Technical note

A new kinematic model of pro- and supination of the human forearm

A.M. Weinberga, I.T. Pietschb,*, M.B. Helmb, J. Hesselbachb, H. Tschernea

aTrauma Department of the Medical University of Hanover (MHH), Germany
bInstitute of Machine Tools and Production Engineering, Technical University of Braunschweig, D-38106 Braunschweig, Germany

Accepted 12 October 1999

Abstract

We introduce a new kinematic model describing the motion of the human forearm bones, ulna and radius, during forearm rotation. During this motion between the two forearm extrem-positions, referred to as supination (palm up) and pronation (palm down), effects occur, that cannot be explained by the established kinematic model of R. Fick from 1904. Especially, the motion of the ulna is not properly reproduced by Fick’s model. During forearm rotation an evasive motion of the ulna is observed by various authors, using magnetic resonance imaging (MRI) technology. Our new kinematic model also simulates this evasive motion. Furthermore, the model is enlarged to include angulations of the forearm bones. Using these results the influence of forearm fractures on the range of forearm motion can be predicted. This knowledge can be used by surgeons to choose the optimal therapy in re-establishing free forearm mobility. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Performance of the pro- and supination motion is important to the human capability of acting in a finemotorial way, which is necessary in an increasing number of technical jobs and everyday life.

Forearm fractures sometimes result in broken bones healing in angulated positions (Nilsson and Obrant, 1977; Kuderna, 1980). Today, a physicians evaluation of the neccesity to operate is based on a small amount of available information and clinical studies. As a result of this lack of knowledge many patients with fresh fractures are operated on, to force the broken bone in a certain position whereas the physician is not sure about the effect of the current bone-position (Weiner, 1981).

This situation motivated our research with the goal of presenting a kinematic model, which predicts the limitation of motion caused by a known angulation. With this knowledge unnecessary operations can be prevented and the results of the necessary ones can be improved.

Forearm motion research began in the early 20th century. Fick (1904) presented the first kinematic model describing forearm motion, which is still used in many publications (e.g. Kuderna, 1980; Green and Swiontkowski, 1998). The model basis requires the ulna to remain fixed during the whole rotation, as shown in the left drawing of Fig. 1. According to Fick, the hand should not stay parallel during rotation, which is easily refuted by personal experience. The right drawing in Fig. 1 depicts the evasive motion of ulna and radius, which ensures the parallelism of the hand to the elbow.

2. Methods

The new kinematic model uses a database of MRI-scans of the pro- and supination that were evaluated in 30 healthy forearms for kinematic behavior (Weinberg et al., 1997). The scans were taken at different sections of the forearm for several pro- and supination-angles. Spatial motion of the bones involved in pro- and supination require a spatial mechanism.

2.1. Kinematic model for healthy forearm bones

The degree of freedom \(F \) (d.o.f.) for a general spatial mechanism is given by

\[
F = 6(n - g - 1) + \sum_{i=1}^{n} f_i,
\]

where \(n \) is the number of links, \(g \) is the number of rotational joints, and \(f_i \) are the number of prismatic joints.
Fick’s model from 1904 (left) does not allow the hand to stay parallel to the elbow during forearm rotation. Evasive movement of ulna and radius to ensure parallelism of hand and elbow as performed in reality (right).

Fig. 1.

where \(n \) is the number of elements, \(g \) the number of joints and \(f_i \) the d.o.f. of each joint.

We chose a closed kinematic chain with four joints as our model. With \(n = g = 4 \) and the positive gear constraint of \(F = 1 \), we find using (1) that,

\[
\sum_{i=1}^{n} f_i = 1 - 6(4 - 4 - 1) = 7
\]

which means distribution of seven d.o.f. among the four joints. Fig. 2 depicts our mechanism. It has one spherical joint (d.o.f. = 3) on the proximal end of the ulna (1) and one rotational joint (d.o.f. = 1) on the ulna’s distal end (2). The radius has one cardanic joint (d.o.f. = 2) on the distal end (3) and a prismatic joint (d.o.f. = 1) on the proximal end (4) (Kerle and Frindt, 1997).

