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SUMMARY

Bayes/frequentist correspondences between the p-value and the posterior probability of
the null hypothesis have been studied in univariate hypothesis testing situations. This
paper extends these comparisons to multiple testing and in particular to the Bonferroni
multiple testing method, in which p-values are adjusted by multiplying by k, the number
of tests considered. In the Bayesian setting, prior assessments may need to be adjusted to
account for multiple hypotheses, resulting in corresponding adjustments to the posterior
probabilities. Conditions are given for which the adjusted posterior probabilities roughly
correspond to Bonferroni adjusted p-values.

Some key words: Adjusted p-value; Bayes factor, Multiple testing; Multiplicity adjustment; Simultaneous
inference.

1. INTRODUCTION

Multiple testing is difficult and controversial on either side of the Bayes/frequentist
fence, with arguments over whether and how multiplicity adjustment should be performed.
Nevertheless, the issue is important since practising statisticians routinely deal with large
and complex datasets, with multiple hypotheses of interest.

We describe multiple testing situations for which the Bonferroni correction and Bayesian
analysis roughly coincide. This happens when (i) the hypotheses tested are regarded inde-
pendently, (ii) there is a concern that many or all of the hypotheses tested might be true,
and (iii) there is interest in the individual hypotheses, rather than a single omnibus test.
These are precisely the conditions where Bonferroni-style adjustments are typically applied
in practice. As in the univariate case, the reconciliation of Bayesian probabilities and
frequentist p-values is tenuous in the multiple testing case. Nevertheless, we identify situ-
ations where multiplication by the factor k, as is done with the Bonferroni adjustment,
has Bayesian rationale.

In § 2 we review Bayesian measures of evidence and the p-value. In § 3, multiple testing
concepts are reviewed from the frequentist perspective, and § 4 compares frequentist multi-
plicity adjustments and revised Bayesian posterior probabilities, with applications to inde-
pendent tests, correlated tests and pairwise comparisons. An example is given in § 5 and
concluding remarks are given in § 6. Details of our prior elicitation for the example are
given in an Appendix.
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420 P. H. WESTFALL, W. O. JOHNSON AND J. M. UTTS

2. UNIVARIATE TESTS

Many authors have compared frequentist p-values, pF, and Bayesian measures of evi-
dence, as measured by the Bayesian probability pB = pr(H0|the data), finding various
degrees of reconciliation depending upon the type of test considered. Casella & Berger
(1987) considered the one-sided testing problem, Berger & Sellke (1987) addressed the
two-sided testing problem, and Moreno & Cano (1989) extended the results to multidimen-
sional point null tests. In these papers, and in ours, the Bayes factor, b, is used. When the

/Wo)
$f(z\9)g(e)d6'

where f(z\8) is the probability density function of z and g(9) is the prior density for 6. If
n0 = PT(H0) is specified, the posterior probability is

(1)

Kass & Raftery (1995) review issues surrounding the use and calculation of Bayes factors.
We assume that all Bayes factors are known, and consider the effects of varying the
assessment pr(H0).

3. FREQUENTIST MULTIPLE TESTING

Consider a collection of p-values {pf; i = 1 , . . . , k} corresponding to null hypotheses
HOi (i = 1 , . . . , k). The usual rejection rule (pf ^005) can be criticised on the grounds that
if many or all of the null hypotheses tested are true, some of them will be incorrectly
rejected and the familywise error rate can be much larger than 005. Multiple testing
methods commonly aim to control this error rate at a pre-specified level; Hochberg &
Tamhane (1987) provide a good general reference.

From the frequentist standpoint, a reasonable measure of evidence concerning a particu-
lar hypothesis is the 'adjusted p-value', pf, which is the smallest familywise error rate for
which HOi would be rejected. The simple Bonferroni method leads to adjusted p-values
pf = kpf, which are usually upper bounds on the required amount of adjustment in
frequentist multiple testing. Holm (1979), Shaffer (1986), Hochberg (1988), Dunnett
& Tamhane (1992) and Westfall & Young (1993) give improvements over the simple
Bonferroni method. Nevertheless, the Bonferroni adjustment is a convenient generic refer-
ence point to facilitate our comparison with Bayesian methods.

