
A 4-Layer Flexible Virtual Hand Model for Haptic
Interaction

Huagen Wan, Feifei Chen
State Key Lab of CAD&CG

Zhejiang University
Hangzhou, China

hgwan@cad.zju.edu.cn

Xiaoxia Han
Department of Information Science and Electric

Engineering
Zhejiang University

Hangzhou, China

Abstract—Virtual hand interactions play key roles in virtual
environments. The recent addition of force feedback to virtual
reality simulations has enhanced their realism, especially when
dexterous manipulation of virtual objects is concerned. In the
past decades, much effort has been made on virtual hand
modeling from the perspectives of computer animation and
human computer interaction. However, much less attention is
paid on haptic modeling of flexible virtual hand. In this paper, we
propose a 4-layer flexible virtual hand model for virtual hand
haptic interaction. The skin layer, kinematics layer, collision
detection layer and haptic layer are integrated into a
sophisticated virtual hand to simulate the human hand’s natural
anatomy in its appearance and motion, and to reflect the area
contact feature of force feedback datagloves. The infrastructure
and details of the flexible virtual hand model are discussed.
Experimental results show that the proposed flexible virtual
hand demonstrates good performance in virtual hand haptic
applications.

Keywords-virtual hand model; haptic interaction; collision
detection; dataglove

I. INTRODUCTION
The human hand is a dexterous organ with complex shape

and motion. It provides an important interface to the physical
world. Virtual reality (VR) technology is revolutionizing the
way of interacting with computers. In a virtual environment, a
virtual hand, either rigid or flexible, is often used as the avatar
of the human hand [1, 2]. It provides a natural interface to the
computer synthesized virtual world.

To drive a flexible virtual hand, a dataglove is usually used
to track the user’s finger motions. Nowadays, datagloves have
become a main kind of VR input devices [3], moreover, force
feedback datagloves provide the user with the sensations
involved by force feedback during the manipulation of virtual
objects [4]. Especially, haptic feedback is mandatory when the
graphics is corrupted (simulating poor visibility) or when the
manipulated object is partly or totally occluded, or when the
environment is dark [5].

Indeed, a large number of applications have been foreseen
for haptic interaction, for instances, virtual sculpture, virtual
surgery, education, entertainment, and industry applications
including virtual prototyping, training, and maintenance [7].
Therefore, the modeling of the virtual hand, including shape

modeling, kinematics modeling, and haptic modeling, is
fundamental and important for 3D interaction, and is required
by a wide range of virtual reality applications. In the past
decades, much effort has been paid on virtual hand modeling in
the community of computer animation and human computer
interaction [7-12], however, much less attention is paid on
haptic modeling of virtual hand [5,13,14].

In this paper, we investigate the modeling of a flexible
virtual hand for haptic applications. A 4-layer model is
proposed which consists of skin layer, kinematics layer,
collision detection layer and haptic layer. Specifically, our
virtual hand model simulates the human hand’s natural
anatomy in its appearance and motion, and reflects the area
contact feature of force feedback datagloves. The infrastructure
and details of the proposed flexible virtual hand model are
discussed in the sections II, III, and IV. Experimental results
are demonstrated in the section V, and finally a brief
conclusion is drawn in the section VI.

II. INFRASTRUCTURE OF OUR FLEXIBLE VIRTUAL HAND
The human hand is a complex organ of a human being. It’s

not trivial to build the geometry model of a virtual hand, not to
mention to set up its kinematics and haptic model. Basically,
our proposed flexible virtual hand consists of 4 layers, namely,
skin layer, kinematics layer, collision detection layer, and
haptic layer.

As illustrated in Figure 1, the 4 layers are integrated into a
sophisticated virtual hand model to facilitate virtual hand
haptic interaction. The user’s hand motion data are captured by
3D tracker and dataglove and used to drive the skeleton
structure of the kinematics layer of the virtual hand. While the
skeleton transformations are directly transferred to the collision
detection layer and the haptic layer, the skin layer’s
deformation is driven by the skeleton transformations as
described in the section III. Note that the skin layer’s
deformation is also constrained by whether there are contacts
between the collision detection layer and other virtual objects
in the scene. The feedback force computation is performed
between the haptic layer and other virtual objects, which will
be described in the section IV.

Supported by the National Natural Science Foundation of China
(60673197), and the 863 High Technology Plan of China (2006AA01Z130).