For the mathematical formulation of this system, a closed vector-chain is introduced in Fig. 2. The angle \(\alpha \) indicates the actual position of pro- or supination. Therefore, the total d.o.f. of the system is one, it is now possible to find exactly one clear position of the mechanism for every angle \(\alpha \). The length of the bones (the length of the vectors \(r_1 \) and \(r_3 \)) is called \(l_1 \) and the distance between their centers at their ends (the length of the vectors \(r_2 \) and \(r_4 \)) is called \(l_2 \).

\[
|r_1| = |r_3| = l_1,
|r_2| = |r_4| = l_2,
|r_5| = f(\alpha).
\]

The whole set of vectors \(r_i \) describes a closed kinematic chain. From this condition arises the equation

\[
\sum_{i=1}^{5} r_i = \sum_{i=1}^{5} r_{x_i} = 0.
\]

The initial conditions in supination position \((\alpha = 90^\circ := \alpha_s)\) are:

\[
\begin{align*}
\mathbf{r}_1(\alpha_s) &= \mathbf{r}_1(\alpha) = l_1 \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \\
\mathbf{r}_2(\alpha_s) &= l_2 \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \\
\mathbf{r}_3(\alpha_s) &= l_1 \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \\
\mathbf{r}_4(\alpha_s) &= \mathbf{r}_4(\alpha) = l_2 \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \\
\mathbf{r}_5(\alpha_s) &= \mathbf{0}.
\end{align*}
\]

(5)

(6)

(7)

(8)

(9)

The condition

\[
(r_2(\alpha)||r_4(\alpha)) \wedge (r_2(\alpha) \perp r_1(\alpha))
\]

yields

\[
\begin{pmatrix} \sin(\alpha) \\ \cos(\alpha) \end{pmatrix}
\]

\[
\mathbf{r}_5(\alpha) = l_2 \left(\begin{pmatrix} \sin(\alpha) \\ \cos(\alpha) \end{pmatrix} \right).
\]

(10)

(11)

(12)

(13)

With (12) and (11), respectively, (13) and (11) we obtain

\[
\mathbf{r}_{x_s}(\alpha) = l_2(1 - \sin(\alpha))
\]

and

\[
r_{z_s}(\alpha) = -l_2 \cos(\alpha).
\]

(14)

(15)
Eqs. (14) and (15), the magnitude of \(\mathbf{r}_3(z) \)

\[
|\mathbf{r}_3(z)| = \sqrt{r_{z_1}^2 + r_{z_2}^2 + r_{z_3}^2},
\]

(16)

together with (7) results in

\[
\mathbf{r}_3(z) = \begin{pmatrix}
1 - \sin(z) \\
- \frac{r_{z_2}^2}{\sqrt{r_{z_2}^2}} - 2(1 - \sin(z)) \\
- \cos(z)
\end{pmatrix}.
\]

(17)

Fig. 2 sets forth that \(r_{x_1}(z) = r_{z_1}(z) = 0 \), because of the prismatic joint that allows only motions in the direction of the y-axis. In order to meet

\[
\mathbf{r}_2(z) \parallel \mathbf{r}_4(z),
\]

(18)

\(r_{y_1} \) complies with

\[
r_{y_1}(z) = r_{y_1}(z) + r_{y_3}(z).
\]

(19)

Hence,

\[
\mathbf{r}_5(z) = \begin{pmatrix}
0 \\
\frac{l_1}{l_2} - \frac{r_{z_2}^2}{\sqrt{r_{z_2}^2}} - 2(1 - \sin(z)) \\
0
\end{pmatrix}
\]

(20)

2.2. Angulated bones

The basic idea of predicting the influence of angulations on the range of forearm motion is the calculation of the minimal distance between the two bones of the healthy forearm and setting that equal to the minimum allowable distance of the angulated forearm.

To do so, we measure the range of pronation of the healthy forearm and calculate the minimal distance between the two vectors representing ulna and radius of our kinematic model. The range of rotation of the human forearm increases by the natural bending of the bones, especially of the radius. Although our model uses straight vectors, we consider this effect by calculating the distance of the vectors representing the healthy forearm at maximal pronation, which naturally can only be achieved through bending of the radius. Therefore, our calculation method serves as a type of normalization for the influence of the bending of the bones. With this value and the known size of the patient’s bones taken from the X-ray pictures we calculate the distances between the forearm bones in the angulated case as a function of \(z \) and stop, when reaching the minimal distance of the healthy arm.