4. WHEN IS BAYES LIKE BONFERRONI?

41 . Interval nulls and shrinkage priors
From the Bayesian point of view, there is no need to adjust the posterior probability

of the event {HOi is true} provided one's prior is well calibrated. Recognising that extreme
statistics can and do occur in multiple testing applications, Bayesians commonly consider
priors that 'shrink' the observed effects toward some common mean (Meng & Dempster,
1987; Berry, 1988; Berger & Deely, 1988; Lindley, 1990).

A typical 'shrinkage' prior specifies normal and exchangeable fy's with mean 0, variance
a2 and correlation p. Suppose the observable data vector is Z = (Zu ..., Zk), the parameter
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Bayesian perspective on the Bonferroni adjustment 421

vector is & = {91,..., 6k), and Z given 0 is distributed as Nk{®, I). The assumption of
conditional independence is valid in many multiple testing applications (Proschan &
Follmann, 1995); a violation occurs when the 9t represent pairwise contrasts among the
means of treated groups.

The posterior distribution of 0 is multivariate normal with marginals satisfying

(3)

(4)

where y = {\-p)a2. With large k, (2) and (3) reduce to {yz, + z}/{l +y} +o(l) and
y/(l + y) + °(1)> respectively.

Consider testing one-sided hypotheses H0(: 0, ^ 0 versus Hu: 0, > 0. In this case the
Bayesian probability pr(HOi\z) = pr(0, ^ 0|z) and the Bonferroni p-value pf = kpf cannot
be reconciled using the shrinkage prior; we have k~*pf = pf, which is constant in k for
every z e 0P, while k~x pr(Hoi|z) tends to zero for every z e dP as k tends to infinity.

This nonreconciliation is not surprising, since the given prior implies

(0-5)* ^ pr(ifOi is true, all i) ^ 0-5,

with extremes occurring in the cases (a) complete independence of the 6t (p = 0), or
(b) perfect correlation among the 0, (p = 1). In the case of near or complete independence,
the event {HOi is true, all i} is not considered likely. The Bonferroni method is based upon
the implicit presumption of a moderate degree of belief in the event {HOi is true, all i};
therefore, it is not surprising that the frequentist and Bayesian methods differ when this
event is explicitly considered to be a priori implausible.

4-2. Point nulls and Bayes factors
The implicit motivation for the Bonferroni correction is a concern that the event

{HOi is true, all i} is plausible, with probability perhaps in a neighbourhood of 05, and
certainly not arbitrarily close to zero. In the Bayesian setting, suppose pr(HOi is true) is
initially set at 0-5 for each i because the assessor is truly objective about the truth or
falsity of the hypotheses. If the hypotheses are considered to be independent, then the
prior probability of the event that all hypotheses are true is (0-5)*, which may actually be
much smaller than the assessor intended for the joint probability. In this case the prior is
not well calibrated and an adjustment is necessary. If, for example, pr(H0l is true, all i) =
0-5 seems more reasonable, and if there is no preference for particular HOi then the
marginal probabilities pr(H0/ is true) should be revised to (0-5)1'*. If the revised prior is
used, the posterior probabilities pr(H01|z) are also revised. In this setting, when k is large
and b is small we obtain the following result; like the Bonferroni corrections, the Bayesian
revised posterior probabilities are approximately proportional to k x (the original pos-
terior probabilities). Notice that this is precisely the situation of concern in multiple testing;
large k and small b imply that there are a large number of tests conducted and the data
tend to support some alternative hypotheses.

