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Abstract

The problems of estimating the motion and orientation parameters of a body segment from two n point-set patterns are analyzed

using the Plücker coordinates of a line (Plücker lines). The aim is to find algorithms less complex than those in conventional use, and

thus facilitating more accurate computation of the unknown parameters. All conventional techniques use point transformation to

calculate the screw axis. In this paper, we present a novel technique that directly estimates the axis of a screw motion as a Plücker

line. The Plücker line can be transformed via the dual-number coordinate transformation matrix. This method is compared with

Schwartz and Rozumalski [2005. A new method for estimating joint parameters from motion data. Journal of Biomechanics 38,

107–116] in simulations of random measurement errors and systematic skin movements. Simulation results indicate that the

methods based on Plücker lines (Plücker line method) are superior in terms of extremely good results in the determination of the

screw axis direction and position as well as a concise derivation of mathematical statements. This investigation yielded practical

results, which can be used to locate the axis of a screw motion in a noisy environment. Developing the dual transformation matrix

(DTM) from noisy data and determining the screw axis from a given DTM is done in a manner analogous to that for handling

simple rotations. A more robust approach to solve for the dual vector associated with DTM is also addressed by using the

eigenvector and the singular value decomposition.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of estimating the motion and orientation
parameters of a body segment from two n point-set
patterns is of significant importance in many areas. In
most instances we have available two sets of noisy
observations of n points of a rigid body, and determina-
tion of the orientation and position are based on these
points data. However, this paper addresses the case
where there are two sets of lines, which are derived from
the point data.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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Chasles’s theorem states that a rigid body motion can
be specified as a screw. It is intuitive that the geometry of
the screw axis can be fully and easily studied using
Plücker’s coordinates (McCarthy, 2000). The Plücker
line (dual vector) can be transformed via the dual
transformation matrix (DTM) and may be manipulated
in accordance with rules of motor algebra (Fischer,
1999). The robotic community has explored the large
body of line transformation work established over a
century ago, see e.g. Denavit and Hartenberg (1955);
however, the biomechanics and photogrammetric com-
munities have not done so. Only recently, Ying and Kim
(2002) applied Plücker lines to quantify three-dimen-
sional human joint motions.
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The DTM has been shown to be an effective means of
three-dimensional line transformation in displacement
analysis (Ying and Kim, 2002). Dual Euler angles were
applied to investigate the ankle joint complex (Ying
et al., 2004) because it facilitates the description of
movement at the joints (Wong et al., 2005). The
repeatability of the DTM methodology was also studied
(Ying and Kim, 2005), and it was applied to the analysis
of a kinematic chain in a golf swing (Teu et al., 2005).
This paper demonstrates another of the dual-number
transformation’s applications.

Screw axis has been employed to describe joint
kinematics mainly in clinical assessments. The position
and orientation of the screw axis will generally change
throughout the motion (Woltring et al., 1985). Woltring
et al. (1994) used instantaneous screw axes estimated
from low-pass-smoothed video data, and a more
thorough description of these parameters has been
offered in other investigations (Woltring et al., 1985;
Bottlang et al., 2000; Gamage and Lasenby, 2002;
Schwartz and Rozumalski, 2005). Previous reports have
investigated screw axis accuracy combining the motion
analysis technique and the smoothing procedure (Bot-
tlang et al., 2000; Stokdijk et al., 1999). Bottlang et al.
(2000) have also examined changes in the location of a
screw axis due to an applied valgu-varus stress in the
intact elbow. New methods have been proposed, and
some of them do not assume a rigid body motion (Cheze
et al., 1998; Halvorsen et al., 1999; Sahan and Joan,
2002). Accuracy describing relative movements between
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Fig. 1. Conventional algorithms typically involve mapping a set of

rotated data points (initial set of points after screw motion) to the

corresponding set of final data points (final set of points) using least-

square methods. The new algorithm involves mapping a set of rotated

vectors ð
~̂
ViÞ to the corresponding set of final vectors ðV̂ iÞ using least-

square methods.
adjacent bodies with an electromagnetic tracking system
was also assessed (Duck et al., 2004).