VECIMS 2009 - International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems
Hong Kong, China
May 11-13, 2009

978-1-4244-3809-9/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 15,2010 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a Data captured from dataglove and 3D tracker

H
aptic C

ues

Virtual Hand Model

skin layer

collision detect ion layer

haptic layer

kinematics layer

Other
Virtual
Objects

Scene

Virtual Hand
Interactions

V
isual C

ues

Figure 1. Infrastructure of our flexible virtual hand

A. Skin Layer
The skin layer is the surface geometry of the virtual hand.

The complexity of the hand structure makes its shape modeling
a complicated and tedious process. Many modeling techniques,
from polygonal modeling, parametric surface modeling, to
implicit modeling, have been proposed for modeling geometry
of the human hand.

Polygon mesh is a fundamental representation of 3D
objects. For virtual hand modeling, the built polygonal model
should on the one hand be accurate enough to reflect the
human hand shape, and on the other hand, it should not be too
complicated to hinder the real time simulation of hand motion.
Though it is often very tedious since large amount of user
interaction is inevitable to construct the polygonal mesh of a
human hand, the development of subdivision surfaces seems to
help alleviate the heavy burden of lots of user input [15], and
many mesh modeling tools exist. To facilitate rendering and
motion control, we construct the geometry of the virtual hand
with triangular mesh, based on the knowledge of the hand
shape and its anatomic structure [16]. Besides, the balance
between the amount of triangles and the visual appearance is
also taken into account.

B. Collision Detection Layer
Real-time collision detection is used to automatically

identify whether there are interferences between the virtual
hand and virtual objects. In general, collision detection requires
a significant computational overhead, especially when
involving deformable models. However, collision detection
should be computationally efficient since real-time feedback is
fundamental for haptic interactions.

To some extent, visual realism is of more interest, rather
than accuracy, for virtual hand operations. We think that
collision detection between virtual hand and virtual objects is a
more qualitative issue rather than a quantitative one as far as
haptic interaction is concerned. Realizing this, we build
simplified structures for the palm and each joint of the virtual
hand, and use these simplified geometries as the collision

detection layer. In order to prevent the penetration of virtual
hand into virtual objects, a simplified structure is a bit larger
than its corresponding geometry. The classic software toolkit,
RAPID, is used as the collision detection engine between the
collision detection layer and virtual objects in the scene [17].

III. KINEMATICS MODEL
The human hand is a complex structure with extra

articulation that enables us to grasp, hold, and operate a wide
variety of objects. The kinematics layer of the virtual hand is
determined by the hand’s skeleton structure. For a human hand,
each finger has three phalanges (proximal, middle, and distal);
the thumb has two (proximal and distal). Correspondingly,
each finger has three joints (distal interphalangeal joint (DIJ),
proximal interphalangeal joint (PIJ) and metacarpophalangeal
joint (MPJ)) with DIJ and PIJ each having one degree of
freedom (DOF) and MPJ having two DOFs; the thumb also has
three joints (thumb IJ, thumb MPJ, and trapeziometacarpal
joint (TMJ)) with TMJ and thumb MPJ each having two DOFs
and thumb IJ having one DOF. The palm has two DOFs [16].
Therefore, the hand motion is highly constrained by the joints.
More complicated, a joint is often constrained by other joints
when in motion.

The extra articulation of the hand makes it difficult to
realistically simulate the motion and muscle deformation of the
hand with simple kinematics models. Usually, a three-layer
model which consists of the skeleton layer, the muscle layer
and the skin layer is adopted to handle the virtual hand
deformation [9]. However, due to strict computational time
limit of haptic interaction, we use a simpler two-layer model
and employ skeletal subspace deformation (SSD) to handle
virtual hand kinematics [18, 19].

As illustrated in Figure 2, the kinematics model of the
virtual hand consists of the skin layer (i.e. surface geometry)
and the kinematics layer. The skin layer is the triangular mesh
used for displaying purpose. Its deformation is driven by the
kinematics layer. The kinematics layer is actually a hierarchical
skeleton structure. The skeleton structure is built based on the
anatomic structure of the human hand [16]. Each finger is
abstracted as a joint chain, where each joint has a local
coordinate system, and includes such information as the joint
position, orientation, rotation angle and a pointer to the next
joint. The joint rotations are controlled by flex data (rotation
angles) captured by a dataglove (e.g. the CyberGlove dataglove
[3]).

eye

Human hand
+

Dataglove

Change of
vert ices

Change o f
joint angles

SSD Skin layer

Kinematics layer Motion control

User

Figure 2. Kinematics model of our flexible virtual hand

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 15,2010 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

The process of deforming the skin can be described as
follows. Firstly, the user’s finger rotations are captured by the
dataglove, and the captured flex data directly control the
rotations of the joints in the skeleton structure of the kinematics
layer. Secondly, the rotations of the joints drive the
deformation of the skin layer according to the SSD which is
evaluated by the weighted blending of an affine transformation
of each joint by (1).