Let the Bayes factor for HOi be b,. If pr(Ho, is true) = nOi then pf, the posterior probability
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422 P. H. WESTFALL, W. O. JOHNSON AND J. M. UTTS

of H0l, is given by (1). Suppose however that the product of the nOi, pr(HOi is true, all i),
is considered too small. Then a revision of the prior is necessary. Suppose the analyst
believes that pr(HOi is true, all i) = II0 . Let ftOi be the revised prior probability of HOi,
chosen so that the product of the ft^ is UQ. One possibility, if the HOi are exchangeable,
is to set H0l = fto = Iiyk, as suggested by Dawid (1987), who examined multiple hypotheses
in court cases.

Let pf be the revised posterior probability for HOi. The following proposition gives
conditions under which pfcckpf, similar to the Bonferroni correction. We assume for
simplicity that the marginal probabilities are identical, and therefore drop the subscript i.
We also assume that the kbi-*d^ 0, which implies that the Bayes factor has order k'1 or
smaller.

PROPOSITION 1. Assume that the H0{ are exchangeable and Ttol = fto = TIolk. Let k->oo
and bt->0 in such a way that kbt^d^ 0. Then

Proof. Note that

kpf
pf

The result follows since 6,-> 0,/cfc,-> d, n^*- • 1 and fc(l -Uhlk)-* - ln ( I I 0 ) . •

Thus the Bayesian revised probability pf is approximately equal to the original Bayes
probability pf multiplied by ck, where c"1 = {d — ln(no)}7ro(l — Tio)"1. This approxi-
mation is best when bt is small, the case of most common concern. For example, if the
marginal prior probabilities n0 = 0-5 are revised to ft0 = (0-5)1/k so that IIo = 05, and if
kbt — 0, then the multiplier is k/\n(2)=l-4k. The frequentist adjustment is similar, since
the adjusted p-value is the original p-value multiplied by k.

The actual Bonferroni multiplier k is obtained in a variety of ways. One way is shown
in the following result.

COROLLARY. Let ft0 = 1 — 1/k, k->co and bt-»• 0 in such a way that kbt-+• 0, and let n0 =
05 . Thenkpf/pf->L

Proof. The proof follows by substituting 1 — l//c for n j '* in the proof of Proposition 1.

•
This condition on ft0 is essentially equivalent to taking H0 = e~1.

4-3. Dependent hypotheses
The Bayesian adjustment shown in Proposition 1 is less extreme with dependent hypoth-

eses, as with frequentist multiplicity adjustments. When the HOi are dependent, the premise
ii0 = Ilo7* is unrealistic. An example is the case of pairwise comparison of t means
Hi,... ,Hf. Here, the 9{ are more properly doubly-indexed,

Clearly, the k hypotheses HOiJ :OiJ = 0 cannot be considered to be independent events. To
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Bayesian perspective on the Bonferroni adjustment 423

model the dependence structure, consider the following hierarchical prior for the ^(: given
a hyperparameter n with continuous prior F, suppose that the /x, are conditionally indepen-
dent with

f = \i

\ ~ G,
/i with probability A,

^' ** ' ~ with probability 1 - A,

for continuous priors G,. Then pr(0^ = 0) = A2 and pr(all 0y = 0) = A'.
Proposition 1 is then applicable as follows. Suppose the initial specification of the

marginal priors has n0 = A2. If the joint prior is thought to be pr(all 8^ = 0) = HQ, then
the revised value for A is 1 = Uy or equivalently ft0 = (U^)11', and the result of Proposition 1
follows by substituting t for k and II2, for ITQ. Since t is roughly proportional to fc*, we
see a less severe adjustment in this application, due to the dependence structure among
tests. The Bonferroni multiplier /c* also has been suggested by John Tukey, as reported
in Mantel (1980), to correct for multiplicity with dependent tests.

As a second example, consider the exchangeable hypotheses of § 41, and consider cali-
brating the prior so that pr(0, < 0, all i) = HQ. For p = 0, we find ITQ = (05)* and, for
p = 1, we find IIo = 05. We now show that, in general, pr(0, ̂  0, all i) is completely deter-
mined by the choice of p, in that one or the other of these may be specified, but the other
is then determined. Further, if p ^ 0, the shrinkage prior requires that (0-5 f < IIQ < 05,
so that, if one's beliefs dictate that IIo > 0-5, a different prior must be selected.