Screw axes are highly sensitive to data noise. They are
also undefined with the normal set of equations when
rotation angles equal zero, i.e. pure translation. Another
set of equations is needed for this special case (Fischer,
1999). This caused difficulty in determining the screw
axis under small rotations. Conventional algorithms
generally used a set of point patterns with least-square
methods to solve the noise problem. Finding a rotation
matrix usually involves mapping a set of data points to
the corresponding data points after movement. The new
algorithm proposed takes advantage of a set of line
patterns, which are derived from point data using
a dual-number relationship. The method involves
mapping a set of vectors (Fig. 1) to the corresponding
vectors after movement, made possible by the use of
DTM.
2. Methods

The background on obtaining DTM is given in
Appendix A. With the DTM ½R̂� obtained, the screw
axis positions and directions can then be determined.
Following the derivation by McCarthy (2000) and
incorporating dual vector algebra, we show that the
Plücker coordinates in dual vector representation, V̂ ¼
V þ eW of this screw axis satisfy the condition that it is
an invariant of the 3� 3 DTM ½R̂�.

V̂ ¼ ½R̂� V̂ , (1)

where

V þ eW ¼ ð½R� þ e½S�Þ ðV þ eWÞ

¼ ½R�V þ eð½S�V þ ½R�WÞ. ð2Þ

We rewrite Eq. (1) as

½I � R̂� V̂ ¼ 0, (3)

and seek a solution other than V̂ ¼ 0. This is easily done
if we separate it into the pair of vector equations
compromising the primary and dual component, respec-
tively.

½I � R�V ¼ 0,

½I � R�W ¼ ½D�V , ð4Þ

where ½D� is the skew-symmetric matrix defined by
½D�V ¼ d � V for any translation, and we used the
property of ½R�V ¼ V .

Now ½D�V ¼ d � V must be orthogonal to V. There-
fore, it does not have a component in the direction of the
null space of ½I � R�, which is V . This means that we can
solve this equation for V . Its algebraic derivation here is
straightforward, because it is a direct consequence of
applying the eigen-value problem to three-dimensional
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lines. It is probable that specifying the axis of a screw
motion as a Plücker line is the most suitable linear
representation because it minimizes the influence of non-
linear transformations, frequently used as closed form
solutions in conventional methods.

Two different methods of calculating the screw axis
from DTM were addressed in Fischer (1998) and
McCarthy (2000). In this paper, a different approach
was stated by using the eigenvector and the singular
value decomposition (SVD) (Press et al., 1992) to solve
for the dual vector, especially the dual component W in
Eq. (4). It is adopted on the grounds that it is more
straightforward in implementation and performs better
under very small rotation.

The first equation in Eq. (4) means that the V, also the
direction of the screw axis, is simply the eigenvector of
the primary component, R, of the DTM. Looking at the
dual component W in Eq (4), the matrix ½I � R� turned
out to be ill-conditioned and this can be efficiently
evaluated using the SVD (Press et al., 1992):

ðR� IÞ�1 ¼ V � ½diagð1=wjÞ� �U
T, (5)

where V and U are orthogonal matrices and w is a
square diagonal matrix which satisfies the following
equation:

ðR� IÞ ¼ U �

w1

w2

. . .

wj

0
BBBB@

1
CCCCA
� VT. (6)

Therefore the dual part W in Eq. (4) can be found as
follows:

W ¼ V ½diagð1=wjÞ�U
Tð�½D�VÞ. (7)

Because V �W ¼ 0, we see that V̂ ¼ V þ eW are the
Plücker coordinates of a line, which represent the screw
axis. The reference point C for the screw axis V̂ is
determined by C ¼ V �W .

It should be noted that although the case n ¼ 3
represents the minimum number of non-collinear points
necessary to estimate the DTM of the rigid body, it is
better to estimate the coordinates of n43 points to
reduce errors (Pittman et al., 1991).
3. Simulations and application

The proposed method was tested on simulated data
using the simulation that closely follows Halvorsen et al.
(1999). Four markers at coordinates (0, 0, �5), (0, 0,
�30), (0, �5, �15) and (0, 5, �15) were rotated 11 per
frame for a total of 601 around an axis parallel to
the y-axis and going through the point (0, 0, 5). The unit
is in cm.
Two simulations were performed. In the first simula-
tion, random sequences corresponding to measurement
errors were added to the dataset. For each sequence, the
signal-to-noise ratio (SNR), the ratio of the energy of
the signal sequence to that of the random sequence, was
calculated. The signal was defined by subtracting the
mean from each of the marker paths (Halvorsen et al.,
1999). The energy, Ex, of a sequence, x(n), is given by