2.2.1. Angulated ulna

To go further from this point, a model for the system with angulations is needed. To achieve this an extended vector loop, that includes one additional-vector for every angulation is introduced. The parameters \(k_1, k_2 \) and \(k_3 \) identify the angulation in the local coordinate-system of the fractured bone and are chosen to be taken directly from the X-ray-pictures. The local x-component \(k_1 \) can be measured from a.p. X-ray. It is defined as positive if it points in direction of the thumb. The local y-component \(k_2 \), taken from both the a.p. and side pictures is measured from the elbow to point \(A \) in supination. The z-component \(k_3 \), visible in the side picture is positive if the angulation is in palmar direction. These vectors are depicted in Fig. 3 along with one angulation of the ulna.

We introduce the new vectors \(\mathbf{r}_{11} \) and \(\mathbf{r}_{12} \) in Fig. 4. \(\mathbf{r}_{11} \) and \(\mathbf{r}_{12} \) meet the following condition for every \(z \):

\[
\mathbf{r}_1(z) + \mathbf{r}_5(z) = \mathbf{r}_{11}(z) + \mathbf{r}_{12}(z).
\]

(21)

We find the initial condition of \(\mathbf{r}_{11} \) as

\[
\mathbf{r}_{11}(z = z_s) = \begin{pmatrix}
-k_1^s \\
k_2^s \\
k_3^s
\end{pmatrix}.
\]

(22)

Using Fig. 3, (5), (20) and (22) we obtain

\[
\mathbf{r}_{11}(z) = \frac{k_2^s}{l_1} (\mathbf{r}_1 + \mathbf{r}_5) = \frac{k_2^s}{l_1} \left(l_1 + l_2 \left(\frac{l_1}{l_2} - \frac{r_{z_2}^2}{\sqrt{r_{z_2}^2}} - 2(1 - \sin(z)) \right) \right).
\]

(23)
Only the y-values of $r_{11}(z)$ is dependent of z, hence,

$$r_{11}(z) = \begin{pmatrix} -k_1' \\ r_{111}(z) \\ k_3' \end{pmatrix}$$

(24)

With (5) and (20) the position vector of point B amounts to

$$r_B(z) = r_1(z) + r_5(z)$$

$$= \begin{pmatrix} 0 \\ l_2(- \sqrt{1 \over l_2^2} - 2(1 - \sin(z)) + 2l_1 \over l_2) \\ 0 \end{pmatrix}$$

(25)

$r_{12}(z)$ is the difference between $r_B(z)$ (25) and $r_{11}(z)$ (24):

$$r_{12}(z) = r_B(z) - r_{11}(z)$$

$$= \begin{pmatrix} k_1^* \\ (1 - k_2^* \over l_1)l_2(- \sqrt{1 \over l_2^2} - 2(1 - \sin(z)) + 2l_1 \over l_2) \\ -k_3' \end{pmatrix}$$

(26)

2.2.2. Angulated radius

The case of the angulated radius is more complicated, because the radius performs a spatial motion, whereas the ulna moves only in y-direction. To handle this case we define the local coordinate-system of the radius (Fig. 4). The index r indicates the local coordinate-system of the radius:

$$e_r^r = \frac{r_3}{|r_3|},$$

$$e_r^s = \frac{r_2 \times r_1}{|r_2 \times r_1|},$$

$$e_r^c = e_r^r \times e_r^c.$$

(27)

Now, it is easy to describe r_3 and the additional vectors r_{31} and r_{32} in the new coordinates.

$$r_3' = \begin{pmatrix} l_1 \\ 0 \\ 0 \end{pmatrix}$$

(28)

$$r_{31}' = \begin{pmatrix} k_1' \\ k_2^{*r} \\ k_3' \end{pmatrix}$$

(29)

where

$$k_2^{*r} = l_1 - k_2$$

(30)

and

$$r_{32}' = \begin{pmatrix} -k_1' \\ k_2' \\ -k_3' \end{pmatrix}$$

(31)

Using (27), (29)–(31) can be transformed as

$$r_{31} = r_{31} \cdot e_r,$$

(32)

and

$$r_{32} = r_{32} \cdot e_r.$$

(33)

The model can easily be expanded to deal with a double-fraction of ulna and radius by combining (6), (8), (24), (26), (32) and (33).

