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Abstract—Virtual hand interactions play key roles in virtual 
environments. The recent addition of force feedback to virtual 
reality simulations has enhanced their realism, especially when 
dexterous manipulation of virtual objects is concerned. In the 
past decades, much effort has been made on virtual hand 
modeling from the perspectives of computer animation and 
human computer interaction. However, much less attention is 
paid on haptic modeling of flexible virtual hand. In this paper, we 
propose a 4-layer flexible virtual hand model for virtual hand 
haptic interaction. The skin layer, kinematics layer, collision 
detection layer and haptic layer are integrated into a 
sophisticated virtual hand to simulate the human hand’s natural 
anatomy in its appearance and motion, and to reflect the area 
contact feature of force feedback datagloves. The infrastructure 
and details of the flexible virtual hand model are discussed. 
Experimental results show that the proposed flexible virtual 
hand demonstrates good performance in virtual hand haptic 
applications. 
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I. INTRODUCTION 
The human hand is a dexterous organ with complex shape 

and motion. It provides an important interface to the physical 
world. Virtual reality (VR) technology is revolutionizing the 
way of interacting with computers. In a virtual environment, a 
virtual hand, either rigid or flexible, is often used as the avatar 
of the human hand [1, 2]. It provides a natural interface to the 
computer synthesized virtual world.  

To drive a flexible virtual hand, a dataglove is usually used 
to track the user’s finger motions. Nowadays, datagloves have 
become a main kind of VR input devices [3], moreover, force 
feedback datagloves provide the user with the sensations 
involved by force feedback during the manipulation of virtual 
objects [4]. Especially, haptic feedback is mandatory when the 
graphics is corrupted (simulating poor visibility) or when the 
manipulated object is partly or totally occluded, or when the 
environment is dark [5]. 

Indeed, a large number of applications have been foreseen 
for haptic interaction, for instances, virtual sculpture, virtual 
surgery, education, entertainment, and industry applications 
including virtual prototyping, training, and maintenance [7]. 
Therefore, the modeling of the virtual hand, including shape 

modeling, kinematics modeling, and haptic modeling, is 
fundamental and important for 3D interaction, and is required 
by a wide range of virtual reality applications. In the past 
decades, much effort has been paid on virtual hand modeling in 
the community of computer animation and human computer 
interaction [7-12], however, much less attention is paid on 
haptic modeling of virtual hand [5,13,14]. 

In this paper, we investigate the modeling of a flexible 
virtual hand for haptic applications. A 4-layer model is 
proposed which consists of skin layer, kinematics layer, 
collision detection layer and haptic layer. Specifically, our 
virtual hand model simulates the human hand’s natural 
anatomy in its appearance and motion, and reflects the area 
contact feature of force feedback datagloves. The infrastructure 
and details of the proposed flexible virtual hand model are 
discussed in the sections II, III, and IV. Experimental results 
are demonstrated in the section V, and finally a brief 
conclusion is drawn in the section VI. 

II. INFRASTRUCTURE OF OUR FLEXIBLE VIRTUAL HAND 
The human hand is a complex organ of a human being. It’s 

not trivial to build the geometry model of a virtual hand, not to 
mention to set up its kinematics and haptic model. Basically, 
our proposed flexible virtual hand consists of 4 layers, namely, 
skin layer, kinematics layer, collision detection layer, and 
haptic layer.  

As illustrated in Figure 1, the 4 layers are integrated into a 
sophisticated virtual hand model to facilitate virtual hand 
haptic interaction. The user’s hand motion data are captured by 
3D tracker and dataglove and used to drive the skeleton 
structure of the kinematics layer of the virtual hand. While the 
skeleton transformations are directly transferred to the collision 
detection layer and the haptic layer, the skin layer’s 
deformation is driven by the skeleton transformations as 
described in the section III. Note that the skin layer’s 
deformation is also constrained by whether there are contacts 
between the collision detection layer and other virtual objects 
in the scene. The feedback force computation is performed 
between the haptic layer and other virtual objects, which will 
be described in the section IV.  
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Figure 1.  Infrastructure of our flexible virtual hand 

A. Skin Layer 
The skin layer is the surface geometry of the virtual hand. 

The complexity of the hand structure makes its shape modeling 
a complicated and tedious process. Many modeling techniques, 
from polygonal modeling, parametric surface modeling, to 
implicit modeling, have been proposed for modeling geometry 
of the human hand. 