0
1

j

n

i
iij vMwv ∑

=
= (1)

Where n is the number of joints, vj is the j-th vertex in an
arbitrary pose, vj0 is the j-th vertex in its rest pose, Mi is the
affine transformation matrix defined by flex angles of joints
and hand motion, and wi is a joint weight that defines the
contribution of the i-th joint’s transformation to the j-th vertex.
The weight wi is assigned by the user to control deformation.

We use graphics processing unit (GPU) to accelerate the
SSD computation. The vertices, normals, joint weights and
joint indices are all stored in textures and transferred to GPU.
The affine transformations of each joint are also transferred to
GPU. Figure 3 lists the pseudo code of the fragment program
for SSD computation. Note that the joints which contribute to
any vertex are limited to at most 4 to facilitate the GPU data
storage.

// Pixel Shader – SSD Computation
uniform sampler2DRect vertex, normal, weight, jointIdx;
uniform mat4 world2joint[32], joint2world[32];

void main()
{
 vec2 coords = gl_TexCoord[0].xy;
 vec4 w = texture2DRect(weight, coords);
 ivec4 jIdx = ivec4(texture2DRect(jointIdx, coords));
 gl_FragData[0] = vec4(0.0);
 vec4 tmpnormal = vec4(0.0);
 for(int i = 0; i < 4; i++) {
 vec4 wlocal = world2joint[jIdx[i]]*texture2DRect(vertex, coords).rgba;
 gl_FragData[0] += joint2world[jIdx[i]]*wlocal*w[i];
 wlocal = world2joint[jIdx[i]]*texture2DRect(normal, coords).rgba;
 tmpnormal += joint2world[jIdx[i]]*wlocal*w[i];
 }
 gl_FragData[1] = vec4(normalize(tmpnormal.xyz), 0.0);
}

Figure 3. Pseudo code of the fragment program for SSD computation

IV. HAPTIC LAYER AND FEEDBACK FORCE COMPUTATION
Basically, the integration of haptic feedback within a virtual

environment raises many problems at both hardware and
software levels. During the past decade, much effort has been
made to develop haptic rendering algorithms for various haptic
devices. These methods can be classified into categories
according to the avatars used: point-based methods, ray-based
methods and object-based methods [6]. However, a current
major limitation for the design of haptic interfaces is our poor
knowledge concerning human haptic perception. Indeed, both
psychological and physiological issues of haptic perception
should be taken into account as far as haptic interaction is
concerned.

A. Haptic Layer
We think that the haptic layer should fully respect the

feature of area contacts between virtual fingertips and target
objects in order to present realistic force. As a result, we
propose a simple yet effective haptic layer of the virtual hand.
As illustrated in Figure 4, the haptic layer is composed of a
cluster of line segments whose end points form a reasonable
sample of the estimated contact area of a virtual fingertip. The
haptic layer is generated as follows. Firstly, a grid a bit
narrower than the fingertip is created in front of the fingertip,
and the center of the grid (COG) is projected along the grid
normal toward the back face of the fingertip to get an apex
point (AP). Secondly, the AP is connected with each of the grid
points to form a pyramid, and the pyramid is trimmed by the
front surface of fingertip which results in a grid of intersection
points (green points in Figure 4). Finally, the AP is connected
with each of the intersection points to form a line segment
cluster which consists of the haptic layer of our virtual hand
model.

AP

COG

Figure 4. Construction of haptic layer

B. Feedback Force Computation
As the haptic layer is composed of many line segments, we

perform force computation first by detecting whether the line
segments intersect with the target model. We perform
voxelization on target models in the pre-processing stage to
gain efficiency for intersection tests as it has proven to be a
very significant way for accelerating such computations
[14,20,21].

Given a line segment and a voxelized target model,
following two steps are taken to check whether the line
segment intersects with the target model. Firstly, all the voxels
intersecting with the line segment are identified to reduce
unnecessary computation since only the facets of the target
model contained in these voxels may intersect with the line
segment. We extend the method proposed by [22] to perform
such intersection tests. Secondly, the contact point between the
line segment and the target model is determined. As only
triangles contained in the intersecting voxels need to be
checked, we extend the algorithm presented in [23] to calculate
the nearest intersections between the line segment and each
triangle contained in the intersecting voxels. The above process
continues till all line segments of the haptic layer are dealt with,
and the results (e.g. intersection points, indices of intersecting
triangles) are recorded for force computation.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 15,2010 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

We use the Hooke’s law to compute the feedback force to
each fingertip based on the collision detection results [14].
Assume that a line segment L intersects a triangle M of the
target model at the point P (Figure 5). Let Ps and Pe be the start
point and end point of the line segment L (The equation of L is

)10(,/)()(≤≤−−+= tPPPPtPtL seses , the intersection
point P is represented by L(t0)). Then the direction of the
feedback force Fi generated by L is the same as the normal of
M, and its magnitude is calculated by (2).