Let d1,...,dk given ^ be a random sample from N(n, of) and assume /z~ JV(O, a2,).
Then 9u...,6k are marginally exchangeable and normal with mean zero, variance
(r2, + (T2. = a2 and with correlation p = cr^/o2. Then

- [d>* i -pr(04«>, all O = £{pr(0^O, all i\n)}

where O(.) is the cumulative standard normal distribution function. Since (5) is monotone
in p, it is a simple matter to find the value of p that results in one's calibrated choice
for IIQ. For instance, using numerical integration, we found that, for k = 5, 10 and 25,
when II0 = 0-4, p was 0-954, 0973 and 0984, respectively, which is not surprising since,
when IIo = 0-5, P = 1 for all k. For k = 5, 10 and 25, when II0 = 01, p is 0284, 0526
and 0-678.

The posterior for 8U..., 6k is also normal, with the same correlation structure as the
prior, see (3) and (4), but with nonzero means. Integration of the resulting multivariate
normal is straightforward for determining one's posterior belief, pr(0(^O, all i\z).

The two special cases just considered make it clear that Bayesian multiplicity adjust-
ments for dependent hypotheses are determined by the nature of the dependence. There
is no simple adjustment that will work for all situations as Bonferroni does in the fre-
quentist realm. Nonetheless, it is important to try to calibrate the individual prior assess-
ments with the overall assessment, as we have done for these special cases.

5. EXAMPLE

In the Summer of 1995, at the request of the U.S. Congress, one of us (Utts, 1995) was
asked to evaluate a recently declassified government-sponsored research program into
extrasensory perception (ESP). The majority of the experiments used 'remote viewing', in
which a photograph or short video segment, denoted as the 'target', was randomly selected
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424 P. H. WESTFALL, W. O. JOHNSON AND J. M. UTTS

from a larger set and displayed in one location, and a 'remote viewer' at a distant location
was asked to provide a description. A question of interest was whether or not each of a
specially selected group of remote viewers showed ESP ability. The government was more
interested in individual abilities for 'intelligence gathering' than in proving the general
existence of ESP.

Here, we use the accumulated data from two experiments, involving five remote viewers
contributing between 40 and 70 trials each. Details of the experiments were published by
May, Spottiswoode & James (1994) and by Lantz, Luke & May (1994). For each viewer,
the null hypothesis is that he does not exhibit ESP. There are k = 5 hypotheses.

For each viewing, a 'blind judge' compared the viewer's written material with five
potential targets, each of which could originally have been selected as the actual target
with equal probability. The judge assigned a rank to each of the five choices, from
1 = best match to 5 = worst, and the rank assigned to the real target was the 'score' for
that guess.

Let Rij be the rank assigned to the actual target for viewer i and trial ;. Under the null
hypotheses £(i?y) = 3 and var(i?y) = 2. When n, is large, a one-sided frequentist test can
be conducted by constructing z-scores for each viewer, zt = (n,/2)*(i?, — 3). The results are
in Table 1.

With the standard rejection criterion at the 5% level, the null hypothesis is rejected for
viewers 1, 2 and 5. A Bonferroni correction requires p ^ 0 0 1 , but two viewers still provide
evidence of ESP under this criterion.

For the Bayesian tests, Dr Edwin May provided information to construct priors for the
alternative hypotheses. He termed viewers 1 and 2 highly skilled and the other three
skilled, and we constructed separate priors for the two groups. Unavoidably, Dr May had
seen the data before we questioned him, but he assured us that after many years of working
with these viewers his assessment would have led to the same prior. As described briefly
in the Appendix, we used his prior assessments regarding (pu ..., p5), where

p, = pr(actual target is given rank i),

to induce a prior distribution on the effect sizes expected for each group; see Fig. 1. In
this context an effect size is given by 6t = (<5, — 3)/2*, where St = E(RtJ) = 5Zf=1 ipt- Notice
that 9, is estimated by z,/nf12.