3. Results

We learn from Weinberg et al. (1997) that the amount of evasive angle of the ulna and radius (Fig. 1 — right half) relative to its supination position is 7.36° on average. This evasive motion in our model is performed by the extension of r_5 (Fig. 2). This translation can easily be recalculated for the natural evasive movement. By using a typical adults relation of 8:1 for the length of the forearm-bones compared to their distance in full supination position, we find a length increase of 3.1% which is equal to 7.2° of evasion rotation.

Hence, our kinematic model is in good agreement with the measured values of the MRI-study.

Furthermore, we will discuss two examples to show the reliability of our prognoses.

1. The first patient is female and five-years old has a left-hand-side forearm fracture of the ulna. From the a.p. X-ray-pictures we measured $l_1 = 153$ mm (length of the radius), $l_2 = 141$ mm (diameter of the capitulum radii, which we use as a measurement for l_2) and the dorsal angulation of the fracture $k_1 = -3.5$ mm. From the side-X-ray-picture we find the distance from the fracture to the elbow $k_2 = 46.7$ mm and the angulation of the ulna towards the radius $k_3 = -3.5$ mm.

The range of motion of the healthy arm amounts to $80°$ in pronation direction. The angulation of the ulna does not limit the patients range of motion. By using our model for the broken ulna we calculated a range of motion of $80°$ in pronation direction, which is seen in reality.
2. The second example is a 31-year-old male with a radius fracture on the right forearm. The length of the radius amounts $l_1 = 259\text{ mm}$, the diameter of the capitulum radii is $l_2 = 24\text{ mm}$, measured from the a.p. X-ray. The parameter of the fracture are $k_1 = -5\text{ mm}$ (a.p. X-ray), $k_2 = 101\text{ mm}$ and $k_3 = 17\text{ mm}$ (k_1 and k_2 from side X-ray). The range of motion of the left forearm is 75° in pronation direction. The range of rotation of the right arm is restricted to 0° in pronation direction. Calculating the range of motion using the equations for the broken radius yields 3° of pronation.

4. Discussion

In 1872, Duchenne (1949) described the motion of the ulna during pronation–supination as an arc of a circle, which involved first an extension, then a lateral motion and lastly a flexion of the ulna. This description of the ulna motion was substantiated in 1884 by Heiberg (1884) and Dwight (1884).

Although this fact was known long ago, many authors fixed the ulna when examining the forearm rotation. With this simplified assumption they found a fixed rotation axis for the pronation–supination motion. But for a correct description the motions of both forearm bones, radius and ulna are important.

New experiments like the MRI-studies performed by Nakamura et al. (1994) and Weinberg et al. (1997) with a moveable ulna describe the ulna motion from supination to pronation as the combined abduction and extension/flexion motion, which is a corroboration of the early results of Duchenne and Hieberg.

Furthermore, instead of a fixed rotational axis for the forearm rotation, a rotation-angle dependent screw-axis for the forearm rotation is depicted.

We expanded our kinematic model to the case of a broken ulna or broken radius. This novelty can be used to predict the effects of forearm fractures on the range of forearm motion. A comparison with a still small patient database showed that the calculating method for pronation comes very close to nature. We cannot make a statement for supination yet. The kinematic model is mainly based on MRI-studies at this stage. We are going to make experiments on dead probands for a further refinement of our model, especially for the angulated case.

A computer tool will be developed that predicts motion restrictions due to forearm fractures from knowledge in human forearm rotational kinematics before the best therapy is chosen, in respect to helping in the prevention of unnecessary operations and thereby cutting health service costs and patient risk.

Furthermore, the kinematic model could be used to for further investigations of the role of the humero-ulnar joint during pronation–supination. This could help to improve existing elbow-joint prostheses.

References