αcoskdkxFi == (2)

where k is the stiffness of the target model, x is the
penetration depth, and d is the penetration length along L:

see PPtPPd −−=−=)1(0 (3)

It is worth noting that se PP − can be calculated in
advance during the pre-processing stage.

P

Ps

Pe

M

x
α d

Fi

Figure 5. Feedback force computation

Assume there are m line segments of the haptic layer
intersecting the target model, the feedback force can be
calculated as an average of the feedback forces generated by
each line segment:

mFF
m

i
i /

1
∑
=

= (4)

V. EXPERIMENTAL RESULTS
The proposed flexible virtual hand model has been

implemented with C++, and tested on a PC with Intel Core 2
Quad Q6600 2.40GHz CPU with 2G RAM. The graphics
hardware is NVIDIA GeForce 8800GTS. The force feedback
device used was the CAS-dataglove with PEDfinger which is a
force feedback system (Figure 6) developed by Institute of
Automation, Chinese Academy of Sciences to help users feel
virtual 3D objects [24,25].

The virtual hand model has more than 6,500 triangles.
Figure 7~10 show its skin layer, collision detection layer,
kinematics layer and haptic layer respectively. Figure 11
demonstrates the virtual scene for testing the performance of
our flexible virtual hand model. Figure 12 shows a sphere
grasped by the flexible virtual hand. Figure 13 shows a cube
grasped by the virtual hand. In both Figure 12 and Figure 13,
the red line segments shown at the back face of each fingertip
indicate the feedback forces’ magnitudes. In our tests, the
overall update frame rate is over 60 frames/second. As a result,
the user can feel continuous force feedback when he/she
interacts with virtual objects The computational overhead in

general includes the rendering of the virtual hand and the scene,
skin layer deformation, collision detection between the
collision detection layer and the virtual objects, and feedback
force computation, etc.

Figure 6. CAS-dataglove with PEDfinger

Figure 7. Skin layer

Figure 8. Collision detection layer

Figure 9. Kinematics Layer

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 15,2010 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

Figure 10. Haptic layer

Figure 11. Virtual scene

Figure 12. Flexible virtual hand grasps a sphere

Figure 13. Flexible virtual hand grasps a cube

VI. CONCLUSIONS
Haptic devices are used to extend a human being’s sense of

touch into a virtual world, in which the user can feel the
geometry and other properties of virtual objects. Virtual hand
haptic interactions play key roles in virtual environments,
especially when dexterous manipulation of virtual objects is
concerned. In this paper, a 4-layer flexible virtual hand model
which consists of skin layer, collision detection layer,
kinematics layer and haptic layer has been proposed for virtual
hand haptic applications.

In this sophisticated infrastructure which simulates the
human hand’s natural anatomy in its appearance and motion,
the user’s hand motion data captured by 3D tracker and
dataglove are used to drive the kinematics layer, and directly
transferred to the collision detection layer and the haptic layer,
while the skin layer’s deformation is driven by the skeleton
transformations as well as constrained by the collision
detection results between the collision detection layer and other
virtual objects in the scene.

The feedback force computation is performed between the
haptic layer and other virtual objects. As a multiple-point
sampling scheme is used to sample the finger tips, the area
contact feature of force feedback dataglove is well reflected.
Experimental results show that the user can feel continuous
force feedback when he/she interacts with virtual objects
during our test on a PC with an in-house developed force
feedback dataglove.

ACKNOWLEDGMENT
The authors would like to thank Professor Qingxiu Du and

Professor Kui Yuan with Institute of Automation, Chinese
Academy of Sciences for providing the dataglove (CAS-glove
with PEDfinger) and the digital image shown in Figure 6.

REFERENCES

[1] U. Jayaram, H. Tirumali, S. Jayaram, “A tool/part/human interaction

model for assembly in virtual environments,” Proceedings of ASME
DETC’00, Baltimore, Maryland, September 2000.