We wished to test the hypotheses HOi:Q, = 0 versus Hu:0t<0. The Bayes factors in
Table 1 were calculated using simple Monte Carlo integration under the assumption that
ziln\12 given 6{ is approximately normal, and that 0, has the approximate prior distribution
given in Fig. 1.

We computed posterior probabilities for the alternative hypotheses for low, medium
and high prior expectations for individual viewers, respectively pi(HOi) = 0-9, pr(#0J) = 0-5

Table 1. Extrasensory perception example: statistics for viewers

R,

p-value
Bayes factor

1

60
2-45

-3-01
00013
00177

2

70
2-47

- 3 1 4
(MXX)8
00139

Viewer
3

40
2-80

-0-89
0-1867
11837

4

60
2-93

- 0 3 8
O3520
4-4978

5

60
2-62

-2-08
O0188
02242
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Bayesian perspective on the Bonferroni adjustment 425

-1-0 -0-8 -0-6 - 0 4
Effect size

- 0 -2 00

Fig. 1. Extrasensory perception example: induced priors for effect size from data in
Table 1. Viewers 1 and 2, highly skilled; viewers 3-5, skilled.

and pr(HOi) = 0-1. If all five null hypotheses are regarded independently, the resulting low,
medium and high overall probabilities are 0-59, 003 and 000001, respectively, which may
be smaller than desired for each type of belief, thus requiring an adjustment.

Suppose in each case we adjust n0 to be ft0 = 7TJ-/5 as if the initial degree of belief in
pr(HOi is true) is meant to apply to pr(HOi is true, all i). This results in revised probabilities
ft0 of 0-979, 0-87 and 063 for low, medium and high prior expectations, respectively.
Table 2 shows posterior probabilities for each type of prior before and after adjusting
them for multiple testing, as well as the ratio of these probabilities. Notice that the adjust-
ment is most relevant when the Bayes factor bt is small. This occurs for viewers 1 and 2,
and to a lesser extent for viewer 5, and is similar to a Bonferroni adjustment in this case
for the medium prior expectation. Note also that multiphcative adjustments can get quite
large with small bh as suggested by Proposition 1. The approximate number given by
Proposition 1 for small bh k{ — ln(Il0)}{no/(l — n0)} ~1, results in the values 5-27, 7-21 and
19-54 for low, medium and high prior expectations. These values most closely reflect the
pattern of the observed multipliers in Table 2 for viewer 2, who had the smallest Bayes
factor. According to Proposition 1, the approximations will become closer for smaller bt

and larger k.

Table 2. Bayes factors and posterior probabilities

:wer

1
2
3
4
5

Bayes
factor

001774
001389
118374
4-49783
022417

Pnor Tto = 09, ft0

Pf
01377
01111
09142
09759
06686

Pf
04545
03948
09823
09953
09132

= 0979
Pflpf

3-30
3-55
107
102
1-37

Prior TC(

Pf
00174
00137
05421
08181
01831

5 = 05, fto

Pf
O1066
00854
08884
O9680
O6012

= 087
Pflpf

611
6-24
1-64
118
3-28

Prior Jt0
Pf

O0020
O0015
01162
03332
O0243

= 01, ft,.
Pf

O0294
00232
06693
08849
02771

= 063
Pflpf

14-96
1505
5-76
2-66

11-40
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6. DISCUSSION

The revision ft0 = n ^ seems to suggest that pr(//Oi is true) should be revised as more
tests are considered in the context of the same experiment. This is not the case. Marginal
priors for individual hypotheses should not depend upon how many tests are examined;
rather, prior assessments should be made on a study-by-study basis. The careful assessment
of the joint probability on all null hypotheses can only improve the calibration of the
joint prior. If the joint prior probability on all null hypotheses is assessed to be moderate,
and if the prior correlation between the parameters is small, then we are forced to conclude
that the individual prior probability on each null hypothesis is large, perhaps much larger
than 0-5.