Ex ¼
X1

n¼�1

jxðnÞj2. (8)

In the second simulation, skin movement position
artifacts were added with reference to Cappozzo et al.
(1996)’s result. The authors had intended to follow
Halvorsen’s paper but were unsure of how the position
artifacts were added. Hence, the authors implemented
the following: The artifact movement at 10 instances
during the swing phase of a walking stride was estimated
from Cappozzo et al. (1996)’s paper for four markers
(HF, LM, m6 and m7) and expressed in the coordinate
system used in this paper. The skin movements were
then added to the simulated data. Simulations were run
with each set of errors varied at 50%, 100%, 150% and
200%.
4. Results and discussion

Schwartz and Rozumalski (2005)’s method (called as
Schwartz method) were used as a reference for the
proposed algorithm (called as ‘‘Plücker line method’’).
The simulation results of both methods were presented
in Figs. 2 and 3. The general trend of the error follows
that of those reference methods. Fig. 2 shows the results
for the mean error in direction and position of the axis
as a function of SNR in the random error simulation.
Polynomial lines of an order of 2 were each fitted to the
simulated results using least squares fitting. The results
show that when there is little noise, both methods are
comparable. However, as noise increases, the disparities
in both methods become obvious. The error in direction
for the Plücker line method was less when compared to
the reference methods. The error in position was kept
much less than that of the reference method. Fig. 3
shows the results for the mean error in direction and
position of the axis as a function of skin movement in
the simulation. Polynomial lines of an order of 2 were
also fitted to the simulated results using least squares
fitting. Again, the proposed method outperforms the
reference method in terms of both direction and position
estimation, especially when position artefact errors were
large. Table 1 shows the mean and standard deviation of
the results for various simulated situations. The pairs of
means that are significantly different, po0:01 are
marked *. The proposed method clearly outperforms
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Fig. 3. Mean error in the (a) estimated direction and (b) estimated

position of the axis plotted against the magnitude of the skin position

artifact. The solid lines correspond to the ‘‘Plücker line method’’ and

the dotted lines to the ‘‘Schwartz method’’.

Table 1

Regression mean and standard deviation of the results for (a) random error simulation and (b) skin movement simulation

SNR Error in direction (1) Error in position (cm)

Plücker line method Schwartz method Plücker line method Schwartz method

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

(a) SNR

4 6.29* 1.98 8.93* 5.02 1.17* 0.46 11.06* 6.43

50 1.71 0.46 2.40 1.04 0.36* 0.11 2.84* 2.98

250 0.96 0.14 0.99 0.53 0.24 0.04 0.85 0.06

(b) %

50 1.78 0.44 1.85 0.76 0.18* 0.09 4.07* 2.38

100 3.16 1.11 3.81 1.38 0.31* 0.15 6.23* 2.67

150 4.69 1.73 5.56 2.06 0.45* 0.20 8.36* 4.42

200 6.11 2.47 6.71 3.01 0.59* 0.25 12.39* 5.99

The pairs of means that are significantly different are marked as ‘‘*’’.

Error in direction

0

5

10

15

20

25

1 10 100 1000

SNR

D
eg

re
es

Error in position

0

5

10

15

20

25

30

1 10 100 1000

SNR

E
rr

o
r 

(c
m

)

“Plücker line method”
“Schwartz method”

(a)

(b)

Fig. 2. Mean error in the (a) estimated direction and (b) estimated
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the reference method, implying that it can give a better
estimate for the screw axis.

The proposed method worked well for its applica-
tions, especially when noise was present, due to the
fundamental difference between the proposed algorithm
and the conventional methods. The mapping of line
vectors gives a better estimate of the rotation than
mapping of points data and hence better results could be
derived from it. The results are highly significant as they
demonstrate an advantage of using lines instead of
points. Together with the smoothing, the presented
method is highly robust and provides reliable estimates
of the screw axis, even under high noise situations.
We have chosen one conventional method (noted as
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‘‘Schwartz method’’) as a reference, but even if the
general behavior should be similar, the differences
observed can vary depending on the reference method
selected.
5. Conclusion