Polygon mesh is a fundamental representation of 3D 
objects. For virtual hand modeling, the built polygonal model 
should on the one hand be accurate enough to reflect the 
human hand shape, and on the other hand, it should not be too 
complicated to hinder the real time simulation of hand motion. 
Though it is often very tedious since large amount of user 
interaction is inevitable to construct the polygonal mesh of a 
human hand, the development of subdivision surfaces seems to 
help alleviate the heavy burden of lots of user input [15], and 
many mesh modeling tools exist. To facilitate rendering and 
motion control, we construct the geometry of the virtual hand 
with triangular mesh, based on the knowledge of the hand 
shape and its anatomic structure [16]. Besides, the balance 
between the amount of triangles and the visual appearance is 
also taken into account. 

B. Collision Detection Layer 
Real-time collision detection is used to automatically 

identify whether there are interferences between the virtual 
hand and virtual objects. In general, collision detection requires 
a significant computational overhead, especially when 
involving deformable models. However, collision detection 
should be computationally efficient since real-time feedback is 
fundamental for haptic interactions.  

To some extent, visual realism is of more interest, rather 
than accuracy, for virtual hand operations. We think that 
collision detection between virtual hand and virtual objects is a 
more qualitative issue rather than a quantitative one as far as 
haptic interaction is concerned. Realizing this, we build 
simplified structures for the palm and each joint of the virtual 
hand, and use these simplified geometries as the collision 

detection layer. In order to prevent the penetration of virtual 
hand into virtual objects, a simplified structure is a bit larger 
than its corresponding geometry. The classic software toolkit, 
RAPID, is used as the collision detection engine between the 
collision detection layer and virtual objects in the scene [17].  

III. KINEMATICS MODEL 
The human hand is a complex structure with extra 

articulation that enables us to grasp, hold, and operate a wide 
variety of objects. The kinematics layer of the virtual hand is 
determined by the hand’s skeleton structure. For a human hand, 
each finger has three phalanges (proximal, middle, and distal); 
the thumb has two (proximal and distal). Correspondingly, 
each finger has three joints (distal interphalangeal joint (DIJ), 
proximal interphalangeal joint (PIJ) and metacarpophalangeal 
joint (MPJ)) with DIJ and PIJ each having one degree of 
freedom (DOF) and MPJ having two DOFs; the thumb also has 
three joints (thumb IJ, thumb MPJ, and trapeziometacarpal 
joint (TMJ)) with TMJ and thumb MPJ each having two DOFs 
and thumb IJ having one DOF. The palm has two DOFs [16]. 
Therefore, the hand motion is highly constrained by the joints. 
More complicated, a joint is often constrained by other joints 
when in motion.  

The extra articulation of the hand makes it difficult to 
realistically simulate the motion and muscle deformation of the 
hand with simple kinematics models. Usually, a three-layer 
model which consists of the skeleton layer, the muscle layer 
and the skin layer is adopted to handle the virtual hand 
deformation [9]. However, due to strict computational time 
limit of haptic interaction, we use a simpler two-layer model 
and employ skeletal subspace deformation (SSD) to handle 
virtual hand kinematics [18, 19]. 

As illustrated in Figure 2, the kinematics model of the 
virtual hand consists of the skin layer (i.e. surface geometry) 
and the kinematics layer. The skin layer is the triangular mesh 
used for displaying purpose. Its deformation is driven by the 
kinematics layer. The kinematics layer is actually a hierarchical 
skeleton structure. The skeleton structure is built based on the 
anatomic structure of the human hand [16]. Each finger is 
abstracted as a joint chain, where each joint has a local 
coordinate system, and includes such information as the joint 
position, orientation, rotation angle and a pointer to the next 
joint. The joint rotations are controlled by flex data (rotation 
angles) captured by a dataglove (e.g. the CyberGlove dataglove 
[3]). 
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Figure 2.  Kinematics model of our flexible virtual hand 
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The process of deforming the skin can be described as 
follows. Firstly, the user’s finger rotations are captured by the 
dataglove, and the captured flex data directly control the 
rotations of the joints in the skeleton structure of the kinematics 
layer. Secondly, the rotations of the joints drive the 
deformation of the skin layer according to the SSD which is 
evaluated by the weighted blending of an affine transformation 
of each joint by (1). 