[2] H. Wan, Y. Luo, S. Gao, Q. Peng, “Realistic virtual hand modeling with
applications for virtual grasping,” Proceedings of ACM SIGGRAPH
International Conference on VRCAI, Singapore, June 2004.

[3] Wireless Data Glove: The CyberGlove® II System.
http://www.immersion.com/3d/products/cyber_glove.php.

[4] CyberGrasp™ Exoskeleton. http://www.immersion.com/3d/products/
cyber_grasp.php.

[5] V. Popescu; G. Burdea, M. Bouzit. Virtual reality simulation modeling
for a haptic glove. In Proceedings of the Computer Animation’99,
Geneva, Switzerland, 1999.

[6] S. Laycock, A. Day, “A survey of haptic rendering techniques,”.
Computer Graphics Forum, Vol.26, No.1, pp.50-65, 2007.

[7] K. Hui, N. Wong, “Hands on a virtually elastic object,” The Visual
Computer, Vol.18, No.3, pp.150-163, 2002.

[8] VirtualHand® SDK. http://www.immersion.com/3d/products/
virtualhand_sdk.php.

[9] L. Moccozet, Z. Huang, M. Thalmann, D. Thalmann, “Virtual hand
interactions with 3D world,” Proceedings of Multimedia Modeling97,
Singapore, pp.307-322, 1997.

[10] J. Lee, S. Yoon, “Realistic human hand deformation,” Computer
Animation and Virtual Worlds, Vol.17, Issue 3-4, July 2006, pp.479-489.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 15,2010 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

[11] T. Rhee, U. Neumann, J. Lewis, “Human hand modeling from surface
anatomy,” Proceedings of the 2006 symposium on Interactive 3D
graphics and games, March, 2006, Redwood City, California.

[12] M. Thalmann, R. Laperriere, D. Thalmann, “Joint–dependent local
deformations for hand animation and object grasping,” Proceedings of
Graphics Interface’88, pp.26-33, June 1988.

[13] A. Maciel, S. Sarni, O. Buchwalder, R. Boulic, D. Thalmann, “Multi-
finger haptic rendering of deformable objects,” Proceedings of
Eurographics Symposium on Virtual Environments, 2004.

[14] H. Wan, X. Han, Z. Zhou, “Realistic force rendering with applications
for virtual assembly,” Journal of Computational Information Systems,
Vol.3, pp.303-308, February 2007.

[15] T. Sederberg, , J. Zheng, D. Sewell, M. Sabin, ”Non-uniform recursive
subdivision surfaces,” Proceedings of SIGGRAPH98, pp.387-394, 1998.

[16] W. Kapit, L. Elson. The anatomy coloring book. 2nd edition, Harper
Collins. 1993.

[17] S. Gottschalk, M. Lin, D. Manocha, “Obb-Tree: A hierarchical structure
for rapid interference detection,” Proceedings of the ACM Siggraph'96,
New Orleans, LA, August 1996.

[18] M. Thalmann, R. Laperriere, D. Thalmann, “Joint–dependent local
deformations for hand animation and object grasping,” Proceedings of
Graphics Interface’88, pp.26-33, June 1988.

[19] T. Rhee, J. Lewis, U. Neumann, “Real-time weighted pose-space
deformation on the GPU,” Computer Graphics Forum, Vol 25, No 3,
pp.439-448, In Proceedings of Eurographics06, Vienna, Austria,
September 2006.

[20] A. Kaufman. Introduction to volume graphics. SIGGRAPH'99 course
notes, course 41, pp.24-47, 1999.

[21] J. Huang, R. Yagel, V. Filippov, Y. Kurzion, “An accurate method for
voxelizing polygon meshes,” Proceedings of ACM 1998 Symposium on
Volume Visualization, Research Triangle Park, NC, October 1998.

[22] W. Andrew. Fast ray-box intersection. Graphics gems, Academic Press
Professional, Inc., San Diego, CA, 1990.

[23] T. Moeller, B. Trumbore, “Fast, minimum storage ray-triangle
intersection,” Journal of Graphics Tools, Vol.2, No. 1, pp. 21-28, 1997.

[24] Y. Fu, K. Yuan, H. Zhu, Q. Du, “Motion Modeling and Software System
Design for CAS-Glove Data Glove,” Journal of System Simulation,
Vol.16, No.4, pp.660-662,666, 2004. (in Chinese)

[25] K. Yuan, H. Zhu, “A new kind of force-reflecting device and its
control,” Proceedings of IEEE Conference on Intelligent Robots and
System.Lausanne,Switzerland, pp. 2920-2924, 2002.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 15,2010 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