In our study, the estimation of screw axes from a set
of Plücker lines clearly outperforms conventional
methods using point data. The presented method also
showed that the screw axis could be easily determined
from the DTM simply because of the fact that the axis is
invariant during the dual transformation. This opens the
range of new practical applications of Plücker lines in
bio-kinematics situations. The eigenvector and SVD
method proposed also worked well and gives a simple
alternative to the dual vector calculation. The method
provides an alternative analysis tool for estimation of
screw axes and can be applied to any actions such as gait
analysis in clinical settings to estimate the screw axis.
Appendix A. Calculating dual-number transformation

matrix based on the three-dimensional coordinates of the

points on the rigid body

A.1. Description of a vector constrained on a line with

dual vectors

In a coordinate system, a vector constrained to lie
upon a definite line in space, as shown in Fig. A1, can be
expressed in the dual vector form as

V̂ ¼ V þ eW : (A1)

In the above equation, the primary part V, called the
resultant vector, comprises the magnitude and direction
of the vector. It is independent of the location of the
coordinate system origin (reference point). The dual part
W called moment vector is defined by W ¼ C � V ,
where C connects the origin to any point on the line of
X 

Y 

Z 

V 
W 

V̂

O 

C 

Fig. A1. Vector constrained on a line and its dual vector form

description.
the vector. W is invariant for the choice of point on the
line, but it does vary with the choice of the coordinate
system origin.

A.2. Algorithm for computing dual-number

transformation matrix from point coordinates

The method in this paper involves obtaining the DTM
from coordinated points. The obtained DTM represents
a screw motion through a given axis in space. A three-
dimensional line is typically specified with six para-
meters (Plücker’s coordinates), three for position and
three for direction, and the coordinates can be written as
a dual vector. For applications of its use in robotics and
kinematics, see McCarthy (2000). Because most mea-
surement systems used in joint kinematics studies
acquire the coordinates of points (markers) on a rigid
body with respect to a pre-defined fixed coordinate
system, the algorithm for calculating the DTM ½R̂� based
on the three-dimensional coordinates of the points on
the rigid body is developed below. This method has been
mentioned in Ying and Kim (2002), and Fig. 1 is added
to aid understanding.

It is well known that the coordinates of n (nX3) non-
collinear points on a rigid body can determine the
position and orientation of the rigid body in space.
Suppose that, with respect to the pre-defined global
coordinate system, the coordinates of n (nX3) points on
the rigid body at the initial position and final position
are measured as r0i and ri (i ¼ 1,2,3,y,n), respectively.
Thus, the centroids of the points at the initial and
final positions are given by c0 ¼ 1=n

Pn
i¼1r0i and

c ¼ 1=n
Pn

i¼1ri, respectively. According to the dual
transformation relationship, at the final position, the
vector connecting the centroid to the ith point can be
estimated by

~̂
V i ¼ ~V i þ e ~W i ¼ ½R̂� V̂0i (A2)

where V̂0i ¼ ðr0i � c0Þ þ ec0 � ðr0i � c0Þ represents the
vector connecting the centroid to the ith point when the
rigid body is at the initial position. On the other hand, at
the final position, the same vector can also be calculated
from the measured data as

V̂ i ¼ V i þ eW i ¼ ðri � cÞ þ ec� ðri � cÞ. (A3)

Fig. 1 shows the graphical representations of the
points and vectors. Because of noise, there is a difference
between

~̂
V i and V̂ i. In the least-square error sense, the

dual-number transformation matrix ½R̂� should mini-
mize the following function:

J ¼
1

n

Xn

i¼1

V i � ~V i

�� ��2 þ W i � ~W i

�� ��2� �
(A4)

where kk represents the norm of a three-dimensional
vector. This optimization problem is subject to the
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orthogonal constraint ½R̂�½R̂�T ¼ ½I �. The dual form
constraint can be expanded into the ordinary matrix
form as

½R�½R�T ¼ ½I �,

½R�½S�T þ ½S�½R�T ¼ ½0�, ðA5Þ

where [R] and [S] are the primary and dual components
of the dual transformation matrix, respectively. From
Eq. (4), 12 ordinary constraint functions are obtained.
The 18 elements in the dual-number transformation
matrix were determined by solving the constrained
optimization problem using sequential quadratic pro-
gramming (SQP) methods (Fletcher, 1980). The optimi-
zation toolbox in MATLAB (The Math Works Inc.,
Natick, MA, USA) was used as the computational tool.
The solution provides the optimal estimate of the dual-
number transformation matrix ½R̂�.
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