0
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j

n

i
iij vMwv ∑

=
=                                        (1) 

Where n is the number of joints, vj is the j-th vertex in an 
arbitrary pose, vj0 is the j-th vertex in its rest pose, Mi is the 
affine transformation matrix defined by flex angles of joints 
and hand motion, and wi is a joint weight that defines the 
contribution of the i-th joint’s transformation to the j-th vertex. 
The weight wi is assigned by the user to control deformation. 

We use graphics processing unit (GPU) to accelerate the 
SSD computation. The vertices, normals, joint weights and 
joint indices are all stored in textures and transferred to GPU. 
The affine transformations of each joint are also transferred to 
GPU. Figure 3 lists the pseudo code of the fragment program 
for SSD computation. Note that the joints which contribute to 
any vertex are limited to at most 4 to facilitate the GPU data 
storage. 

 
// Pixel Shader – SSD Computation 
uniform sampler2DRect vertex, normal, weight, jointIdx; 
uniform mat4 world2joint[32], joint2world[32]; 
 
void main() 
{ 
 vec2 coords = gl_TexCoord[0].xy; 
 vec4 w = texture2DRect(weight, coords);  
 ivec4 jIdx = ivec4(texture2DRect(jointIdx, coords)); 
 gl_FragData[0] = vec4(0.0); 
 vec4 tmpnormal = vec4(0.0); 
 for(int i = 0; i < 4; i++) { 
  vec4 wlocal = world2joint[jIdx[i]]*texture2DRect(vertex, coords).rgba; 
  gl_FragData[0] += joint2world[jIdx[i]]*wlocal*w[i]; 
  wlocal = world2joint[jIdx[i]]*texture2DRect(normal, coords).rgba; 
  tmpnormal += joint2world[jIdx[i]]*wlocal*w[i]; 
 } 
 gl_FragData[1] = vec4(normalize(tmpnormal.xyz), 0.0); 
}   

 
Figure 3.  Pseudo code of the fragment program for SSD computation 

IV. HAPTIC LAYER AND FEEDBACK FORCE COMPUTATION 
Basically, the integration of haptic feedback within a virtual 

environment raises many problems at both hardware and 
software levels. During the past decade, much effort has been 
made to develop haptic rendering algorithms for various haptic 
devices. These methods can be classified into categories 
according to the avatars used: point-based methods, ray-based 
methods and object-based methods [6]. However, a current 
major limitation for the design of haptic interfaces is our poor 
knowledge concerning human haptic perception. Indeed, both 
psychological and physiological issues of haptic perception 
should be taken into account as far as haptic interaction is 
concerned.  

A. Haptic Layer 
We think that the haptic layer should fully respect the 

feature of area contacts between virtual fingertips and target 
objects in order to present realistic force. As a result, we 
propose a simple yet effective haptic layer of the virtual hand. 
As illustrated in Figure 4, the haptic layer is composed of a 
cluster of line segments whose end points form a reasonable 
sample of the estimated contact area of a virtual fingertip. The 
haptic layer is generated as follows. Firstly, a grid a bit 
narrower than the fingertip is created in front of the fingertip, 
and the center of the grid (COG) is projected along the grid 
normal toward the back face of the fingertip to get an apex 
point (AP). Secondly, the AP is connected with each of the grid 
points to form a pyramid, and the pyramid is trimmed by the 
front surface of fingertip which results in a grid of intersection 
points (green points in Figure 4). Finally, the AP is connected 
with each of the intersection points to form a line segment 
cluster which consists of the haptic layer of our virtual hand 
model.  

AP

COG 

 

Figure 4.  Construction of haptic layer 

B. Feedback Force Computation 
As the haptic layer is composed of many line segments, we 

perform force computation first by detecting whether the line 
segments intersect with the target model. We perform 
voxelization on target models in the pre-processing stage to 
gain efficiency for intersection tests as it has proven to be a 
very significant way for accelerating such computations 
[14,20,21].  

