple cells in cat primary
visual cortex. For this value of p our predicted value of
optimal tuning width corresponds to a half width at half max
of 24° for direction tuning. Applying our theory to orientation
selective cells yields an optimal value of 12°. The maxima in
the performance are broad, especially for larger widths (Fig.
2). This is not far from the range 14° to 22° observed
experimentally for orientation tuning in simple cells (16).
Furthermore, a clear tendency for broader tuning in direction
selective cells has been observed (17). We conjecture that a
change in the background activity might trigger adaptation in
the tuning width so that it remains close to the optimal in
accordance with Eq. 7. It may be possible to test this
conjecture experimentally. Although our discussion has ad-
dressed explicitly only the coding of sensory stimuli, our
analysis of the performance of the population vector can be
applied also to the coding of directions of movements in
motor systems (7, 8), where population vector codes have
been implicated.

In psychophysical experiments on primates, the just no-
ticeable difference in orientation is roughly 0.5 degree (9).
Assuming a tuning curve peak of 50 spikes (corresponding to
peak response during 500 msec) and width as above, of order
100 neurons are required to yield this performance. This is
consistent with simulations by Vogels of a population of
neurons with identical tuning properties (9). Our results (Fig.
2) show that, whereas for a narrowly tuned population the
population vector code is in general significantly inferior to
the ML performance, there is little difference in their per-
formance for a broadly tuned population with smooth tuning
curves. For the m = 2 tuning curve with the width quoted
above, the number of neurons needed for the population code
is larger by a factor of 1.4 than the number required to achieve
the same performance with ML. For general tuning curves
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the difference between the two performances is smaller the
smoother are the tails of the curve. Exact equality of ML and
population vector estimation performance holds only for
tuning curves of the form log f(6) = A + B cos6, assuming a
Poisson population.

A varying degree of perceptual learning is required by
different discrimination mechanisms. If the nervous system
in fact managed to implement ML then its performance would
be uniformly good for all stimuli. A more complex network
than considered here—e.g., a multilayer perceptron—might
also attain uniformly good performance (18, 19). In contrast,
due to their limited representational power, simple threshold
linear circuits can achieve uniformly good performance for all
stimuli only after adaptation to each one. If such a network
is adapted to one stimulus, it will perform worse with a novel
one, until further adaptation is allowed to take place. The
extent of transfer does not decrease monotonically with the
separation between the novel and adapted stimuli. Instead,
after dropping to zero for separations of roughly the tuning
width, it increases again. This nonmonotonic transfer is
especially pronounced for the population vector, where it
reaches a maximum of 100% when the separation is half the
period of the underlying tuning curves. There is a trade-off
between performance at the adapted stimulus and the degree
of transfer. The fully adaptive perceptron performs optimally
at the adapted stimulus but its range of transfer is much
narrower than that of the vector discriminator, which is
suboptimal at the adapted stimulus.

Our analysis has focused on the limits on performance
imposed by noise in the input neurons. The analysis could be
extended to include noise in the neurons of the readout
network itself. Constraints on the learning mechanisms and
on representation could also be limiting factors. The issue of
representation could be addressed by expanding our scope
from linear networks to those with hidden layer nonlineari-
ties. Furthermore, our analysis ignores correlations in the
fluctuations in neuronal response (2). As will be discussed
elsewhere (unpublished results), the presence of correlations
may not change our results drastically.

Simple learning mechanisms, such as Hebb-like rules, can
lead to the adaptation required by our networks. The time
scale of adaptation depends on the architecture. The vector
discriminator is expected to learn fast because it has only two
adjustable parameters, in contrast to the fully adapted per-
ceptron, which needs at least order N trials to learn its N
weights (20). Our predictions concerning transfer and time
scale of perceptual learning can be tested by psychophysical
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experiments on direction or orientation discrimination. In-
terestingly, nonmonotonic transfer of learning in direction
discrimination tasks has been observed, although the statis-
tical significance of this experimental finding has been ques-
tioned (21). Additional, careful experiments could provide an
empirical test of the validity of linear and threshold linear
models of readout of distributed neural codes.
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