One also might think that ft0 = n^* is generally 'too large'. However, Box & Meyer
(1986) use pr(if0, is true) = 08 when selecting active experimental effects; Garthwaite &
Dickey (1992) elicit priors from an expert as high as pr(ifoi is true) = 0-9; and Dawid
(1987) gives a similar construction, 7ro = nJ/i, where the individual hypotheses refer to
'component issues' in a litigation, and where the collection of null hypotheses refers to
the 'conjunction' of all such component issues.

For those who desire a Bayesian rationale, our results suggest that Bonferroni-style
multiplicity adjustment may be appropriate, provided (a) it is thought that, simultaneously,
all null hypotheses are moderately probable, and (b) the prior dependence between null
hypotheses is small. Further, the Bayesian correspondences suggest that frequentists could
account for a priori knowledge in an informal fashion as follows. First, do not multiplicity-
adjust a test when the null hypothesis is suspected to be false a priori. For such a test,
the prior n0 = IIo7* will be too large. Secondly, after removing such suspected hypotheses,
perform multiplicity adjustment on the remaining tests, provided that the truth of all these
hypotheses is believed moderately probable.

This protocol provides an answer to the question 'why not perform multiplicity adjust-
ments for all tests considered in the statistician's lifetime?' The answer is because it is quite
unlikely that all null hypotheses considered in a lifetime will actually be true. By analogy,
Kadane (1987) has claimed that it seems silly to test Ho:6 = 0 versus Hx: 6 + 0 if it is not
thought remotely possbile that 6 = 0.

The primary message of this paper for Bayesians is that they should calibrate their
priors according to their beliefs about pr(flo, is true, all i): their marginal probabilities
PT(H0! is true) might be much larger than they had thought.

We suggest the following Bayesian protocol.
(i) Assign larger prior probabilities to null hypotheses that are not suspected to be

false, a priori, than to those that are suspected to be false.
(ii) Explicitly model prior dependencies among hypotheses that are related, as shown,

for example, in § 4-3.
(iii) Assign a value to pr(HOi is true, all i). Use this probability, as well as correlational

information, to assign priors on individual null hypotheses.
Frequentist multiplicity adjustments have been criticised by Bayesians (Berry, 1988;

Lindley, 1990). The analyses of this paper suggest that frequentist and Bayesian multiple
testing analyses need not be grossly disparate.

APPENDIX

Prior elicitationfor the extrasensory perception example

To determine a prior on the effect sizes for the two types of viewer, we first elicited a prior
distribution on the vector of probabilities (pu p2, •.., p3). We did not simply take a Dirichlet prior

 at U
niversity of V

ictoria, M
cP

herson Library S
erials on M

arch 5, 2011
biom

et.oxfordjournals.org
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/


Bayesian perspective on the Bonferroni adjustment All

on this vector because we wanted to give the most weight to the information for direct hits and
so on, with the least weight for the information about a rank of 5.

For each i, we asked Dr May to provide a value for the 50th and 99th percentiles for his
assessment of the probability with which each viewing would get a rank of i, given that it did not
receive a rank less than i. We then used the beta density with matching 50th and 99th percentiles
as the prior for the conditional density of ph given pu ..., pJ_1. For the highly skilled viewers, he
was 99% sure that the probability of a direct hit, plt would be 0-4 or less, and 50% sure it would
be 0-3 or less, resulting in a beta (52, 78) prior for p t. Similarly, his assessment of the probability
of a second place match, given that a direct hit was not obtained, resulted in a beta (24, 28)
conditional density for p2.

We repeated this for all i and for both types of viewer, inducing joint prior probability distri-
butions on (PL p2, • • •, Pi)- We then used the prior to generate the density estimates for the effect
size, shown in Fig. 1, using 10 000 Monte Carlo samples for each type of viewer. Since Dr May
would truncate the possibilities at effect sizes of zero, we discarded any sample for which the effect
size was greater than 0, and renormalised.
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