Given a line segment and a voxelized target model, 
following two steps are taken to check whether the line 
segment intersects with the target model. Firstly, all the voxels 
intersecting with the line segment are identified to reduce 
unnecessary computation since only the facets of the target 
model contained in these voxels may intersect with the line 
segment. We extend the method proposed by [22] to perform 
such intersection tests. Secondly, the contact point between the 
line segment and the target model is determined. As only 
triangles contained in the intersecting voxels need to be 
checked, we extend the algorithm presented in [23] to calculate 
the nearest intersections between the line segment and each 
triangle contained in the intersecting voxels. The above process 
continues till all line segments of the haptic layer are dealt with, 
and the results (e.g. intersection points, indices of intersecting 
triangles) are recorded for force computation. 
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We use the Hooke’s law to compute the feedback force to 
each fingertip based on the collision detection results [14]. 
Assume that a line segment L intersects a triangle M of the 
target model at the point P (Figure 5). Let Ps and Pe be the start 
point and end point of the line segment L (The equation of L is 

)10(,/)()( ≤≤−−+= tPPPPtPtL seses , the intersection 
point P is represented by L(t0)). Then the direction of the 
feedback force Fi generated by L is the same as the normal of 
M, and its magnitude is calculated by (2). 

αcoskdkxFi ==                                      (2) 

where k is the stiffness of the target model, x is the 
penetration depth, and d is the penetration length along L: 

see PPtPPd −−=−= )1( 0                               (3) 

It is worth noting that se PP −  can be calculated in 
advance during the pre-processing stage. 
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Figure 5.  Feedback force computation 

Assume there are m line segments of the haptic layer 
intersecting the target model, the feedback force can be 
calculated as an average of the feedback forces generated by 
each line segment:  

mFF
m

i
i /

1
∑
=

=                                  (4) 

V. EXPERIMENTAL RESULTS 
The proposed flexible virtual hand model has been 

implemented with C++, and tested on a PC with Intel Core 2 
Quad Q6600 2.40GHz CPU with 2G RAM. The graphics 
hardware is NVIDIA GeForce 8800GTS. The force feedback 
device used was the CAS-dataglove with PEDfinger which is a 
force feedback system (Figure 6) developed by Institute of 
Automation, Chinese Academy of Sciences to help users feel 
virtual 3D objects [24,25]. 

The virtual hand model has more than 6,500 triangles. 
Figure 7~10 show its skin layer, collision detection layer, 
kinematics layer and haptic layer respectively. Figure 11 
demonstrates the virtual scene for testing the performance of 
our flexible virtual hand model. Figure 12 shows a sphere 
grasped by the flexible virtual hand. Figure 13 shows a cube 
grasped by the virtual hand. In both Figure 12 and Figure 13, 
the red line segments shown at the back face of each fingertip 
indicate the feedback forces’ magnitudes. In our tests, the 
overall update frame rate is over 60 frames/second. As a result, 
the user can feel continuous force feedback when he/she 
interacts with virtual objects The computational overhead in 

general includes the rendering of the virtual hand and the scene, 
skin layer deformation, collision detection between the 
collision detection layer and the virtual objects, and feedback 
force computation, etc.  

 

Figure 6.  CAS-dataglove with PEDfinger 

 
Figure 7.  Skin layer 

 

Figure 8.  Collision detection layer 

 
Figure 9.  Kinematics Layer 
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Figure 10.  Haptic layer 

 
Figure 11.  Virtual scene 

 
Figure 12.  Flexible virtual hand grasps a sphere 

 
Figure 13.  Flexible virtual hand grasps a cube 

VI. CONCLUSIONS 
Haptic devices are used to extend a human being’s sense of 

touch into a virtual world, in which the user can feel the 
geometry and other properties of virtual objects. Virtual hand 
haptic interactions play key roles in virtual environments, 
especially when dexterous manipulation of virtual objects is 
concerned. In this paper, a 4-layer flexible virtual hand model 
which consists of skin layer, collision detection layer, 
kinematics layer and haptic layer has been proposed for virtual 
hand haptic applications.  

In this sophisticated infrastructure which simulates the 
human hand’s natural anatomy in its appearance and motion, 
the user’s hand motion data captured by 3D tracker and 
dataglove are used to drive the kinematics layer, and directly 
transferred to the collision detection layer and the haptic layer, 
while the skin layer’s deformation is driven by the skeleton 
transformations as well as constrained by the collision 
detection results between the collision detection layer and other 
virtual objects in the scene.  

The feedback force computation is performed between the 
haptic layer and other virtual objects. As a multiple-point 
sampling scheme is used to sample the finger tips, the area 
contact feature of force feedback dataglove is well reflected. 
Experimental results show that the user can feel continuous 
force feedback when he/she interacts with virtual objects 
during our test on a PC with an in-house developed force 
feedback dataglove. 
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